Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(9): 1473-1486, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37580603

RESUMEN

Omnivorous animals, including mice and humans, tend to prefer energy-dense nutrients rich in fat over plant-based diets, especially for short periods of time, but the health consequences of this short-term consumption of energy-dense nutrients are unclear. Here, we show that short-term reiterative switching to 'feast diets', mimicking our social eating behavior, breaches the potential buffering effect of the intestinal microbiota and reorganizes the immunological architecture of mucosa-associated lymphoid tissues. The first dietary switch was sufficient to induce transient mucosal immune depression and suppress systemic immunity, leading to higher susceptibility to Salmonella enterica serovar Typhimurium and Listeria monocytogenes infections. The ability to respond to antigenic challenges with a model antigen was also impaired. These observations could be explained by a reduction of CD4+ T cell metabolic fitness and cytokine production due to impaired mTOR activity in response to reduced microbial provision of fiber metabolites. Reintroducing dietary fiber rewired T cell metabolism and restored mucosal and systemic CD4+ T cell functions and immunity. Finally, dietary intervention with human volunteers confirmed the effect of short-term dietary switches on human CD4+ T cell functionality. Therefore, short-term nutritional changes cause a transient depression of mucosal and systemic immunity, creating a window of opportunity for pathogenic infection.


Asunto(s)
Membrana Mucosa , Salmonella typhimurium , Humanos , Ratones , Animales , Linfocitos T , Inmunidad Mucosa
2.
Immunity ; 56(1): 143-161.e11, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36630913

RESUMEN

Although T cells can exert potent anti-tumor immunity, a subset of T helper (Th) cells producing interleukin-22 (IL-22) in breast and lung tumors is linked to dismal patient outcome. Here, we examined the mechanisms whereby these T cells contribute to disease. In murine models of lung and breast cancer, constitutional and T cell-specific deletion of Il22 reduced metastases without affecting primary tumor growth. Deletion of the IL-22 receptor on cancer cells decreases metastasis to a degree similar to that seen in IL-22-deficient mice. IL-22 induced high expression of CD155, which bound to the activating receptor CD226 on NK cells. Excessive activation led to decreased amounts of CD226 and functionally impaired NK cells, which elevated the metastatic burden. IL-22 signaling was also associated with CD155 expression in human datasets and with poor patient outcomes. Taken together, our findings reveal an immunosuppressive circuit activated by T cell-derived IL-22 that promotes lung metastasis.


Asunto(s)
Interleucinas , Neoplasias , Receptores Virales , Linfocitos T Colaboradores-Inductores , Animales , Humanos , Ratones , Antígenos de Diferenciación de Linfocitos T/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Células Asesinas Naturales/metabolismo , Neoplasias/metabolismo , Unión Proteica , Linfocitos T Colaboradores-Inductores/metabolismo , Interleucina-22
3.
Cell ; 157(4): 776-83, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813605

RESUMEN

The immune system and the microbiota mutually interact to maintain homeostasis in the intestine. However, components of the microbiota can alter this balance and promote chronic inflammation, promoting intestinal tumor development. We review recent advances in understanding the complex interactions between the microbiota and the innate and adaptive immune systems and discuss their potential to lead us in new directions for understanding cancer biology and treatment.


Asunto(s)
Gastroenteritis/inmunología , Gastroenteritis/microbiología , Neoplasias Intestinales/inmunología , Neoplasias Intestinales/microbiología , Microbiota , Humanos , Inmunidad Innata , Células Th17/inmunología , Receptores Toll-Like/inmunología
4.
Nature ; 615(7950): 168-174, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36813961

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is expected to be the second most deadly cancer by 2040, owing to the high incidence of metastatic disease and limited responses to treatment1,2. Less than half of all patients respond to the primary treatment for PDAC, chemotherapy3,4, and genetic alterations alone cannot explain this5. Diet is an environmental factor that can influence the response to therapies, but its role in PDAC is unclear. Here, using shotgun metagenomic sequencing and metabolomic screening, we show that the microbiota-derived tryptophan metabolite indole-3-acetic acid (3-IAA) is enriched in patients who respond to treatment. Faecal microbiota transplantation, short-term dietary manipulation of tryptophan and oral 3-IAA administration increase the efficacy of chemotherapy in humanized gnotobiotic mouse models of PDAC. Using a combination of loss- and gain-of-function experiments, we show that the efficacy of 3-IAA and chemotherapy is licensed by neutrophil-derived myeloperoxidase. Myeloperoxidase oxidizes 3-IAA, which in combination with chemotherapy induces a downregulation of the reactive oxygen species (ROS)-degrading enzymes glutathione peroxidase 3 and glutathione peroxidase 7. All of this results in the accumulation of ROS and the downregulation of autophagy in cancer cells, which compromises their metabolic fitness and, ultimately, their proliferation. In humans, we observed a significant correlation between the levels of 3-IAA and the efficacy of therapy in two independent PDAC cohorts. In summary, we identify a microbiota-derived metabolite that has clinical implications in the treatment of PDAC, and provide a motivation for considering nutritional interventions during the treatment of patients with cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Microbiota , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/dietoterapia , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/microbiología , Glutatión Peroxidasa/metabolismo , Neoplasias Pancreáticas/dietoterapia , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/microbiología , Peroxidasa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Triptófano/metabolismo , Triptófano/farmacología , Triptófano/uso terapéutico , Neutrófilos/enzimología , Autofagia , Metagenoma , Metabolómica , Trasplante de Microbiota Fecal , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/uso terapéutico , Modelos Animales de Enfermedad , Vida Libre de Gérmenes , Neoplasias Pancreáticas
5.
Immunity ; 48(1): 120-132.e8, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29343433

RESUMEN

Group 3 innate lymphoid cells (ILC3s) sense environmental signals and are critical for tissue integrity in the intestine. Yet, which signals are sensed and what receptors control ILC3 function remain poorly understood. Here, we show that ILC3s with a lymphoid-tissue-inducer (LTi) phenotype expressed G-protein-coupled receptor 183 (GPR183) and migrated to its oxysterol ligand 7α,25-hydroxycholesterol (7α,25-OHC). In mice lacking Gpr183 or 7α,25-OHC, ILC3s failed to localize to cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Gpr183 deficiency in ILC3s caused a defect in CP and ILF formation in the colon, but not in the small intestine. Localized oxysterol production by fibroblastic stromal cells provided an essential signal for colonic lymphoid tissue development, and inflammation-induced increased oxysterol production caused colitis through GPR183-mediated cell recruitment. Our findings show that GPR183 promotes lymphoid organ development and indicate that oxysterol-GPR183-dependent positioning within tissues controls ILC3 activity and intestinal homeostasis.


Asunto(s)
Colitis/metabolismo , Linfocitos/metabolismo , Tejido Linfoide/metabolismo , Oxiesteroles/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Movimiento Celular/genética , Colitis/inmunología , Colitis/patología , Colon/inmunología , Colon/patología , Citocinas/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Ligandos , Linfocitos/patología , Tejido Linfoide/patología , Ratones , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal
6.
Eur J Immunol ; : e2451070, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803018

RESUMEN

γδ T cells are a subset of T cells that are characterized by the expression of a TCR-γδ instead of a TCR-αß. Despite being outnumbered by their αß T cell counterpart in many tissues, studies from the last 20 years underline their important and non-redundant roles in tumor and metastasis development. However, whether a γδ T cell exerts pro- or antitumorigenic effects seems to depend on a variety of factors, many of them still incompletely understood today. In this review, we summarize mechanisms by which γδ T cells exert these seemingly contradictory effector functions in mice and humans. Furthermore, we discuss the current view on inducing and inhibiting factors of γδ T cells during cancer development.

7.
Eur J Immunol ; 54(2): e2350434, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37971166

RESUMEN

The initiation of tissue remodeling following damage is a critical step in preventing the development of immune-mediated diseases. Several factors contribute to mucosal healing, leading to innovative therapeutic approaches for managing intestinal disorders. However, uncovering alternative targets and gaining mechanistic insights are imperative to enhance therapy efficacy and broaden its applicability across different intestinal diseases. Here we demonstrate that Nmes1, encoding for Normal Mucosa of Esophagus-Specific gene 1, also known as Aa467197, is a novel regulator of mucosal healing. Nmes1 influences the macrophage response to the tissue remodeling cytokine IL-4 in vitro. In addition, using two murine models of intestinal damage, each characterized by a type 2-dominated environment with contrasting functions, the ablation of Nmes1 results in decreased intestinal regeneration during the recovery phase of colitis, while enhancing parasitic egg clearance and reducing fibrosis during the advanced stages of Schistosoma mansoni infection. These outcomes are associated with alterations in CX3CR1+ macrophages, cells known for their wound-healing potential in the inflamed colon, hence promising candidates for cell therapies. All in all, our data indicate Nmes1 as a novel contributor to mucosal healing, setting the basis for further investigation into its potential as a new target for the treatment of colon-associated inflammation.


Asunto(s)
Colitis , Mucosa Intestinal , Animales , Ratones , Colitis/tratamiento farmacológico , Citocinas , Intestinos , Cicatrización de Heridas
8.
Immunity ; 45(5): 1078-1092, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27851911

RESUMEN

Th17 cells are most abundant in the gut, where their presence depends on the intestinal microbiota. Here, we examined whether intestinal Th17 cells contribute to extra-intestinal Th17 responses in autoimmune kidney disease. We found high frequencies of Th17 cells in the kidneys of patients with antineutrophil cytoplasmatic antibody (ANCA)-associated glomerulonephritis. We utilized photoconversion of intestinal cells in Kaede mice to track intestinal T cell mobilization upon glomerulonephritis induction, and we found that Th17 cells egress from the gut in a S1P-receptor-1-dependent fashion and subsequently migrate to the kidney via the CCL20/CCR6 axis. Depletion of intestinal Th17 cells in germ-free and antibiotic-treated mice ameliorated renal disease, whereas expansion of these cells upon Citrobacter rodentium infection exacerbated pathology. Thus, in some autoimmune settings, intestinal Th17 cells migrate into target organs, where they contribute to pathology. Targeting the intestinal Th17 cell "reservoir" may present a therapeutic strategy for these autoimmune disorders.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Quimiotaxis de Leucocito/inmunología , Glomerulonefritis/inmunología , Receptores de Lisoesfingolípidos/inmunología , Células Th17/inmunología , Animales , Citrobacter rodentium , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/inmunología , Citometría de Flujo , Humanos , Intestinos/inmunología , Riñón/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Esfingosina-1-Fosfato
9.
J Immunol ; 210(11): 1717-1727, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37058116

RESUMEN

IL-6 plays a fundamental role in T cell differentiation and is strictly controlled by surface expression and shedding of IL-6R. IL-6 also acts on other cells that might affect T cell maturation. To study the impact of cell-autonomous and uncontrolled IL-6 signaling in T cells, we generated mice with a constitutively active IL-6R gp130 chain (Lgp130) expressed either in all T cells (Lgp130 × CD4Cre mice) or inducible in CD4+ T cells (Lgp130 × CD4CreERT2 mice). Lgp130 × CD4Cre mice accumulated activated T cells, including TH17 cells, in the lung, resulting in severe inflammation. Tamoxifen treatment of Lgp130 × CD4CreERT2 mice caused Lgp130 expression in 40-50% of CD4+ T cells, but mice developed lung disease only after several months. Lgp130+ CD4+ T cells were also enriched for TH17 cells; however, there was concomitant expansion of Lgp130- regulatory T cells, which likely restricted pathologic Lgp130+ T cells. In vitro, constitutive gp130 signaling in T cells enhanced but was not sufficient for TH17 cell differentiation. Augmented TH17 cell development of Lgp130+ T cells was also observed in Lgp130 × CD4CreERT2 mice infected with Staphylococcus aureus, but gp130 activation did not interfere with formation of TH1 cells against Listeria monocytogenes. Lgp130+ CD4+ T cells acquired a memory T cell phenotype and persisted in high numbers as a polyclonal T cell population in lymphoid and peripheral tissues, but we did not observe T cell lymphoma formation. In conclusion, cell-autonomous gp130 signaling alters T cell differentiation. Although gp130 signaling is not sufficient for TH17 cell differentiation, it still promotes accumulation of activated T cells in the lung that cause tissue inflammation.


Asunto(s)
Neumonía , Células Th17 , Animales , Ratones , Diferenciación Celular , Receptor gp130 de Citocinas/metabolismo , Inflamación , Interleucina-6/metabolismo , Pulmón/metabolismo , Células TH1/metabolismo , Células Th17/metabolismo
10.
J Immunol ; 211(6): 1052-1061, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37556130

RESUMEN

The intestine is constantly balancing the maintenance of a homeostatic microbiome and the protection of the host against pathogens such as viruses. Many cytokines mediate protective inflammatory responses in the intestine, among them IL-1ß. IL-1ß is a proinflammatory cytokine typically activated upon specific danger signals sensed by the inflammasome. SARS-CoV-2 is capable of infecting multiple organs, including the intestinal tract. Severe cases of COVID-19 were shown to be associated with a dysregulated immune response, and blocking of proinflammatory pathways was demonstrated to improve patient survival. Indeed, anakinra, an Ab against the receptor of IL-1ß, has recently been approved to treat patients with severe COVID-19. However, the role of IL-1ß during intestinal SARS-CoV-2 infection has not yet been investigated. Here, we analyzed postmortem intestinal and blood samples from patients who died of COVID-19. We demonstrated that high levels of intestinal IL-1ß were associated with longer survival time and lower intestinal SARS-CoV-2 RNA loads. Concurrently, type I IFN expression positively correlated with IL-1ß levels in the intestine. Using human intestinal organoids, we showed that autocrine IL-1ß sustains RNA expression of IFN type I by the intestinal epithelial layer. These results outline a previously unrecognized key role of intestinal IL-1ß during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , Citocinas , Intestinos , ARN Viral , SARS-CoV-2
11.
J Immunol ; 211(11): 1669-1679, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850963

RESUMEN

T regulatory type 1 (Tr1) cells, which are defined by their regulatory function, lack of Foxp3, and high expression of IL-10, CD49b, and LAG-3, are known to be able to suppress Th1 and Th17 in the intestine. Th1 and Th17 cells are also the main drivers of crescentic glomerulonephritis (GN), the most severe form of renal autoimmune disease. However, whether Tr1 cells emerge in renal inflammation and, moreover, whether they exhibit regulatory function during GN have not been thoroughly investigated yet. To address these questions, we used a mouse model of experimental crescentic GN and double Foxp3mRFP IL-10eGFP reporter mice. We found that Foxp3neg IL-10-producing CD4+ T cells infiltrate the kidneys during GN progression. Using single-cell RNA sequencing, we could show that these cells express the core transcriptional factors characteristic of Tr1 cells. In line with this, Tr1 cells showed a strong suppressive activity ex vivo and were protective in experimental crescentic GN in vivo. Finally, we could also identify Tr1 cells in the kidneys of patients with antineutrophil cytoplasmic autoantibody-associated GN and define their transcriptional profile. Tr1 cells are currently used in several immune-mediated inflammatory diseases, such as T-cell therapy. Thus, our study provides proof of concept for Tr1 cell-based therapies in experimental GN.


Asunto(s)
Glomerulonefritis , Linfocitos T Reguladores , Humanos , Ratones , Animales , Interleucina-10/metabolismo , Células Th17 , Riñón/metabolismo , Factores de Transcripción/metabolismo , Células TH1
12.
Gut ; 73(8): 1292-1301, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38839272

RESUMEN

OBJECTIVE: There is a strong clinical association between IBD and primary sclerosing cholangitis (PSC), a chronic disease of the liver characterised by biliary inflammation that leads to strictures and fibrosis. Approximately 60%-80% of people with PSC will also develop IBD (PSC-IBD). One hypothesis explaining this association would be that PSC drives IBD. Therefore, our aim was to test this hypothesis and to decipher the underlying mechanism. DESIGN: Colitis severity was analysed in experimental mouse models of colitis and sclerosing cholangitis, and people with IBD and PSC-IBD. Foxp3+ Treg-cell infiltration was assessed by qPCR and flow cytometry. Microbiota profiling was carried out from faecal samples of people with IBD, PSC-IBD and mouse models recapitulating these diseases. Faecal microbiota samples collected from people with IBD and PSC-IBD were transplanted into germ-free mice followed by colitis induction. RESULTS: We show that sclerosing cholangitis attenuated IBD in mouse models. Mechanistically, sclerosing cholangitis causes an altered intestinal microbiota composition, which promotes Foxp3+ Treg-cell expansion, and thereby protects against IBD. Accordingly, sclerosing cholangitis promotes IBD in the absence of Foxp3+ Treg cells. Furthermore, people with PSC-IBD have an increased Foxp3+ expression in the colon and an overall milder IBD severity. Finally, by transplanting faecal microbiota into gnotobiotic mice, we showed that the intestinal microbiota of people with PSC protects against colitis. CONCLUSION: This study shows that PSC attenuates IBD and provides a comprehensive insight into the mechanisms involved in this effect.


Asunto(s)
Colangitis Esclerosante , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Linfocitos T Reguladores , Colangitis Esclerosante/inmunología , Colangitis Esclerosante/complicaciones , Colangitis Esclerosante/microbiología , Animales , Ratones , Linfocitos T Reguladores/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/inmunología , Humanos , Factores de Transcripción Forkhead/metabolismo , Colitis/microbiología , Colitis/complicaciones , Masculino , Trasplante de Microbiota Fecal , Femenino , Heces/microbiología , Ratones Endogámicos C57BL
13.
J Hepatol ; 80(4): 634-644, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38160941

RESUMEN

BACKGROUND & AIMS: The liver is one of the organs most commonly affected by metastasis. The presence of liver metastases has been reported to be responsible for an immunosuppressive microenvironment and diminished immunotherapy efficacy. Herein, we aimed to investigate the role of IL-10 in liver metastasis and to determine how its modulation could affect the efficacy of immunotherapy in vivo. METHODS: To induce spontaneous or forced liver metastasis in mice, murine cancer cells (MC38) or colon tumor organoids were injected into the cecum or the spleen, respectively. Mice with complete and cell type-specific deletion of IL-10 and IL-10 receptor alpha were used to identify the source and the target of IL-10 during metastasis formation. Programmed death ligand 1 (PD-L1)-deficient mice were used to test the role of this checkpoint. Flow cytometry was applied to characterize the regulation of PD-L1 by IL-10. RESULTS: We found that Il10-deficient mice and mice treated with IL-10 receptor alpha antibodies were protected against liver metastasis formation. Furthermore, by using IL-10 reporter mice, we demonstrated that Foxp3+ regulatory T cells (Tregs) were the major cellular source of IL-10 in liver metastatic sites. Accordingly, deletion of IL-10 in Tregs, but not in myeloid cells, led to reduced liver metastasis. Mechanistically, IL-10 acted on Tregs in an autocrine manner, thereby further amplifying IL-10 production. Furthermore, IL-10 acted on myeloid cells, i.e. monocytes, and induced the upregulation of the immune checkpoint protein PD-L1. Finally, the PD-L1/PD-1 axis attenuated CD8-dependent cytotoxicity against metastatic lesions. CONCLUSIONS: Treg-derived IL-10 upregulates PD-L1 expression in monocytes, which in turn reduces CD8+ T-cell infiltration and related antitumor immunity in the context of colorectal cancer-derived liver metastases. These findings provide the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastases. IMPACT AND IMPLICATIONS: Liver metastasis diminishes the effectiveness of immunotherapy and increases the mortality rate in patients with colorectal cancer. We investigated the role of IL-10 in liver metastasis formation and assessed its impact on the effectiveness of immunotherapy. Our data show that IL-10 is a pro-metastatic factor involved in liver metastasis formation and that it acts as a regulator of PD-L1. This provides the basis for future monitoring and targeting of IL-10 in colorectal cancer-derived liver metastasis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Humanos , Ratones , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos , Línea Celular Tumoral , Interleucina-10 , Neoplasias Hepáticas/patología , Receptores de Interleucina-10 , Microambiente Tumoral
14.
Gastroenterology ; 165(4): 946-962.e13, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454979

RESUMEN

BACKGROUND & AIMS: Ulcerative colitis (UC) is characterized by severe inflammation and destruction of the intestinal epithelium, and is associated with specific risk single nucleotide polymorphisms in HLA class II. Given the recently discovered interactions between subsets of HLA-DP molecules and the activating natural killer (NK) cell receptor NKp44, genetic associations of UC and HLA-DP haplotypes and their functional implications were investigated. METHODS: HLA-DP haplotype and UC risk association analyses were performed (UC: n = 13,927; control: n = 26,764). Expression levels of HLA-DP on intestinal epithelial cells (IECs) in individuals with and without UC were quantified. Human intestinal 3-dimensional (3D) organoid cocultures with human NK cells were used to determine functional consequences of interactions between HLA-DP and NKp44. RESULTS: These studies identified HLA-DPA1∗01:03-DPB1∗04:01 (HLA-DP401) as a risk haplotype and HLA-DPA1∗01:03-DPB1∗03:01 (HLA-DP301) as a protective haplotype for UC in European populations. HLA-DP expression was significantly higher on IECs of individuals with UC compared with controls. IECs in human intestinal 3D organoids derived from HLA-DP401pos individuals showed significantly stronger binding of NKp44 compared with HLA-DP301pos IECs. HLA-DP401pos IECs in organoids triggered increased degranulation and tumor necrosis factor production by NKp44+ NK cells in cocultures, resulting in enhanced epithelial cell death compared with HLA-DP301pos organoids. Blocking of HLA-DP401-NKp44 interactions (anti-NKp44) abrogated NK cell activity in cocultures. CONCLUSIONS: We identified an UC risk HLA-DP haplotype that engages NKp44 and activates NKp44+ NK cells, mediating damage to intestinal epithelial cells in an HLA-DP haplotype-dependent manner. The molecular interaction between NKp44 and HLA-DP401 in UC can be targeted by therapeutic interventions to reduce NKp44+ NK cell-mediated destruction of the intestinal epithelium in UC.


Asunto(s)
Colitis Ulcerosa , Antígenos HLA-DP , Humanos , Antígenos HLA-DP/genética , Colitis Ulcerosa/genética , Células Asesinas Naturales , Haplotipos , Células Epiteliales
15.
PLoS Pathog ; 18(4): e1010430, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35446923

RESUMEN

Staphylococcus aureus is frequently detected in patients with sepsis and thus represents a major health burden worldwide. CD4+ T helper cells are involved in the immune response to S. aureus by supporting antibody production and phagocytosis. In particular, Th1 and Th17 cells secreting IFN-γ and IL-17A, are involved in the control of systemic S. aureus infections in humans and mice. To investigate the role of T cells in severe S. aureus infections, we established a mouse sepsis model in which the kidney was identified to be the organ with the highest bacterial load and abundance of Th17 cells. In this model, IL-17A but not IFN-γ was required for bacterial control. Using Il17aCre × R26YFP mice we could show that Th17 fate cells produce Th17 and Th1 cytokines, indicating a high degree of Th17 cell plasticity. Single cell RNA-sequencing of renal Th17 fate cells uncovered their heterogeneity and identified a cluster with a Th1 expression profile within the Th17 cell population, which was absent in mice with T-bet/Tbx21-deficiency in Th17 cells (Il17aCre x R26eYFP x Tbx21-flox). Blocking Th17 to Th1 transdifferentiation in Th17 fate cells in these mice resulted in increased S. aureus tissue loads. In summary, we highlight the impact of Th17 cells in controlling systemic S. aureus infections and show that T-bet expression by Th17 cells is required for bacterial clearance. While targeting the Th17 cell immune response is an important therapeutic option in autoimmunity, silencing Th17 cells might have detrimental effects in bacterial infections.


Asunto(s)
Sepsis , Infecciones Estafilocócicas , Proteínas de Dominio T Box/metabolismo , Animales , Plasticidad de la Célula , Humanos , Interleucina-17 , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Staphylococcus aureus , Células TH1 , Células Th17
16.
J Med Virol ; 96(6): e29735, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864313

RESUMEN

Recently, hepatitis E virus (HEV, Paslahepevirus balayani) particles were detected for the first time in the ejaculate of two chronically infected patients. Since then, we have been able to detect HEV in ejaculate in five further patients, and thus in a total of seven out of nine (78%) chronically infected men (age 36-67 years, median 56 years). In five patients, the HEV RNA concentration was more than 100-fold higher compared to the serum, while in two patients, the viral load was more than 10-fold lower. However, it has remained unclear whether viral particles shed in the ejaculate were infectious, as a previous cell culture model had failed to demonstrate the infectivity. In the current study, we employed an optimized HEV cell culture system based on overconfluent PLC/PRF/5 cells to investigate the infectivity of HEV particles from ejaculate and other body fluids. With this approach, we were able to show for the first time that HEV particles in the ejaculate from several patients were infectious. HEV replicated to high viral loads of 1e9 HEV RNA copies per ml. This indicates that HEV-positive ejaculate could bear a risk of infection for sexual partners.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , ARN Viral , Carga Viral , Humanos , Virus de la Hepatitis E/aislamiento & purificación , Persona de Mediana Edad , Hepatitis E/virología , Masculino , Adulto , Anciano , ARN Viral/análisis , Semen/virología , Virión , Línea Celular , Esparcimiento de Virus
17.
Haematologica ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572559

RESUMEN

Innate myeloid cells especially neutrophils and their extracellular traps are known to promote intravascular coagulation and thrombosis formation in infections and various other conditions. Innate myeloid cell dependent fibrin formation can support systemic immunity while its dysregulation enhances the severity of infectious diseases. Less is known about the immune mechanisms preventing dysregulation of fibrin homeostasis in infection. During experimental systemic infections local fibrin deposits in the liver microcirculation cause rapid arrest of CD4+ T cells. Arrested T helper cells mostly represent Th17 cells that partially originate from the small intestine. Intravascular fibrin deposits activate mouse and human CD4+ T cells which can be mediated by direct fibrin - CD4+ T cell interactions. Activated CD4+ T cells suppress fibrin deposition and microvascular thrombosis by directly counteracting coagulation activation by neutrophils and classical monocytes. T cell activation, which is initially triggered by IL- 12p40- and MHC-II dependent mechanisms, enhances intravascular fibrinolysis via LFA-1. Moreover, CD4+ T cells disfavor the association of the fibrinolysis inhibitor TAFI with fibrin whereby fibrin deposition is increased by TAFI in the absence but not presence of T cells. In human infections thrombosis development is inversely related to microvascular levels of CD4+ T cells. Thus, fibrin promotes LFA-1 dependent T helper cell activation in infections which drives a negative feedback cycle that rapidly restricts intravascular fibrin and thrombosis development.

18.
Infection ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963609

RESUMEN

PURPOSE: Listeria monocytogenes causes severe bacterial infections with the highest mortality rate among foodborne pathogens in Europe. Combination treatment with ampicillin and gentamicin is recommended for invasive manifestations. However, evidence to support this treatment approach remains limited due to a lack of randomised controlled trials. To explore this critical issue further, we conducted this retrospective, single-center study. METHODS: We identified all patients hospitalized with invasive listeriosis at the University Medical Center Hamburg-Eppendorf between 2009 and 2020 and analyzed the effect of gentamicin combination treatment versus monotherapy on 90-day mortality. RESULTS: In total, 36 patients with invasive listeriosis were included, of which 21 patients received gentamicin combination treatment and 15 received monotherapy. The mean age-adjusted Charlson Comorbidity Index (aaCCI) value was lower in the gentamicin combination treatment group (5.4 vs. 7.4). Neurolisteriosis was more common in the gentamicin group (81% vs. 20%). The 90-day mortality was with significantly lower in the gentamicin combination treatment group (10%) compared to the monotherapy group (60%). Multivariable cox regression analysis, adjusted for a propensity score computed based on neurolisteriosis, aaCCI and sex, revealed a significantly reduced hazard ratio of 0.07 (95% CI: 0.01-0.53, p = 0.01) for 90-day mortality for the gentamicin combination treatment. CONCLUSION: This retrospective study highlights the benefit of gentamicin combination treatment in reducing the 90-day mortality rate among patients with invasive listeriosis. The high prevalence of monotherapy in this study cohort raises concerns about the adequacy of antibiotic therapy in clinical practice.

19.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38396845

RESUMEN

Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is related to risk factors such as viral hepatitis, alcohol intake, and non-alcoholic fatty liver disease (NAFLD). The constitutive activation of the PI3K/AKT signaling pathway is common in HCC and has essential involvement in tumor progression. The serine/threonine kinase AKT has several downstream substrates, which have been implicated in the regulation of cellular metabolism. However, the contribution of each of the three AKT isoforms, i.e., AKT1, AKT2 and AKT3, to HCC metabolism has not been comprehensively investigated. In this study, we analyzed the functional role of AKT1, AKT2 and AKT3 in HCC metabolism. The overexpression of activated AKT1, AKT2 and AKT3 isoforms in the human HCC cell lines Hep3B and Huh7 resulted in higher oxygen consumption rate (OCR), ATP production, maximal respiration and spare respiratory capacity in comparison to vector-transduced cells. Vice versa, lentiviral vector-mediated knockdowns of each AKT isoform reduced OCR in both cell lines. Reduced OCR rates observed in the three AKT isoform knockdowns were associated with reduced extracellular acidification rates (ECAR) and reduced lactate production in both analyzed cell lines. Mechanistically, the downregulation of OCR by AKT isoform knockdowns correlated with an increased phosphorylation of the pyruvate dehydrogenase on Ser232, which negatively regulates the activity of this crucial gatekeeper of mitochondrial respiration. In summary, our data indicate that each of the three AKT isoforms is able to upregulate OCR, ECAR and lactate production independently of each other in human HCC cells through the regulation of the pyruvate dehydrogenase.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-akt , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Ácido Láctico/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Oxidorreductasas , Oxígeno/metabolismo , Fosfatidilinositol 3-Quinasas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piruvatos
20.
J Hepatol ; 79(1): 150-166, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36870611

RESUMEN

BACKGROUND & AIMS: Patients with chronic liver disease (CLD), including cirrhosis, are at increased risk of intractable viral infections and are hyporesponsive to vaccination. Hallmarks of CLD and cirrhosis include microbial translocation and elevated levels of type I interferon (IFN-I). We aimed to investigate the relevance of microbiota-induced IFN-I in the impaired adaptive immune responses observed in CLD. METHODS: We combined bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver injury with vaccination or lymphocytic choriomeningitis virus infection in transgenic mice lacking IFN-I in myeloid cells (LysM-Cre IFNARflox/flox), IFNAR-induced IL-10 (MX1-Cre IL10flox/flox) or IL-10R in T cells (CD4-DN IL-10R). Key pathways were blocked in vivo with specific antibodies (anti-IFNAR and anti-IL10R). We assessed T-cell responses and antibody titers after HBV and SARS-CoV-2 vaccinations in patients with CLD and healthy individuals in a proof-of-concept clinical study. RESULTS: We demonstrate that BDL- and CCL4-induced prolonged liver injury leads to impaired T-cell responses to vaccination and viral infection in mice, subsequently leading to persistent infection. We observed a similarly defective T-cell response to vaccination in patients with cirrhosis. Innate sensing of translocated gut microbiota induced IFN-I signaling in hepatic myeloid cells that triggered excessive IL-10 production upon viral infection. IL-10R signaling in antigen-specific T cells rendered them dysfunctional. Antibiotic treatment and inhibition of IFNAR or IL-10Ra restored antiviral immunity without detectable immune pathology in mice. Notably, IL-10Ra blockade restored the functional phenotype of T cells from vaccinated patients with cirrhosis. CONCLUSION: Innate sensing of translocated microbiota induces IFN-/IL-10 expression, which drives the loss of systemic T-cell immunity during prolonged liver injury. IMPACT AND IMPLICATIONS: Chronic liver injury and cirrhosis are associated with enhanced susceptibility to viral infections and vaccine hyporesponsiveness. Using different preclinical animal models and patient samples, we identified that impaired T-cell immunity in BDL- and CCL4-induced prolonged liver injury is driven by sequential events involving microbial translocation, IFN signaling leading to myeloid cell-induced IL-10 expression, and IL-10 signaling in antigen-specific T cells. Given the absence of immune pathology after interference with IL-10R, our study highlights a potential novel target to reconstitute T-cell immunity in patients with CLD that can be explored in future clinical studies.


Asunto(s)
COVID-19 , Interferón Tipo I , Ratones , Animales , Interleucina-10 , SARS-CoV-2 , Ratones Transgénicos , Cirrosis Hepática , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA