Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 24(6): 430-447, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36596869

RESUMEN

Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Núcleo Celular/genética , Cromatina/genética , Secuencias Reguladoras de Ácidos Nucleicos , ARN Polimerasa II/genética
2.
Cell ; 178(2): 330-345.e22, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31257027

RESUMEN

For tumors to progress efficiently, cancer cells must overcome barriers of oxidative stress. Although dietary antioxidant supplementation or activation of endogenous antioxidants by NRF2 reduces oxidative stress and promotes early lung tumor progression, little is known about its effect on lung cancer metastasis. Here, we show that long-term supplementation with the antioxidants N-acetylcysteine and vitamin E promotes KRAS-driven lung cancer metastasis. The antioxidants stimulate metastasis by reducing levels of free heme and stabilizing the transcription factor BACH1. BACH1 activates transcription of Hexokinase 2 and Gapdh and increases glucose uptake, glycolysis rates, and lactate secretion, thereby stimulating glycolysis-dependent metastasis of mouse and human lung cancer cells. Targeting BACH1 normalized glycolysis and prevented antioxidant-induced metastasis, while increasing endogenous BACH1 expression stimulated glycolysis and promoted metastasis, also in the absence of antioxidants. We conclude that BACH1 stimulates glycolysis-dependent lung cancer metastasis and that BACH1 is activated under conditions of reduced oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Glucólisis/efectos de los fármacos , Neoplasias Pulmonares/patología , Animales , Antioxidantes/administración & dosificación , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Movimiento Celular/efectos de los fármacos , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , Hemo/metabolismo , Hexoquinasa/antagonistas & inhibidores , Hexoquinasa/genética , Hexoquinasa/metabolismo , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Factor 2 Relacionado con NF-E2/metabolismo , Metástasis de la Neoplasia , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
Nature ; 566(7743): 279-283, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30700909

RESUMEN

Adaptation to the environment and extraction of energy are essential for survival. Some species have found niches and specialized in using a particular source of energy, whereas others-including humans and several other mammals-have developed a high degree of flexibility1. A lot is known about the general metabolic fates of different substrates but we still lack a detailed mechanistic understanding of how cells adapt in their use of basic nutrients2. Here we show that the closely related fasting/starvation-induced forkhead transcription factors FOXK1 and FOXK2 induce aerobic glycolysis by upregulating the enzymatic machinery required for this (for example, hexokinase-2, phosphofructokinase, pyruvate kinase, and lactate dehydrogenase), while at the same time suppressing further oxidation of pyruvate in the mitochondria by increasing the activity of pyruvate dehydrogenase kinases 1 and 4. Together with suppression of the catalytic subunit of pyruvate dehydrogenase phosphatase 1 this leads to increased phosphorylation of the E1α regulatory subunit of the pyruvate dehydrogenase complex, which in turn inhibits further oxidation of pyruvate in the mitochondria-instead, pyruvate is reduced to lactate. Suppression of FOXK1 and FOXK2 induce the opposite phenotype. Both in vitro and in vivo experiments, including studies of primary human cells, show how FOXK1 and/or FOXK2 are likely to act as important regulators that reprogram cellular metabolism to induce aerobic glycolysis.


Asunto(s)
Aerobiosis , Factores de Transcripción Forkhead/metabolismo , Glucólisis , Células 3T3 , Animales , Células Cultivadas , Femenino , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Humanos , Ácido Láctico/biosíntesis , Ácido Láctico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/enzimología , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Oxidación-Reducción , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Complejo Piruvato Deshidrogenasa/química , Complejo Piruvato Deshidrogenasa/metabolismo , Ácido Pirúvico/metabolismo
4.
J Biol Chem ; 299(6): 104795, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37150320

RESUMEN

In recent years, lactate has been recognized as an important circulating energy substrate rather than only a dead-end metabolic waste product generated during glucose oxidation at low levels of oxygen. The term "aerobic glycolysis" has been coined to denote increased glucose uptake and lactate production despite normal oxygen levels and functional mitochondria. Hence, in "aerobic glycolysis," lactate production is a metabolic choice, whereas in "anaerobic glycolysis," it is a metabolic necessity based on inadequate levels of oxygen. Interestingly, lactate can be taken up by cells and oxidized to pyruvate and thus constitutes a source of pyruvate that is independent of insulin. Here, we show that the transcription factor Foxp1 regulates glucose uptake and lactate production in adipocytes and myocytes. Overexpression of Foxp1 leads to increased glucose uptake and lactate production. In addition, protein levels of several enzymes in the glycolytic pathway are upregulated, such as hexokinase 2, phosphofructokinase, aldolase, and lactate dehydrogenase. Using chromatin immunoprecipitation and real-time quantitative PCR assays, we demonstrate that Foxp1 directly interacts with promoter consensus cis-elements that regulate expression of several of these target genes. Conversely, knockdown of Foxp1 suppresses these enzyme levels and lowers glucose uptake and lactate production. Moreover, mice with a targeted deletion of Foxp1 in muscle display systemic glucose intolerance with decreased muscle glucose uptake. In primary human adipocytes with induced expression of Foxp1, we find increased glycolysis and glycolytic capacity. Our results indicate Foxp1 may play an important role as a regulator of aerobic glycolysis in adipose tissue and muscle.


Asunto(s)
Adipocitos , Factores de Transcripción Forkhead , Glucólisis , Células Musculares , Factores de Transcripción , Animales , Ratones , Adipocitos/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Glucosa/metabolismo , Glucólisis/genética , Ácido Láctico/metabolismo , Células Musculares/metabolismo , Piruvatos , Factores de Transcripción/metabolismo , Ratas , Línea Celular , Transcriptoma
5.
Am J Physiol Endocrinol Metab ; 320(4): E846-E857, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33682459

RESUMEN

Many long noncoding RNAs (lncRNAs) are enriched in pancreatic islets and several lncRNAs are linked to type 2 diabetes (T2D). Although they have emerged as potential players in ß-cell biology and T2D, little is known about their functions and mechanisms in human ß-cells. We identified an islet-enriched lncRNA, TUNAR (TCL1 upstream neural differentiation-associated RNA), which was upregulated in ß-cells of patients with T2D and promoted human ß-cell proliferation via fine-tuning of the Wnt pathway. TUNAR was upregulated following Wnt agonism by a glycogen synthase kinase-3 (GSK3) inhibitor in human ß-cells. Reciprocally, TUNAR repressed a Wnt antagonist Dickkopf-related protein 3 (DKK3) and stimulated Wnt pathway signaling. DKK3 was aberrantly expressed in ß-cells of patients with T2D and displayed a synchronized regulatory pattern with TUNAR at the single cell level. Mechanistically, DKK3 expression was suppressed by the repressive histone modifier enhancer of zeste homolog 2 (EZH2). TUNAR interacted with EZH2 in ß-cells and facilitated EZH2-mediated suppression of DKK3. These findings reveal a novel cell-specific epigenetic mechanism via islet-enriched lncRNA that fine-tunes the Wnt pathway and subsequently human ß-cell proliferation.NEW & NOTEWORTHY The discovery that long noncoding RNA TUNAR regulates ß-cell proliferation may be important in designing new treatments for diabetes.


Asunto(s)
Proliferación Celular/genética , Células Secretoras de Insulina/fisiología , ARN Largo no Codificante/fisiología , Vía de Señalización Wnt/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Proteína Potenciadora del Homólogo Zeste 2/genética , Epigénesis Genética/fisiología , Humanos , Secreción de Insulina/genética , Células Secretoras de Insulina/patología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Regulación hacia Arriba/genética
6.
Nucleic Acids Res ; 47(6): e32, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30698727

RESUMEN

Long non-coding RNAs (lncRNAs) can act as scaffolds that promote the interaction of proteins, RNA, and DNA. There is increasing evidence of sequence-specific interactions of lncRNAs with DNA via triple-helix (triplex) formation. This process allows lncRNAs to recruit protein complexes to specific genomic regions and regulate gene expression. Here we propose a computational method called Triplex Domain Finder (TDF) to detect triplexes and characterize DNA-binding domains and DNA targets statistically. Case studies showed that this approach can detect the known domains of lncRNAs Fendrr, HOTAIR and MEG3. Moreover, we validated a novel DNA-binding domain in MEG3 by a genome-wide sequencing method. We used TDF to perform a systematic analysis of the triplex-forming potential of lncRNAs relevant to human cardiac differentiation. We demonstrated that the lncRNA with the highest triplex-forming potential, GATA6-AS, forms triple helices in the promoter of genes relevant to cardiac development. Moreover, down-regulation of GATA6-AS impairs GATA6 expression and cardiac development. These data indicate the unique ability of our computational tool to identify novel triplex-forming lncRNAs and their target genes.


Asunto(s)
Biología Computacional/métodos , ADN/metabolismo , ARN Largo no Codificante/química , ARN Largo no Codificante/metabolismo , Algoritmos , Secuencia de Bases , Sitios de Unión/genética , ADN/química , Expresión Génica , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Factores de Transcripción/metabolismo
7.
Nucleic Acids Res ; 46(18): 9384-9400, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30010961

RESUMEN

Recently lncRNAs have been implicated in the sub-compartmentalization of eukaryotic genome via genomic targeting of chromatin remodelers. To explore the function of lncRNAs in the maintenance of active chromatin, we characterized lncRNAs from the chromatin enriched with H3K4me2 and WDR5 using chromatin RNA immunoprecipitation (ChRIP). Significant portion of these enriched lncRNAs were arranged in antisense orientation with respect to their protein coding partners. Among these, 209 lncRNAs, commonly enriched in H3K4me2 and WDR5 chromatin fractions, were named as active chromatin associated lncRNAs (active lncCARs). Interestingly, 43% of these active lncCARs map to divergent transcription units. Divergent transcription (XH) units were overrepresented in the active lncCARs as compared to the inactive lncCARs. ChIP-seq analysis revealed that active XH transcription units are enriched with H3K4me2, H3K4me3 and WDR5. WDR5 depletion resulted in the loss of H3K4me3 but not H3K4me2 at the XH promoters. Active XH CARs interact with and recruit WDR5 to XH promoters, and their depletion leads to decrease in the expression of the corresponding protein coding genes and loss of H3K4me2, H3K4me3 and WDR5 at the active XH promoters. This study unravels a new facet of chromatin-based regulation at the divergent XH transcription units by this newly identified class of H3K4me2/WDR5 chromatin enriched lncRNAs.


Asunto(s)
Ensamble y Desensamble de Cromatina , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , ARN Largo no Codificante/metabolismo , Sitios de Unión/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Inmunoprecipitación de Cromatina , Epigénesis Genética/fisiología , Regulación de la Expresión Génica , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante/fisiología , Transcripción Genética/fisiología , Células Tumorales Cultivadas
8.
Biochim Biophys Acta ; 1859(1): 102-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26004516

RESUMEN

Genomic imprinting has been a great resource for studying transcriptional and post-transcriptional-based gene regulation by long noncoding RNAs (lncRNAs). In this article, I overview the functional role of intergenic lncRNAs (H19, IPW, and MEG3), antisense lncRNAs (Kcnq1ot1, Airn, Nespas, Ube3a-ATS), and enhancer lncRNAs (IG-DMR eRNAs) to understand the diverse mechanisms being employed by them in cis and/or trans to regulate the parent-of-origin-specific expression of target genes. Recent evidence suggests that some of the lncRNAs regulate imprinting by promoting intra-chromosomal higher-order chromatin compartmentalization, affecting replication timing and subnuclear positioning. Whereas others act via transcriptional occlusion or transcriptional collision-based mechanisms. By establishing genomic imprinting of target genes, the lncRNAs play a critical role in important biological functions, such as placental and embryonic growth, pluripotency maintenance, cell differentiation, and neural-related functions such as synaptic development and plasticity. An emerging consensus from the recent evidence is that the imprinted lncRNAs fine-tune gene expression of the protein-coding genes to maintain their dosage in cell. Hence, lncRNAs from imprinted clusters offer insights into their mode of action, and these mechanisms have been the basis for uncovering the mode of action of lncRNAs in several other biological contexts. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.


Asunto(s)
Diferenciación Celular/genética , Cromatina/genética , Impresión Genómica/genética , ARN Largo no Codificante/genética , Replicación del ADN/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Plasticidad Neuronal/genética , ARN Largo no Codificante/clasificación
9.
Adv Exp Med Biol ; 1008: 47-74, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28815536

RESUMEN

For the last four decades, we have known that noncoding RNAs maintain critical housekeeping functions such as transcription, RNA processing, and translation. However, in the late 1990s and early 2000s, the advent of high-throughput sequencing technologies and computational tools to analyze these large sequencing datasets facilitated the discovery of thousands of small and long noncoding RNAs (lncRNAs) and their functional role in diverse biological functions. For example, lncRNAs have been shown to regulate dosage compensation, genomic imprinting, pluripotency, cell differentiation and development, immune response, etc. Here we review how lncRNAs bring about such copious functions by employing diverse mechanisms such as translational inhibition, mRNA degradation, RNA decoys, facilitating recruitment of chromatin modifiers, regulation of protein activity, regulating the availability of miRNAs by sponging mechanism, etc. In addition, we provide a detailed account of different mechanisms as well as general principles by which lncRNAs organize functionally different nuclear sub-compartments and their impact on nuclear architecture.


Asunto(s)
Genes Esenciales/fisiología , Genoma Humano/fisiología , Impresión Genómica/fisiología , Procesamiento Postranscripcional del ARN/fisiología , Estabilidad del ARN/fisiología , ARN Largo no Codificante , Animales , Humanos , ARN Largo no Codificante/clasificación , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
10.
BMC Bioinformatics ; 17(1): 365, 2016 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-27618934

RESUMEN

BACKGROUND: High-throughput technologies such as ChIP-sequencing, RNA-sequencing, DNA sequencing and quantitative metabolomics generate a huge volume of data. Researchers often rely on functional enrichment tools to interpret the biological significance of the affected genes from these high-throughput studies. However, currently available functional enrichment tools need to be updated frequently to adapt to new entries from the functional database repositories. Hence there is a need for a simplified tool that can perform functional enrichment analysis by using updated information directly from the source databases such as KEGG, Reactome or Gene Ontology etc. RESULTS: In this study, we focused on designing a command-line tool called GeneSCF (Gene Set Clustering based on Functional annotations), that can predict the functionally relevant biological information for a set of genes in a real-time updated manner. It is designed to handle information from more than 4000 organisms from freely available prominent functional databases like KEGG, Reactome and Gene Ontology. We successfully employed our tool on two of published datasets to predict the biologically relevant functional information. The core features of this tool were tested on Linux machines without the need for installation of more dependencies. CONCLUSIONS: GeneSCF is more reliable compared to other enrichment tools because of its ability to use reference functional databases in real-time to perform enrichment analysis. It is an easy-to-integrate tool with other pipelines available for downstream analysis of high-throughput data. More importantly, GeneSCF can run multiple gene lists simultaneously on different organisms thereby saving time for the users. Since the tool is designed to be ready-to-use, there is no need for any complex compilation and installation procedures.


Asunto(s)
Bases de Datos Factuales/normas , Ontología de Genes , Metabolómica/métodos , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , Bases de Datos Factuales/estadística & datos numéricos , Humanos
11.
Mol Cell ; 32(2): 232-46, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18951091

RESUMEN

Recent investigations have implicated long antisense noncoding RNAs in the epigenetic regulation of chromosomal domains. Here we show that Kcnq1ot1 is an RNA polymerase II-encoded, 91 kb-long, moderately stable nuclear transcript and that its stability is important for bidirectional silencing of genes in the Kcnq1 domain. Kcnq1ot1 interacts with chromatin and with the H3K9- and H3K27-specific histone methyltransferases G9a and the PRC2 complex in a lineage-specific manner. This interaction correlates with the presence of extended regions of chromatin enriched with H3K9me3 and H3K27me3 in the Kcnq1 domain in placenta, whereas fetal liver lacks both chromatin interactions and heterochromatin structures. In addition, the Kcnq1 domain is more often found in contact with the nucleolar compartment in placenta than in liver. Taken together, our data describe a mechanism whereby Kcnq1ot1 establishes lineage-specific transcriptional silencing patterns through recruitment of chromatin remodeling complexes and maintenance of these patterns through subsequent cell divisions occurs via targeting the associated regions to the perinucleolar compartment.


Asunto(s)
Cromatina/metabolismo , Silenciador del Gen/fisiología , ARN sin Sentido/fisiología , ARN Mensajero/metabolismo , ARN no Traducido/fisiología , Animales , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Inmunoprecipitación de Cromatina , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Ratones , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/fisiología , ARN Polimerasa II/metabolismo , Estabilidad del ARN , ARN sin Sentido/metabolismo , ARN no Traducido/metabolismo
12.
Development ; 139(15): 2792-803, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22721776

RESUMEN

Establishment of silencing by noncoding RNAs (ncRNAs) via targeting of chromatin remodelers is relatively well investigated; however, their role in the maintenance of silencing is poorly understood. Here, we explored the functional role of the long ncRNA Kcnq1ot1 in the maintenance of transcriptional gene silencing in the one mega-base Kcnq1 imprinted domain in a transgenic mouse model. By conditionally deleting the Kcnq1ot1 ncRNA at different stages of mouse development, we suggest that Kcnq1ot1 ncRNA is required for the maintenance of the silencing of ubiquitously imprinted genes (UIGs) at all developmental stages. In addition, Kcnq1ot1 ncRNA is also involved in guiding and maintaining the CpG methylation at somatic differentially methylated regions flanking the UIGs, which is a hitherto unknown role for a long ncRNA. On the other hand, silencing of some of the placental-specific imprinted genes (PIGs) is maintained independently of Kcnq1ot1 ncRNA. Interestingly, the non-imprinted genes (NIGs) that escape RNA-mediated silencing are enriched with enhancer-specific modifications. Taken together, this study illustrates the gene-specific maintenance mechanisms operational at the Kcnq1 locus for tissue-specific transcriptional gene silencing and activation.


Asunto(s)
Metilación de ADN , Canal de Potasio KCNQ1/genética , ARN no Traducido/genética , Animales , Islas de CpG/genética , Cruzamientos Genéticos , Epigénesis Genética , Femenino , Silenciador del Gen , Impresión Genómica , Heterocromatina/metabolismo , Homocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN/metabolismo , ARN Largo no Codificante , Factores de Tiempo
13.
Nat Genet ; 38(11): 1341-7, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17033624

RESUMEN

Accumulating evidence converges on the possibility that chromosomes interact with each other to regulate transcription in trans. To systematically explore the epigenetic dimension of such interactions, we devised a strategy termed circular chromosome conformation capture (4C). This approach involves a circularization step that enables high-throughput screening of physical interactions between chromosomes without a preconceived idea of the interacting partners. Here we identify 114 unique sequences from all autosomes, several of which interact primarily with the maternally inherited H19 imprinting control region. Imprinted domains were strongly overrepresented in the library of 4C sequences, further highlighting the epigenetic nature of these interactions. Moreover, we found that the direct interaction between differentially methylated regions was linked to epigenetic regulation of transcription in trans. Finally, the patterns of interactions specific to the maternal H19 imprinting control region underwent reprogramming during in vitro maturation of embryonic stem cells. These observations shed new light on development, cancer epigenetics and the evolution of imprinting.


Asunto(s)
Cromosomas/química , Clonación Molecular/métodos , Epigénesis Genética/fisiología , Regulación de la Expresión Génica/genética , Animales , Animales Recién Nacidos , Sitios de Unión , Factor de Unión a CCCTC , Cromatina/química , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias , Impresión Genómica/fisiología , Hígado/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Conformación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , ARN Largo no Codificante , ARN no Traducido/genética , Proteínas Represoras/metabolismo , Transactivadores
14.
Hum Mol Genet ; 21(1): 10-25, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21920939

RESUMEN

A cluster of imprinted genes at chromosome 11p15.5 is associated with the growth disorders, Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS). The cluster is divided into two domains with independent imprinting control regions (ICRs). We describe two maternal 11p15.5 microduplications with contrasting phenotypes. The first is an inverted and in cis duplication of the entire 11p15.5 cluster associated with the maintenance of genomic imprinting and with the SRS phenotype. The second is a 160 kb duplication also inverted and in cis, but resulting in the imprinting alteration of the centromeric domain. It includes the centromeric ICR (ICR2) and the most 5' 20 kb of the non-coding KCNQ1OT1 gene. Its maternal transmission is associated with ICR2 hypomethylation and the BWS phenotype. By excluding epigenetic mosaicism, cell clones analysis indicated that the two closely located ICR2 sequences resulting from the 160 kb duplication carried discordant DNA methylation on the maternal chromosome and supported the hypothesis that the ICR2 sequence is not sufficient for establishing imprinted methylation and some other property, possibly orientation-dependent, is needed. Furthermore, the 1.2 Mb duplication demonstrated that all features are present for correct imprinting at ICR2 when this is duplicated and inverted within the entire cluster. In the individuals maternally inheriting the 160 kb duplication, ICR2 hypomethylation led to the expression of a truncated KCNQ1OT1 transcript and to down-regulation of CDKN1C. We demonstrated by chromatin RNA immunopurification that the KCNQ1OT1 RNA interacts with chromatin through its most 5' 20 kb sequence, providing a mechanism likely mediating the silencing activity of this long non-coding RNA.


Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Impresión Genómica , ARN no Traducido/genética , Síndrome de Silver-Russell/genética , Adulto , Síndrome de Beckwith-Wiedemann/metabolismo , Preescolar , Cromatina/genética , Cromatina/metabolismo , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 11/metabolismo , Metilación de ADN , Femenino , Duplicación de Gen , Silenciador del Gen , Humanos , Lactante , Masculino , Linaje , Canales de Potasio con Entrada de Voltaje/genética , Unión Proteica , ARN no Traducido/metabolismo , Síndrome de Silver-Russell/metabolismo
15.
Chromosome Res ; 21(6-7): 615-25, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24190518

RESUMEN

Along the lines of established players like chromatin modifiers and transcription factors, noncoding RNA (ncRNA) are now widely accepted as one of the key regulatory molecules in epigenetic regulation of transcription. With increasing evidence of ncRNAs in the establishment of gene silencing through their ability to interact with major chromatin modifiers, in the current review, we discuss their prospective role in the area of inheritance and maintenance of these established silenced states which can be reversible or irreversible in nature. In addition, we attempt to understand and speculate how these RNA dependent or independent maintenance mechanisms differ between each other in a developmental stage, tissue, and gene-specific manner in different biological contexts by utilizing known/unknown regulatory factors.


Asunto(s)
Epigénesis Genética/genética , Impresión Genómica/genética , ARN no Traducido/genética , Transcripción Genética , Regulación del Desarrollo de la Expresión Génica/genética , Silenciador del Gen , Humanos
16.
Subcell Biochem ; 61: 343-72, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23150258

RESUMEN

The Genome of a eukaryotic cell harbors genetic material in the form of DNA which carries the hereditary information encoded in their bases. Nucleotide bases of DNA are transcribed into complimentary RNA bases which are further translated into protein, performing defined set of functions. The central dogma of life ensures sequential flow of genetic information among these biopolymers. Noncoding RNAs (ncRNAs) serve as exceptions for this principle as they do not code for any protein. Nevertheless, a major portion of the human transcriptome comprises noncoding RNAs. These RNAs vary in size, as well as they vary in the spatio-temporal distribution. These ncRnAs are functional and are shown to be involved in diverse cellular activities. Precise location and expression of ncRNA is essential for the cellular homeostasis. Failures of these events ultimately results in numerous disease conditions including cancer. The present review lists out the various classes of ncRNAs with a special emphasis on their role in chromatin organization and transcription regulation.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Epigénesis Genética , Genoma Humano , ARN no Traducido/biosíntesis , Transcripción Genética , Animales , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Fenotipo
17.
Semin Cell Dev Biol ; 22(4): 343-50, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21345374

RESUMEN

There is a growing interest for noncoding RNA (ncRNA)-mediated epigenetic regulation of transcription in diverse biological functions. Recent evidence suggests that a subset of long ncRNA epigenetically regulate the transcription of multiple genes in chromosomal domains via interaction with chromatin. Kcnq1ot1 is one such long chromatin-interacting ncRNA that silences multiple genes in the Kcnq1 domain by establishing a repressive higher order chromatin structure. This is done by the recruitment of chromatin and DNA-modifying proteins. This review looks at recent evidence supporting the notion that Kcnq1ot1-mediated silencing is a multilayered pathway. Comparing the mode of action of Kcnq1ot1 with other well-investigated chromatin regulatory long ncRNAs, such as Xist, HOTAIR and Airn, revealed that chromatin regulatory ncRNAs share common epigenetic pathways in the silencing of multiple genes.


Asunto(s)
Cromatina/metabolismo , Metilación de ADN , Silenciador del Gen , Canal de Potasio KCNQ1/genética , ARN no Traducido/metabolismo , Animales , Humanos , ARN no Traducido/genética
18.
Dev Biol ; 361(2): 403-11, 2012 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22119056

RESUMEN

Epigenetic marks at cis acting imprinting control regions (ICRs) regulate parent of origin-specific expression of multiple genes in imprinted gene clusters. Epigenetic marks are acquired during gametogenesis and maintained faithfully thereafter. However, the mechanism by which differential epigenetic marks are established and maintained at ICRs is currently unclear. By using Kcnq1 ICR as a model system, we have investigated the functional role of genetic signatures in the acquisition and maintenance of epigenetic marks. Kcnq1 ICR is methylated on the maternal chromosome but remains unmethylated on the paternal chromosome. Here, we show that a paternal allele of Kcnq1 ICR lacking the Kcnq1ot1 promoter remains unmethylated during spermatogenesis; however, it becomes methylated specifically during pre-implantation development. Analysis of the chromatin structure at the paternal ICR in spermatogenic cells and in E13.5 embryonic tissues revealed that the ICRs of both wild type and mutant mice are enriched with H3K4me2 in spermatiogenic cells of the testicular compartment, but the mutant ICR lost H3K4me2 specifically in epididymal sperm and an increase in repressive marks was observed in embryonic tissues. Interestingly, we also detected a decrease in nucleosomal histone levels at the mutant ICR in comparison to the wild-type ICR in epididymal sperm. Taken together, these observations suggest that the Kcnq1ot1 promoter plays a critical role in establishing an epigenetic memory in the male germline by ensuring that the paternal allele remains in an unmethylated state during pre-implantation development.


Asunto(s)
Metilación de ADN/genética , Impresión Genómica/genética , Regiones Promotoras Genéticas , ARN sin Sentido/genética , ARN no Traducido/genética , Animales , Islas de CpG/genética , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Femenino , Histonas/metabolismo , Canal de Potasio KCNQ1/genética , Lisina/metabolismo , Masculino , Ratones , Mutación/genética , Nucleosomas/metabolismo , Placenta/metabolismo , Embarazo , Unión Proteica , Procesamiento Proteico-Postraduccional , ARN sin Sentido/metabolismo , ARN no Traducido/metabolismo , Eliminación de Secuencia/genética , Espermatogénesis/genética , Testículo/citología , Testículo/metabolismo , Factores de Tiempo , Transactivadores/metabolismo
19.
Genome Res ; 20(7): 899-907, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20404130

RESUMEN

Noncoding RNA (ncRNA) constitutes a significant portion of the mammalian transcriptome. Emerging evidence suggests that it regulates gene expression in cis or trans by modulating the chromatin structure. To uncover the functional role of ncRNA in chromatin organization, we deep sequenced chromatin-associated RNAs (CARs) from human fibroblast (HF) cells. This resulted in the identification of 141 intronic regions and 74 intergenic regions harboring CARs. The intronic and intergenic CARs show significant conservation across 44 species of placental mammals. Functional characterization of one of the intergenic CARs, Intergenic10, revealed that it regulates gene expression of neighboring genes through modulating the chromatin structure in cis. Our data suggest that ncRNA is an integral component of chromatin and that it may regulate various biological functions through fine-tuning of the chromatin architecture.


Asunto(s)
Cromatina/química , ARN/análisis , Animales , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Secuencia Conservada , ADN Intergénico/genética , Evolución Molecular , Regulación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Intrones/genética , Mamíferos/genética , ARN/aislamiento & purificación , ARN no Traducido/genética , ARN no Traducido/fisiología , Análisis de Secuencia de ADN/métodos
20.
Development ; 137(15): 2493-9, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20573698

RESUMEN

A long noncoding RNA, Kcnq1ot1, regulates the expression of both ubiquitously and tissue-specific imprinted genes within the Kcnq1 domain. However, the functional sequences of the Kcnq1ot1 RNA that mediate lineage-specific imprinting are unknown. Here, we have generated a knockout mouse with a deletion encompassing an 890-bp silencing domain (Delta890) downstream of the Kcnq1ot1 promoter. Maternal transmission of the Delta890 allele has no effect on imprinting, whereas paternal inheritance of the deletion leads to selective relaxation of the imprinting of ubiquitously imprinted genes to a variable extent in a tissue-specific manner. Interestingly, the deletion affects DNA methylation at somatically acquired differentially methylated regions (DMRs), but does not affect the histone modifications of the ubiquitously imprinted genes. Importantly, we found that Kcnq1ot1 recruits Dnmt1 to somatic DMRs by interacting with Dnmt1, and that this interaction was significantly reduced in the Delta890 mice. Thus, the ubiquitous and placental-specific imprinting of genes within the Kcnq1 domain might be mediated by distinct mechanisms, and Kcnq1ot1 RNA might mediate the silencing of ubiquitously imprinted genes by maintaining allele-specific methylation through its interactions with Dnmt1.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , ARN no Traducido/genética , Transcripción Genética , Alelos , Animales , Cromatina , ADN (Citosina-5-)-Metiltransferasa 1 , Femenino , Perfilación de la Expresión Génica , Impresión Genómica , Ratones , Mutación , Estructura Terciaria de Proteína , ARN Largo no Codificante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA