RESUMEN
Impairments in synaptic dynamics and stability are observed both in neurodegenerative disorders and in the healthy aging cortex, which exhibits elevated dendritic spine turnover and decreased long-term stability of excitatory connections at baseline, as well as an altered response to plasticity induction. In addition to the discrete gain and loss of synapses, spines also change in size and strength both during learning and in the absence of neural activity, and synaptic volume has been associated with stability and incorporation into memory traces. Furthermore, intrinsic dynamics, an apparently stochastic component of spine volume changes, may serve as a homeostatic mechanism to prevent stabilization of superfluous connections. However, the effects of age on modulation of synaptic weights remain unknown. Using two-photon excitation (2PE) microscopy of spines during chemical plasticity induction in vitro and analyzing longitudinal in vivo 2PE images after a plasticity-inducing manipulation, we characterize the effects of age on volumetric changes of spines of the apical tuft of layer 5 pyramidal neurons of mouse primary somatosensory cortex. Aged mice exhibit decreased volumetric volatility and delayed rearrangement of synaptic weights of persistent connections, as well as greater susceptibility to spine shrinkage in response to chemical long-term depression. These results suggest a deficit in the aging brain's ability to fine-tune synaptic weights to properly incorporate and retain novel memories. This research provides the first evidence of alterations in spine volumetric dynamics in healthy aging and may support a model of impaired processing and learning in the aged somatosensory system.Significance Statement Aging is known to impact cognitive functions and sensory processing, yet the underlying mechanisms at the synaptic level remain unclear. This study investigates dendritic spine dynamics of layer 5 pyramidal neurons in the aging somatosensory cortex. By employing two-photon excitation microscopy and analyzing spine volume changes during plasticity induction, we reveal that aged mice exhibit decreased volumetric volatility and delayed synaptic weight rearrangement. These alterations may impair the brain's ability to fine-tune synaptic weights, which is crucial for incorporating and retaining new memories. This research provides the first evidence of altered spine volumetric dynamics in healthy aging, suggesting a potential mechanism for impaired processing and learning in the aged cortex. Understanding these changes could aid in mitigation of age-related cognitive decline.
RESUMEN
Mice with insulin receptor (IR)-deficient astrocytes (GFAP-IR knockout [KO] mice) show blunted responses to insulin and reduced brain glucose uptake, whereas IR-deficient astrocytes show disturbed mitochondrial responses to glucose. While exploring the functional impact of disturbed mitochondrial function in astrocytes, we observed that GFAP-IR KO mice show uncoupling of brain blood flow with glucose uptake. Since IR-deficient astrocytes show higher levels of reactive oxidant species (ROS), this leads to stimulation of hypoxia-inducible factor-1α and, consequently, of the vascular endothelial growth factor angiogenic pathway. Indeed, GFAP-IR KO mice show disturbed brain vascularity and blood flow that is normalized by treatment with the antioxidant N-acetylcysteine (NAC). NAC ameliorated high ROS levels, normalized angiogenic signaling and mitochondrial function in IR-deficient astrocytes, and normalized neurovascular coupling in GFAP-IR KO mice. Our results indicate that by modulating glucose uptake and angiogenesis, insulin receptors in astrocytes participate in neurovascular coupling.
Asunto(s)
Astrocitos , Encéfalo , Insulina , Neovascularización Fisiológica , Acoplamiento Neurovascular , Animales , Astrocitos/metabolismo , Encéfalo/irrigación sanguínea , Proteína Ácida Fibrilar de la Glía/genética , Glucosa/metabolismo , Insulina/metabolismo , Ratones , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Receptor de Insulina/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Neuroinflammation has recently emerged as a crucial factor in Alzheimer's disease (AD) etiopathogenesis. Microglial cells play an important function in the inflammatory response; specifically, the emergence of disease-associated microglia (DAM) has offered new insights into the conflicting perspectives on the detrimental or beneficial roles of microglia. We previously showed that modulating the endocannabinoid tone by fatty acid amide hydrolase (FAAH) inactivation renders beneficial effects in an amyloidosis context, paradoxically accompanied by an exacerbated neuroinflammatory response and the enrichment of DAM population. Here, we aim to elucidate the role of microglial cells in FAAH-lacking mice in the 5xFAD mouse model of AD by using RNA-sequencing analysis, molecular determinations, and morphological studies by using in vivo multiphoton microscopy. FAAH-lacking AD mice displayed upregulated inflammatory genes and exhibited a DAM genetic profile. Conversely, genes linked to AD were downregulated. Depleting microglia using PLX5622 revealed that plaque-associated microglia in FAAH-deficient AD mice had a more stable, ramified morphology and increased Aß uptake, leading to reduced plaque growth compared to control mice. Importantly, FAAH expression was negligible in microglial cells, thus suggesting a role for FAAH in the cellular interplay in the central nervous system. Our findings show that Faah gene inactivation triggers a hetero-cellular enhancement of microglial function that was paradoxically paralleled by an exacerbated inflammatory response. Taken together, the present data highlight FAAH as a potential therapeutic target in AD.
RESUMEN
Research in preclinical models indicates that estrogens are neuroprotective and positively impact cognitive aging. However, clinical data are equivocal as to the benefits of menopausal estrogen therapy to the brain and cognition. Pre-existing cardiometabolic disease may modulate mechanisms by which estrogens act, potentially reducing or reversing protections they provide against cognitive decline. In the current review we propose mechanisms by which cardiometabolic disease may alter estrogen effects, including both alterations in actions directly on brain memory systems and actions on cardiometabolic systems, which in turn impact brain memory systems. Consideration of mechanisms by which estrogen administration can exert differential effects dependent upon health phenotype is consistent with the move towards precision or personalized medicine, which aims to determine which treatment interventions will work for which individuals. Understanding effects of estrogens in both healthy and unhealthy models of aging is critical to optimizing the translational link between preclinical and clinical research.
Asunto(s)
Enfermedades Cardiovasculares , Estrógenos , Humanos , Encéfalo , Menopausia/psicología , Cognición , Enfermedades Cardiovasculares/tratamiento farmacológicoRESUMEN
Risk factors contributing to dementia are multifactorial. Accumulating evidence suggests a role for pathogens as risk factors, but data is largely correlative with few causal relationships. Here, we demonstrate that intermittent murine cytomegalovirus (MCMV) infection of mice, alters blood brain barrier (BBB) permeability and metabolic pathways. Increased basal mitochondrial function is observed in brain microvessels cells (BMV) exposed to intermittent MCMV infection and is accompanied by elevated levels of superoxide. Further, mice score lower in cognitive assays compared to age-matched controls who were never administered MCMV. Our data show that repeated systemic infection with MCMV, increases markers of neuroinflammation, alters mitochondrial function, increases markers of oxidative stress and impacts cognition. Together, this suggests that viral burden may be a risk factor for dementia. These observations provide possible mechanistic insights through which pathogens may contribute to the progression or exacerbation of dementia.
Asunto(s)
Trastornos del Conocimiento , Disfunción Cognitiva , Infecciones por Citomegalovirus , Demencia , Animales , Ratones , Infecciones por Citomegalovirus/complicaciones , CogniciónRESUMEN
Gene discovery efforts in autism spectrum disorder have identified heterozygous defects in chromatin remodeller genes, the 'readers, writers and erasers' of methyl marks on chromatin, as major contributors to this disease. Despite this advance, a convergent aetiology between these defects and aberrant chromatin architecture or gene expression has remained elusive. Recently, data have begun to emerge that chromatin remodellers also function directly on the cytoskeleton. Strongly associated with autism spectrum disorder, the SETD2 histone methyltransferase for example, has now been shown to directly methylate microtubules of the mitotic spindle. However, whether microtubule methylation occurs in post-mitotic cells, for example on the neuronal cytoskeleton, is not known. We found the SETD2 α-tubulin lysine 40 trimethyl mark occurs on microtubules in the brain and in primary neurons in culture, and that the SETD2 C-terminal SRI domain is required for binding and methylation of α-tubulin. A CRISPR knock-in of a pathogenic SRI domain mutation (Setd2SRI) that disables microtubule methylation revealed at least one wild-type allele was required in mice for survival, and while viable, heterozygous Setd2SRI/wtmice exhibited an anxiety-like phenotype. Finally, whereas RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) showed no concomitant changes in chromatin methylation or gene expression in Setd2SRI/wtmice, primary neurons exhibited structural deficits in axon length and dendritic arborization. These data provide the first demonstration that microtubules of neurons are methylated, and reveals a heterozygous chromatin remodeller defect that specifically disables microtubule methylation is sufficient to drive an autism-associated phenotype.
Asunto(s)
Ansiedad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Microtúbulos/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/metabolismo , Histonas/metabolismo , Metilación , Ratones , FenotipoRESUMEN
Peroxynitrite (PN), generated from the reaction of nitric oxide (NO) and superoxide, is implicated in the pathogenesis of ischemic and neurodegenerative brain injuries. Mitochondria produce NO from mitochondrial NO synthases and superoxide by the electron transport chain. Our objective was to detect the generation of PN of mitochondrial origin and characterize its effects on mitochondrial respiratory function. Freshly isolated brain nonsynaptosomal mitochondria from C57Bl/6 (wild type, WT) and endothelial NO synthase knockout (eNOS-KO) mice were treated with exogenous PN (0.1, 1, 5 µmol/L) or a PN donor (SIN-1; 50 µmol/L) or a PN scavenger (FeTMPyP; 2.5 µmol/L). Oxygen consumption rate (OCR) was measured using Agilent Seahorse XFe24 analyzer and mitochondrial respiratory parameters were calculated. Mitochondrial membrane potential, superoxide, and PN were determined from rhodamine 123, dihydroethidium, and DAX-J2 PON green fluorescence measurements, respectively. Mitochondrial protein nitrotyrosination was determined by Western blots. Both exogenous PN and SIN-1 decreased respiratory function in WT isolated brain mitochondria. FeTMPyP enhanced state III and state IVo mitochondrial respiration in both WT and eNOS-KO mitochondria. FeTMPyP also elevated state IIIu respiration in eNOS-KO mitochondria. Unlike PN, neither SIN-1 nor FeTMPyP depolarized the mitochondria. Although mitochondrial protein nitrotyrosination was unaffected by SIN-1 or FeTMPyP, FeTMPyP reduced mitochondrial PN levels. Mitochondrial superoxide levels were increased by FeTMPyP but were unaffected by PN or SIN-1. Thus, we present the evidence of functionally significant PN generation in isolated brain mitochondria. Mitochondrial PN activity was physiologically relevant in WT mice and pathologically significant under conditions with eNOS deficiency.NEW & NOTEWORTHY Mitochondria generate superoxide and nitric oxide that could potentially react with each other to produce PN. We observed eNOS and nNOS immunoreactivity in isolated brain and heart mitochondria with pharmacological inhibition of nNOS found to modulate the mitochondrial respiratory function. This study provides evidence of generation of functionally significant PN in isolated brain mitochondria that affects respiratory function under physiological conditions. Importantly, the mitochondrial PN levels and activity were exaggerated in the eNOS-deficient mice, suggesting its pathological significance.
Asunto(s)
Encéfalo/metabolismo , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Superóxidos/metabolismo , Animales , Encéfalo/efectos de los fármacos , Catálisis , Respiración de la Célula , Potencial de la Membrana Mitocondrial , Metaloporfirinas/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Molsidomina/análogos & derivados , Molsidomina/farmacología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo III/deficiencia , Óxido Nítrico Sintasa de Tipo III/genética , Ácido Peroxinitroso/farmacología , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Nitric oxide (NO) is known to exert inhibitory control on mitochondrial respiration in the heart and brain. Evidence supports the presence of NO synthase (NOS) in the mitochondria (mtNOS) of cells; however, the functional role of mtNOS in the regulation of mitochondrial respiration is unclear. Our objective was to examine the effect of NOS inhibitors on mitochondrial respiration and protein S-nitrosylation. Freshly isolated cardiac and brain nonsynaptosomal mitochondria were incubated with selective inhibitors of neuronal (nNOS; ARL-17477, 1 µmol/L) or endothelial [eNOS; N5-(1-iminoethyl)-l-ornithine, NIO, 1 µmol/L] NOS isoforms. Mitochondrial respiratory parameters were calculated from the oxygen consumption rates measured using Agilent Seahorse XFe24 analyzer. Expression of NOS isoforms in the mitochondria was confirmed by immunoprecipitation and Western blot analysis. In addition, we determined the protein S-nitrosylation by biotin-switch method followed by immunoblotting. nNOS inhibitor decreased the state IIIu respiration in cardiac mitochondria and both state III and state IIIu respiration in brain mitochondria. In contrast, eNOS inhibitor had no effect on the respiration in the mitochondria from both heart and brain. Interestingly, NOS inhibitors reduced the levels of protein S-nitrosylation only in brain mitochondria, but nNOS and eNOS immunoreactivity was observed in the cardiac and brain mitochondrial lysates. Thus, the effects of NOS inhibitors on S-nitrosylation of mitochondrial proteins and mitochondrial respiration confirm the existence of functionally active NOS isoforms in the mitochondria. Notably, our study presents first evidence of the positive regulation of mitochondrial respiration by mitochondrial nNOS contrary to the current dogma representing the inhibitory role attributed to NOS isoforms.NEW & NOTEWORTHY Existence and the role of nitric oxide synthases in the mitochondria are controversial. We report for the first time that mitochondrial nNOS positively regulates respiration in isolated heart and brain mitochondria, thus challenging the existing dogma that NO is inhibitory to mitochondrial respiration. We have also demonstrated reduced protein S-nitrosylation by NOS inhibition in isolated mitochondria, supporting the presence of functional mitochondrial NOS.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Consumo de Oxígeno/efectos de los fármacos , Amidinas/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Ornitina/análogos & derivados , Ornitina/farmacologíaRESUMEN
Mitochondria are important regulators of cerebral vascular function in health and disease, but progress in understanding their roles has been hindered by methodological limitations. We report the first in vivo imaging of mitochondria specific to the cerebral endothelium in real time in the same mouse for extended periods. Mice expressing Dendra2 fluorescent protein in mitochondria (mito-Dendra2) in the cerebral vascular endothelium were generated by breeding PhAM-floxed and Tie2-Cre mice. We used mito-Dendra2 expression, cranial window implantation, and two-photon microscopy to visualize mitochondria in the cerebral vascular endothelium of mice. Immunohistochemistry and mitochondrial staining were used to confirm the localization of the mitochondrial signal to endothelial cells and the specificity of mito-Dendra2 to mitochondria. Mito-Dendra2 and Rhodamine B-conjugated dextran allowed simultaneous determinations of mitochondrial density, vessel diameters, area, and mitochondria-to-vessel ratio in vivo, repeatedly, in the same mouse. Endothelial expression of mito-Dendra2 was confirmed in vitro on brain slices and aorta. In addition, we observed an overlapping mito-Dendra2 and Chromeo mitochondrial staining of cultured brain microvascular endothelial cells. Repeated imaging of the same location in the cerebral microcirculation in the same mouse demonstrated stability of mito-Dendra2. While the overall mitochondrial signal was stable over time, mitochondria within the same endothelial cell were mobile. In conclusion, our results indicate that the mito-Dendra2 signal and vascular parameters are suitable for real-time and longitudinal examination of mitochondria in vivo in the cerebral vasculature of mice.NEW & NOTEWORTHY We introduce an innovative in vivo approach to study mitochondria in the cerebral circulation in their physiological environment by demonstrating the feasibility of long-term imaging and three-dimensional reconstruction. We postulate that the appropriate combination of Cre/Lox system and two-photon microscopy will contribute to a better understanding of the role of mitochondria in not only endothelium but also the different cell types of the cerebral circulation.
Asunto(s)
Circulación Cerebrovascular/fisiología , Endotelio Vascular/metabolismo , Mitocondrias/metabolismo , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Femenino , Masculino , Ratones , Ratones Transgénicos , Microscopía de Fluorescencia por Excitación MultifotónicaRESUMEN
Sustained inflammation and matrix metalloproteinase (MMP) activation contribute to vascular occlusive/proliferative disorders. Interleukin-17 (IL-17) is a proinflammatory cytokine that signals mainly via TRAF3 Interacting Protein 2 (TRAF3IP2), an upstream regulator of various critical transcription factors, including AP-1 and NF-κB. Reversion inducing cysteine rich protein with kazal motifs (RECK) is a membrane-anchored MMP inhibitor. Here we investigated whether IL-17A/TRAF3IP2 signaling promotes MMP-13-dependent human aortic smooth muscle cell (SMC) proliferation and migration, and determined whether RECK overexpression blunts these responses. Indeed, IL-17A treatment induced (a) JNK, p38 MAPK, AP-1, NF-κB, and CREB activation, (b) miR-21 induction, (c) miR-27b and miR-320 inhibition, (d) MMP-13 expression and activation, (e) RECK suppression, and (f) SMC migration and proliferation, all in a TRAF3IP2-dependent manner. In fact, gain of TRAG3IP2 function, by itself, induced MMP-13 expression and activation, and RECK suppression. Furthermore, treatment with recombinant MMP-13 stimulated SMC migration in part via ERK activation. Importantly, RECK gain-of-function attenuated MMP-13 activity without affecting its mRNA or protein levels, and inhibited IL-17A- and MMP-13-induced SMC migration. These results indicate that increased MMP-13 and decreased RECK contribute to IL-17A-induced TRAF3IP2-dependent SMC migration and proliferation, and suggest that TRAF3IP2 inhibitors or RECK inducers have the potential to block the progression of neointimal thickening in hyperplastic vascular diseases.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Aorta/citología , Movimiento Celular , Proteínas Ligadas a GPI/metabolismo , Interleucina-17/metabolismo , Metaloproteinasa 13 de la Matriz/metabolismo , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Proliferación Celular , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Modelos Biológicos , Proteínas Recombinantes/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patologíaRESUMEN
Persistent inflammation promotes development and progression of heart failure (HF). TWEAK (TNF-Related WEAK Inducer Of Apoptosis), a NF-κB- and/or AP-1-responsive proinflammatory cytokine that signals via TWEAK receptor (TWEAKR), is expressed at high levels in human and preclinical models of HF. Since the adapter molecule TRAF3IP2 (TRAF3 Interacting Protein 2) is an upstream regulator of various proinflammatory pathways, including those activated by NF-κB and AP-1, we hypothesized that targeting TRAF3IP2 inhibits TWEAK-induced proinflammatory and pro-fibrotic responses in vitro and in vivo. Consistent with the hypothesis, forced expression of TRAF3IP2 upregulated TWEAK and its receptor expression in cultured adult mouse cardiac fibroblasts (CF). Further, exogenous TWEAK upregulated TRAF3IP2 expression in a time- and dose-dependent manner, suggesting a positive-feedback regulation of TRAF3IP2 and TWEAK. TWEAK also promoted TRAF3IP2 nuclear translocation. Confirming its critical role in TWEAK signaling, silencing TRAF3IP2 inhibited TWEAK autoregulation, TWEAKR upregulation, p38 MAPK, NF-κB and AP-1 activation, inflammatory cytokine expression, MMP and TIMP1 activation, collagen expression and secretion, and importantly, proliferation and migration. Recapitulating these in vitro results, continuous infusion of TWEAK for 7â¯days increased systolic blood pressure (SBP), upregulated TRAF3IP2 expression, activated p38 MAPK, NF-κB and AP-1, induced the expression of multiple proinflammatory and pro-fibrotic mediators, and interstitial fibrosis in hearts of wild type mice. These proinflammatory and pro-fibrotic changes occurred in conjunction with myocardial hypertrophy and contractile dysfunction. Importantly, genetic ablation of TRAF3IP2 inhibited these TWEAK-induced adverse cardiac changes independent of increases in SBP, indicating that TRAF3IP2 plays a causal role, and thus a therapeutic target, in chronic inflammatory and fibro-proliferative diseases.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Citocina TWEAK/genética , Insuficiencia Cardíaca/genética , Inflamación/genética , Receptor de TWEAK/genética , Animales , Presión Sanguínea/genética , Movimiento Celular/genética , Proliferación Celular/genética , Fibroblastos/patología , Regulación de la Expresión Génica/genética , Corazón/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Humanos , Inflamación/fisiopatología , Ratones , FN-kappa B/genética , Transducción de Señal/genética , Factor de Transcripción AP-1/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genéticaRESUMEN
Pyramidal neurons in layers 2/3 and 5 of primary somatosensory cortex (S1) exhibit somewhat modest synaptic plasticity after whisker input deprivation. Whether neurons involved at earlier steps of sensory processing show more or less plasticity has not yet been examined. Here, we used longitudinal in vivo two-photon microscopy to investigate dendritic spine dynamics in apical tufts of GFP-expressing layer 4 (L4) pyramidal neurons of the vibrissal (barrel) S1 after unilateral whisker trimming. First, we characterize the molecular, anatomical, and electrophysiological properties of identified L4 neurons in Ebf2-Cre transgenic mice. Next, we show that input deprivation results in a substantial (â¼50%) increase in the rate of dendritic spine loss, acutely (4-8 d) after whisker trimming. This robust synaptic plasticity in L4 suggests that primary thalamic recipient pyramidal neurons in S1 may be particularly sensitive to changes in sensory experience. Ebf2-Cre mice thus provide a useful tool for future assessment of initial steps of sensory processing in S1.
Asunto(s)
Espinas Dendríticas/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/fisiología , Privación Sensorial/fisiología , Corteza Somatosensorial/fisiología , Vibrisas/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos , Red Nerviosa/citología , Red Nerviosa/fisiología , Neuronas/fisiología , Corteza Somatosensorial/citología , Vibrisas/inervaciónRESUMEN
Hydrogen sulfide (H2S) is an endogenous gaseous molecule formed from L-cysteine in vascular tissue. In the present study, cardiovascular responses to the H2S donors Na2S and NaHS were investigated in the anesthetized rat. The intravenous injections of Na2S and NaHS 0.03-0.5 mg/kg produced dose-related decreases in systemic arterial pressure and heart rate, and at higher doses decreases in cardiac output, pulmonary arterial pressure, and systemic vascular resistance. H2S infusion studies show that decreases in systemic arterial pressure, heart rate, cardiac output, and systemic vascular resistance are well-maintained, and responses to Na2S are reversible. Decreases in heart rate were not blocked by atropine, suggesting that the bradycardia was independent of parasympathetic activation and was mediated by an effect on the sinus node. The decreases in systemic arterial pressure were not attenuated by hexamethonium, glybenclamide, N(w)-nitro-L-arginine methyl ester hydrochloride, sodium meclofenamate, ODQ, miconazole, 5-hydroxydecanoate, or tetraethylammonium, suggesting that ATP-sensitive potassium channels, nitric oxide, arachidonic acid metabolites, cyclic GMP, p450 epoxygenase metabolites, or large conductance calcium-activated potassium channels are not involved in mediating hypotensive responses to the H2S donors in the rat and that responses are not centrally mediated. The present data indicate that decreases in systemic arterial pressure in response to the H2S donors can be mediated by decreases in vascular resistance and cardiac output and that the donors have an effect on the sinus node independent of the parasympathetic system. The present data indicate that the mechanism of the peripherally mediated hypotensive response to the H2S donors is uncertain in the intact rat.
Asunto(s)
Presión Sanguínea/efectos de los fármacos , Gasto Cardíaco/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Sulfuros/farmacología , Resistencia Vascular/efectos de los fármacos , Animales , Ácido Araquidónico/metabolismo , GMP Cíclico/metabolismo , Masculino , Óxido Nítrico/metabolismo , Canales de Potasio/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
What is the neuroanatomical basis for the decline in brain function that occurs during normal aging? Previous postmortem studies have blamed it on a reduction in spine density, though results remain controversial and spine dynamics were not assessed. We used chronic in vivo two-photon imaging of dendritic spines and axonal boutons in somatosensory cortex for up to 1 year in thy1 GFP mice to test the hypothesis that aging is associated with alterations in synaptic dynamics. We find that the density of spines and en passant boutons (EPBs) in pyramidal cells increases throughout adult life but is stable between mature (8-15 months) and old (>20 months) mice. However, new spines and EPBs are two to three times more likely to be stabilized over 30 d in old mice, although the long-term retention (over months) of stable spines is lower in old animals. In old mice, spines are smaller on average but are still able to make synaptic connections regardless of their size, as assessed by serial section electron microscopy reconstructions of previously imaged dendrites. Thus, our data suggest that age-related deficits in sensory perception are not associated with synapse loss in somatosensory cortex (as might be expected) but with alterations in the size and stability of spines and boutons observed in this brain area. The changes we describe here likely result in weaker synapses that are less capable of short-term plasticity in aged individuals, and therefore to less efficient circuits.
Asunto(s)
Envejecimiento , Espinas Dendríticas/fisiología , Neuronas/fisiología , Corteza Somatosensorial/citología , Sinapsis/fisiología , Factores de Edad , Animales , Espinas Dendríticas/ultraestructura , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Masculino , Ratones , Ratones Transgénicos , Microscopía Confocal , Microscopía Electrónica , Neuronas/ultraestructura , Probabilidad , Corteza Somatosensorial/ultraestructura , Sinapsis/ultraestructuraRESUMEN
Most stroke survivors exhibit a partial recovery from their deficits. This presumably occurs because of remapping of lost capabilities to functionally related brain areas. Functional brain imaging studies suggest that remapping in the contralateral uninjured cortex might represent a transient stage of compensatory plasticity. Some postmortem studies have also shown that cortical lesions, including stroke, can trigger dendritic plasticity in the contralateral hemisphere, but the data are controversial. We used longitudinal in vivo two-photon microscopy in the contralateral homotopic cortex to record changes in dendritic spines of layer 5 pyramidal neurons in green fluorescent protein mice. We could not detect de novo growth of dendrites or changes in the density or turnover of spines for up to 4 weeks after stroke. We also used intrinsic optical signal imaging to investigate whether the forepaw (FP) sensory representation is remapped to the spared homotopic cortex after stroke. Stimulation of the contralateral FP reliably produced strong intrinsic signals in the spared hemisphere, but we could never detect a signal with ipsilateral FP stimulation after stroke. This lack of contralateral plasticity at the level of apical dendrites of layer 5 pyramidal neurons and FP sensory maps suggests that the contralesional cortex may not contribute to functional recovery after stroke and that, at least in mice, the peri-infarct cortex plays the dominant role in postischemic plasticity.
Asunto(s)
Corteza Cerebral/patología , Dendritas/patología , Lateralidad Funcional/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/patología , Accidente Cerebrovascular/patología , Análisis de Varianza , Animales , Mapeo Encefálico , Modelos Animales de Enfermedad , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Estudios Longitudinales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Accidente Cerebrovascular/fisiopatologíaRESUMEN
We previously reported evidence that oxidative stress during aging leads to adverse protein profile changes of brain cortical microvessels (MVs: end arterioles, capillaries, and venules) that affect mRNA/protein stability, basement membrane integrity, and ATP synthesis capacity in mice. As an extension of our previous study, we also found that proteins which comprise the blood-brain barrier (BBB) and regulate mitochondrial quality control were also significantly decreased in the mice's cortical MVs with aging. Interestingly, the neuroinflammatory protein fibrinogen (Fgn) was increased in mice brain MVs, which corresponds with clinical reports indicating that the plasma Fgn concentration increased progressively with aging. In this study, protein-protein interaction network analysis indicated that high expression of Fgn is linked with downregulated expression of both BBB- and mitochondrial fission/fusion-related proteins in mice cortical MVs with aging. To investigate the mechanism of Fgn action, we observed that 2 mg/mL or higher concentration of human plasma Fgn changed cell morphology, induced cytotoxicity, and increased BBB permeability in primary human brain microvascular endothelial cells (HBMECs). The BBB tight junction proteins were significantly decreased with increasing concentration of human plasma Fgn in primary HBMECs. Similarly, the expression of phosphorylated dynamin-related protein 1 (pDRP1) and other mitochondrial fission/fusion-related proteins were also significantly reduced in Fgn-treated HBMECs. Interestingly, DRP1 knockdown by shRNA(h) resulted in the reduction of both BBB- and mitochondrial fission/fusion-related proteins in HBMECs. Our results suggest that elevated Fgn downregulates DRP1, leading to mitochondrial-dependent endothelial and BBB dysfunction in the brain microvasculature.
Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Ratones , Humanos , Animales , Barrera Hematoencefálica/metabolismo , Fibrinógeno/metabolismo , Microvasos/metabolismo , Dinaminas/metabolismoRESUMEN
Changes to neuronal connectivity are believed to be a key factor in cognitive impairments associated with normal aging. Because of its effect on activities of daily living, deficient motor control is a critical type of cognitive decline to understand. Diminished inhibitory networks in the cortex are implicated in such motor control deficits, pointing to the connectivity of inhibitory cortical interneurons as an important area for study. Here, we used chronic two-photon microscopy to track the structural plasticity of en passant boutons (EPBs) of parvalbumin-positive interneurons in the mouse motor cortex in the first longitudinal, in vivo study of inhibitory interneuron synapses in the context of aging. Young (3-5 months) and aged (23-28 months) mice underwent training on the accelerating rotarod to evoke motor learning-induced structural plasticity. Our analysis reveals that, in comparison with axons from young mice, those from aged mice have fewer EPBs at baseline that also tend to be larger in size. Aged axons also express learning-related structural plasticity-like new bouton stabilization and bouton enlargement-that is less persistent than that of young axons. This study reveals striking baseline differences in young and aged axon morphology as well as differences in the deployment of learning-related structural plasticity across axons.
RESUMEN
When stroke or traumatic brain injury lead to cortical damage, how do surviving neurons rewire the brain to restore lost functionalities? Several Golgi studies have argued for de novo growth and branching of dendrites of pyramidal neurons in the spared hemisphere, but the results could not always be replicated. Functional brain imaging studies in humans and rodents suggest that significant neuronal plasticity occurs in areas surrounding the cortical lesion, but whether dendritic rearrangements occur there has been less well studied, especially after stroke. We used in vivo two-photon microscopy in adult mice expressing green fluorescent protein to monitor longitudinally the length and branch complexity of entire apical dendritic arbors from layer 5 pyramidal neurons distributed over a large peri-infarct cortex region after middle cerebral artery occlusion. We find no evidence of growth of dendrites or addition of new branches to their arbors over a period of 3 months after stroke. Instead, we observed a two-step pruning process: an initial decrease in dendritic length, followed by a loss of dendritic branches. Importantly, the shortening of branch tips reflected a general shrinkage in the dendritic apical tree, suggesting that mechanical forces attributable to the involution of the infarct contributed to the changes in dendritic length. These results help resolve a long-standing debate regarding the role of large-scale dendritic plasticity of pyramidal neurons in functional recovery after cortical injury.
Asunto(s)
Corteza Cerebral/patología , Dendritas/patología , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Plasticidad Neuronal , Células Piramidales/patología , Células Piramidales/fisiopatología , Animales , Corteza Cerebral/irrigación sanguínea , Dendritas/metabolismo , Modelos Animales de Enfermedad , Femenino , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/metabolismo , Imagenología Tridimensional , Infarto de la Arteria Cerebral Media/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microscopía/métodos , Recuperación de la FunciónRESUMEN
Diabetes increases the risk of Alzheimer's disease (AD). We investigated the impact of glucose concentrations on the ß-amyloid (Aß)-induced alteration of mitochondrial/cellular energetics in primary human brain microvascular endothelial cells (HBMECs). HBMECs were grown and passaged in media containing 15 mmol/l glucose (normal) based on which the glucose levels in the media were designated as high (25 mmol/L) or low (5 mmol/L). HBMECs were treated with Aß (1-42) (5 µmol/l) or a scrambled peptide for 24 h and mitochondrial respiratory parameters were measured using Seahorse Mito Stress Test. Aß (1-42) decreased the mitochondrial ATP production at normal glucose levels and decreased spare respiratory capacity at high glucose levels. Aß (1-42) diminished all mitochondrial respiratory parameters markedly at low glucose levels that were not completely recovered by restoring normal glucose levels in the media. The addition of mannitol (10 mmol/l) to low and normal glucose-containing media altered the Aß (1-42)-induced bioenergetic defects. Even at normal glucose levels, pre-senescent HMBECs (passage 15) displayed greater Aß (1-42)-induced mitochondrial respiratory impairments than young cells (passages 7-9). Thus, hypoglycemia, osmolarity changes, and senescence are stronger instigators of Aß (1-42)-induced mitochondrial respiration and energetics in HBMECs and contributors to diabetes-related increased AD risk than hyperglycemia.
Asunto(s)
Péptidos beta-Amiloides , Células Endoteliales , Humanos , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Respiración , Glucosa/farmacologíaRESUMEN
Increased vascularization, also known as neoangiogenesis, plays a major role in many cancers, including glioblastoma multiforme (GBM), by contributing to their aggressive growth and metastasis. Although anti-angiogenic therapies provide some clinical improvement, they fail to significantly improve the overall survival of GBM patients. Since various pro-angiogenic mediators drive GBM, we hypothesized that identifying targetable genes that broadly inhibit multiple pro-angiogenic mediators will significantly promote favorable outcomes. Here, we identified TRAF3IP2 (TRAF3-interacting protein 2) as a critical regulator of angiogenesis in GBM. We demonstrated that knockdown of TRAF3IP2 in an intracranial model of GBM significantly reduces vascularization. Targeting TRAF3IP2 significantly downregulated VEGF, IL6, ANGPT2, IL8, FZGF2, PGF, IL1ß, EGF, PDGFRB, and VEGFR2 expression in residual tumors. Our data also indicate that exogenous addition of VEGF partially restores angiogenesis by TRAF3IP2-silenced cells, suggesting that TRAF3IP2 promotes angiogenesis through VEGF- and non-VEGF-dependent mechanisms. These results indicate the anti-angiogenic and anti-tumorigenic potential of targeting TRAF3IP2 in GBM, a deadly cancer with limited treatment options.