Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Methods ; 15(10): 796-798, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30275573

RESUMEN

Multi-omic insights into microbiome function and composition typically advance one study at a time. However, in order for relationships across studies to be fully understood, data must be aggregated into meta-analyses. This makes it possible to generate new hypotheses by finding features that are reproducible across biospecimens and data layers. Qiita dramatically accelerates such integration tasks in a web-based microbiome-comparison platform, which we demonstrate with Human Microbiome Project and Integrative Human Microbiome Project (iHMP) data.


Asunto(s)
Biología Computacional/métodos , Internet , Metagenómica , Microbiota , Programas Informáticos , Humanos , Interfaz Usuario-Computador
2.
J Pediatr Gastroenterol Nutr ; 68(4): 502-508, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30540709

RESUMEN

OBJECTIVES: The gut microbiome is believed to play a role in the susceptibility to and treatment of Clostridium difficile infections (CDIs). It is, however, unknown whether the gut microbiome is also affected by asymptomatic C difficile colonization. Our study aimed to evaluate the fecal microbiome of children based on C difficile colonization, and CDI risk factors, including antibiotic use and comorbid inflammatory bowel disease (IBD). METHODS: Subjects with IBD and non-IBD controls were prospectively enrolled from pediatric clinics for a biobanking project (n = 113). A fecal sample was collected from each subject for research purposes only and was evaluated for asymptomatic toxigenic C difficile colonization. Fecal microbiome composition was determined by 16S rRNA sequencing. RESULTS: We found reduced bacterial diversity and altered microbiome composition in subjects with C difficile colonization, concurrent antibiotic use, and/or concomitant IBD (all P < 0.05). Accounting for antibiotic use and IBD status, children colonized with C difficile had significant enrichment in taxa from the genera Ruminococcus, Eggerthella, and Clostridium. Children without C difficile had increased relative abundances of Faecalibacterium and Rikenellaceae. Imputed metagenomic functions of those colonized were enriched for genes in oxidative phosphorylation and beta-lactam resistance, whereas in the subjects without C difficile, several functions in translation and metabolism were over-represented. CONCLUSIONS: In children, C difficile colonization, or factors that predispose to colonization such as antibiotic use and IBD status were associated with decreased gut bacterial diversity and altered microbiome composition. Averting such microbiome alterations may be a method to prevent or treat CDI.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium/microbiología , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino/complicaciones , Adolescente , Alabama , Baltimore , Niño , Preescolar , Heces/microbiología , Femenino , Humanos , Masculino , Estudios Prospectivos , Adulto Joven
3.
Anaerobe ; 58: 53-72, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30946985

RESUMEN

Clostridioides difficile infection (CDI) is an emerging public health threat and C. difficile is the most common cause of antimicrobial-associated diarrhea worldwide and the leading cause of hospital-associated infections in the US, yet the burden of community-acquired infections (CAI) is poorly understood. Characterizing C. difficile isolated from canines is important for understanding the role that canines may play in CAI. In addition, several studies have suggested that canines carry toxigenic C. difficile asymptomatically, which may imply that there are mechanisms responsible for resistance to CDI in canines that could be exploited to help combat human CDI. To assess the virulence potential of canine-derived C. difficile, we tested whether toxins TcdA and TcdB (hereafter toxins) derived from a canine isolate were capable of causing tight junction disruptions to colonic epithelial cells. Additionally, we addressed whether major differences exist between human and canine cells regarding C. difficile pathogenicity by exposing them to identical toxins. We then examined the canine gut microbiome associated with C. difficile carriage using 16S rRNA gene sequencing and searched for deviations from homeostasis as an indicator of CDI. Finally, we queried 16S rRNA gene sequences for bacterial taxa that may be associated with resistance to CDI in canines. Clostridioides difficile isolated from a canine produced toxins that reduced tight junction integrity in both human and canine cells in vitro. However, canine guts were not dysbiotic in the presence of C. difficile. These findings support asymptomatic carriage in canines and, furthermore, suggest that there are features of the gut microbiome and/or a canine-specific immune response that may protect canines against CDI. We identified two biologically relevant bacteria that may aid in CDI resistance in canines: 1) Clostridium hiranonis, which synthesizes secondary bile acids that have been shown to provide resistance to CDI in mice; and 2) Sphingobacterium faecium, which produces sphingophospholipids that may be associated with regulating homeostasis in the canine gut. Our findings suggest that canines may be cryptic reservoirs for C. difficile and, furthermore, that mechanisms of CDI resistance in the canine gut could provide insights into targeted therapeutics for human CDI.


Asunto(s)
Biota , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/veterinaria , Enfermedades de los Perros/microbiología , Disbiosis , Tracto Gastrointestinal/microbiología , Animales , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Células CACO-2 , Supervivencia Celular/efectos de los fármacos , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/microbiología , Perros , Enterotoxinas/toxicidad , Células Epiteliales/efectos de los fármacos , Células Epiteliales/microbiología , Células Epiteliales/fisiología , Humanos , Ratones , Fosfolípidos/análisis , Uniones Estrechas/efectos de los fármacos
4.
Anaerobe ; 33: 33-41, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25617726

RESUMEN

Identifying specific gut microorganisms associated with chronic constipation may be useful for diagnostic and therapeutic purposes. The objective of this study was to evaluate whether or not the gut microbial community of constipated subjects had specific microbial signatures and to assess the effects of lubiprostone treatment on the gut microbial community. Stool diaries, breath H2 and CH4 levels, and stool samples were collected from ten healthy subjects and nine patients meeting the Rome III criteria for chronic functional constipation. Constipated subjects received lubiprostone for four weeks, during which stool diaries were maintained. Stool samples were evaluated for gut microbial communities using pyrosequencing and quantitative real-time PCR (qPCR) targeting 16S-rRNA gene, along with concentrations of short-chain fatty acids (SCFAs) using high-performance liquid chromatography. Prior to treatment, gut microbial profiles were similar between constipated subjects and healthy subjects, while iso-butyrate levels were significantly higher in constipated subjects compared with healthy subjects. Despite increases in stool frequency and improvements in consistency after lubiprostone treatment, gut microbial profiles and community diversity after treatment showed no significant change compared to before treatment. While we did not observe a significant difference in either breath methane or archaeal abundance between the stool samples of healthy and constipated subjects, we confirmed a strong correlation between archaeal abundance measured by qPCR and the amount of methane gas exhaled in the fasting breath. Butyrate levels, however, were significantly higher in the stool samples of constipated subjects after lubiprostone treatment, suggesting that lubiprostone treatment had an effect on the net accumulation of SCFAs in the gut. In conclusion, lubiprostone treatment improved constipation symptoms and increased levels of butyrate without substantial modification of the gut microbial structure.


Asunto(s)
Estreñimiento/metabolismo , Estreñimiento/microbiología , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal , Adulto , Anciano , Biodiversidad , Estudios de Casos y Controles , Agonistas de los Canales de Cloruro/uso terapéutico , Enfermedad Crónica , Estreñimiento/tratamiento farmacológico , Femenino , Dosificación de Gen , Humanos , Lubiprostona/uso terapéutico , Masculino , Metagenoma , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Resultado del Tratamiento
5.
J Allergy Clin Immunol ; 129(5): 1204-8, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22541361

RESUMEN

The human body harbors 10 to 100 trillion microbes, mainly bacteria in our gut, which greatly outnumber our own human cells. This bacterial assemblage, referred to as the human microbiota, plays a fundamental role in our well-being. Deviations from healthy microbial compositions (dysbiosis) have been linked with important human diseases, including inflammation-linked disorders, such as allergies, obesity, and inflammatory bowel disease. Characterizing the temporal variations and community membership of the healthy human microbiome is critical to accurately identify the significant deviations from normality that could be associated with disease states. However, the diversity of the human microbiome varies between body sites, between patients, and over time. Environmental differences have also been shown to play a role in shaping the human microbiome in different cultures, requiring that the healthy human microbiome be characterized across life spans, ethnicities, nationalities, cultures, and geographic locales. In this article we summarize our knowledge on the microbial composition of the 5 best-characterized body sites (gut, skin, oral, airways, and vagina), focusing on interpersonal and intrapersonal variations and our current understanding of the sources of this variation.


Asunto(s)
Intestinos/microbiología , Metagenoma , Sistema Respiratorio/microbiología , Piel/microbiología , Vagina/microbiología , Femenino , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Hipersensibilidad/inmunología , Hipersensibilidad/microbiología , Inmunidad Mucosa , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , Interacciones Microbianas , Especificidad de Órganos
7.
mSystems ; 3(6)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30505944

RESUMEN

Studies of host-associated and environmental microbiomes often incorporate longitudinal sampling or paired samples in their experimental design. Longitudinal sampling provides valuable information about temporal trends and subject/population heterogeneity, offering advantages over cross-sectional and pre-post study designs. To support the needs of microbiome researchers performing longitudinal studies, we developed q2-longitudinal, a software plugin for the QIIME 2 microbiome analysis platform (https://qiime2.org). The q2-longitudinal plugin incorporates multiple methods for analysis of longitudinal and paired-sample data, including interactive plotting, linear mixed-effects models, paired differences and distances, microbial interdependence testing, first differencing, longitudinal feature selection, and volatility analyses. The q2-longitudinal package (https://github.com/qiime2/q2-longitudinal) is open-source software released under a 3-clause Berkeley Software Distribution (BSD) license and is freely available, including for commercial use. IMPORTANCE Longitudinal sampling provides valuable information about temporal trends and subject/population heterogeneity. We describe q2-longitudinal, a software plugin for longitudinal analysis of microbiome data sets in QIIME 2. The availability of longitudinal statistics and visualizations in the QIIME 2 framework will make the analysis of longitudinal data more accessible to microbiome researchers.

8.
Microbiome ; 6(1): 90, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773078

RESUMEN

BACKGROUND: Taxonomic classification of marker-gene sequences is an important step in microbiome analysis. RESULTS: We present q2-feature-classifier ( https://github.com/qiime2/q2-feature-classifier ), a QIIME 2 plugin containing several novel machine-learning and alignment-based methods for taxonomy classification. We evaluated and optimized several commonly used classification methods implemented in QIIME 1 (RDP, BLAST, UCLUST, and SortMeRNA) and several new methods implemented in QIIME 2 (a scikit-learn naive Bayes machine-learning classifier, and alignment-based taxonomy consensus methods based on VSEARCH, and BLAST+) for classification of bacterial 16S rRNA and fungal ITS marker-gene amplicon sequence data. The naive-Bayes, BLAST+-based, and VSEARCH-based classifiers implemented in QIIME 2 meet or exceed the species-level accuracy of other commonly used methods designed for classification of marker gene sequences that were evaluated in this work. These evaluations, based on 19 mock communities and error-free sequence simulations, including classification of simulated "novel" marker-gene sequences, are available in our extensible benchmarking framework, tax-credit ( https://github.com/caporaso-lab/tax-credit-data ). CONCLUSIONS: Our results illustrate the importance of parameter tuning for optimizing classifier performance, and we make recommendations regarding parameter choices for these classifiers under a range of standard operating conditions. q2-feature-classifier and tax-credit are both free, open-source, BSD-licensed packages available on GitHub.


Asunto(s)
Bacterias/genética , Simulación por Computador , ADN Intergénico/genética , Hongos/genética , Microbiota/genética , ARN Ribosómico 16S/genética , Alineación de Secuencia/métodos , Algoritmos , Secuencia de Bases/genética , Aprendizaje Automático , Programas Informáticos
9.
mSystems ; 1(1)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27822516

RESUMEN

The number of samples in high-throughput comparative "omics" studies is increasing rapidly due to declining experimental costs. To keep sample data and metadata manageable and to ensure the integrity of scientific results as the scale of these projects continues to increase, it is essential that we transition to better-designed sample identifiers. Ideally, sample identifiers should be globally unique across projects, project teams, and institutions; short (to facilitate manual transcription); correctable with respect to common types of transcription errors; opaque, meaning that they do not contain information about the samples; and compatible with existing standards. We present cual-id, a lightweight command line tool that creates, or mints, sample identifiers that meet these criteria without reliance on centralized infrastructure. cual-id allows users to assign universally unique identifiers, or UUIDs, that are globally unique to their samples. UUIDs are too long to be conveniently written on sampling materials, such as swabs or microcentrifuge tubes, however, so cual-id additionally generates human-friendly 4- to 12-character identifiers that map to their UUIDs and are unique within a project. By convention, we use "cual-id" to refer to the software, "CualID" to refer to the short, human-friendly identifiers, and "UUID" to refer to the globally unique identifiers. CualIDs are used by humans when they manually write or enter identifiers, while the longer UUIDs are used by computers to unambiguously reference a sample. Finally, cual-id optionally generates printable label sticker sheets containing Code 128 bar codes and CualIDs for labeling of sample collection and processing materials. IMPORTANCE The adoption of identifiers that are globally unique, correctable, and easily handwritten or manually entered into a computer will be a major step forward for sample tracking in comparative omics studies. As the fields transition to more-centralized sample management, for example, across labs within an institution, across projects funded under a common program, or in systems designed to facilitate meta- and/or integrated analysis, sample identifiers generated with cual-id will not need to change; thus, costly and error-prone updating of data and metadata identifiers will be avoided. Further, using cual-id will ensure that transcription errors in sample identifiers do not require the discarding of otherwise-useful samples that may have been expensive to obtain. Finally, cual-id is simple to install and use and is free for all use. No centralized infrastructure is required to ensure global uniqueness, so it is feasible for any lab to get started using these identifiers within their existing infrastructure.

10.
Gigascience ; 5: 27, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27296526

RESUMEN

BACKGROUND: Bioinformatics software often requires human-generated tabular text files as input and has specific requirements for how those data are formatted. Users frequently manage these data in spreadsheet programs, which is convenient for researchers who are compiling the requisite information because the spreadsheet programs can easily be used on different platforms including laptops and tablets, and because they provide a familiar interface. It is increasingly common for many different researchers to be involved in compiling these data, including study coordinators, clinicians, lab technicians and bioinformaticians. As a result, many research groups are shifting toward using cloud-based spreadsheet programs, such as Google Sheets, which support the concurrent editing of a single spreadsheet by different users working on different platforms. Most of the researchers who enter data are not familiar with the formatting requirements of the bioinformatics programs that will be used, so validating and correcting file formats is often a bottleneck prior to beginning bioinformatics analysis. MAIN TEXT: We present Keemei, a Google Sheets Add-on, for validating tabular files used in bioinformatics analyses. Keemei is available free of charge from Google's Chrome Web Store. Keemei can be installed and run on any web browser supported by Google Sheets. Keemei currently supports the validation of two widely used tabular bioinformatics formats, the Quantitative Insights into Microbial Ecology (QIIME) sample metadata mapping file format and the Spatially Referenced Genetic Data (SRGD) format, but is designed to easily support the addition of others. CONCLUSIONS: Keemei will save researchers time and frustration by providing a convenient interface for tabular bioinformatics file format validation. By allowing everyone involved with data entry for a project to easily validate their data, it will reduce the validation and formatting bottlenecks that are commonly encountered when human-generated data files are first used with a bioinformatics system. Simplifying the validation of essential tabular data files, such as sample metadata, will reduce common errors and thereby improve the quality and reliability of research outcomes.


Asunto(s)
Biología Computacional/métodos , Nube Computacional , Humanos , Almacenamiento y Recuperación de la Información , Programas Informáticos , Interfaz Usuario-Computador
11.
mSystems ; 1(5)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27822553

RESUMEN

Mock communities are an important tool for validating, optimizing, and comparing bioinformatics methods for microbial community analysis. We present mockrobiota, a public resource for sharing, validating, and documenting mock community data resources, available at http://caporaso-lab.github.io/mockrobiota/. The materials contained in mockrobiota include data set and sample metadata, expected composition data (taxonomy or gene annotations or reference sequences for mock community members), and links to raw data (e.g., raw sequence data) for each mock community data set. mockrobiota does not supply physical sample materials directly, but the data set metadata included for each mock community indicate whether physical sample materials are available. At the time of this writing, mockrobiota contains 11 mock community data sets with known species compositions, including bacterial, archaeal, and eukaryotic mock communities, analyzed by high-throughput marker gene sequencing. IMPORTANCE The availability of standard and public mock community data will facilitate ongoing method optimizations, comparisons across studies that share source data, and greater transparency and access and eliminate redundancy. These are also valuable resources for bioinformatics teaching and training. This dynamic resource is intended to expand and evolve to meet the changing needs of the omics community.

12.
Microbiome ; 4: 11, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26905735

RESUMEN

BACKGROUND: Fungi play critical roles in many ecosystems, cause serious diseases in plants and animals, and pose significant threats to human health and structural integrity problems in built environments. While most fungal diversity remains unknown, the development of PCR primers for the internal transcribed spacer (ITS) combined with next-generation sequencing has substantially improved our ability to profile fungal microbial diversity. Although the high sequence variability in the ITS region facilitates more accurate species identification, it also makes multiple sequence alignment and phylogenetic analysis unreliable across evolutionarily distant fungi because the sequences are hard to align accurately. To address this issue, we created ghost-tree, a bioinformatics tool that integrates sequence data from two genetic markers into a single phylogenetic tree that can be used for diversity analyses. Our approach starts with a "foundation" phylogeny based on one genetic marker whose sequences can be aligned across organisms spanning divergent taxonomic groups (e.g., fungal families). Then, "extension" phylogenies are built for more closely related organisms (e.g., fungal species or strains) using a second more rapidly evolving genetic marker. These smaller phylogenies are then grafted onto the foundation tree by mapping taxonomic names such that each corresponding foundation-tree tip would branch into its new "extension tree" child. RESULTS: We applied ghost-tree to graft fungal extension phylogenies derived from ITS sequences onto a foundation phylogeny derived from fungal 18S sequences. Our analysis of simulated and real fungal ITS data sets found that phylogenetic distances between fungal communities computed using ghost-tree phylogenies explained significantly more variance than non-phylogenetic distances. The phylogenetic metrics also improved our ability to distinguish small differences (effect sizes) between microbial communities, though results were similar to non-phylogenetic methods for larger effect sizes. CONCLUSIONS: The Silva/UNITE-based ghost tree presented here can be easily integrated into existing fungal analysis pipelines to enhance the resolution of fungal community differences and improve understanding of these communities in built environments. The ghost-tree software package can also be used to develop phylogenetic trees for other marker gene sets that afford different taxonomic resolution, or for bridging genome trees with amplicon trees. AVAILABILITY: ghost-tree is pip-installable. All source code, documentation, and test code are available under the BSD license at https://github.com/JTFouquier/ghost-tree .


Asunto(s)
ADN Intergénico/genética , Hongos/genética , Microbiota/genética , Proteínas Mutantes Quiméricas/genética , Filogenia , Saliva/microbiología , Biología Computacional , Evolución Molecular , Hongos/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Componente Principal
14.
Microbiome ; 3: 20, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25995836

RESUMEN

BACKGROUND: The operational taxonomic unit (OTU) is widely used in microbial ecology. Reproducibility in microbial ecology research depends on the reliability of OTU-based 16S ribosomal subunit RNA (rRNA) analyses. RESULTS: Here, we report that many hierarchical and greedy clustering methods produce unstable OTUs, with membership that depends on the number of sequences clustered. If OTUs are regenerated with additional sequences or samples, sequences originally assigned to a given OTU can be split into different OTUs. Alternatively, sequences assigned to different OTUs can be merged into a single OTU. This OTU instability affects alpha-diversity analyses such as rarefaction curves, beta-diversity analyses such as distance-based ordination (for example, Principal Coordinate Analysis (PCoA)), and the identification of differentially represented OTUs. Our results show that the proportion of unstable OTUs varies for different clustering methods. We found that the closed-reference method is the only one that produces completely stable OTUs, with the caveat that sequences that do not match a pre-existing reference sequence collection are discarded. CONCLUSIONS: As a compromise to the factors listed above, we propose using an open-reference method to enhance OTU stability. This type of method clusters sequences against a database and includes unmatched sequences by clustering them via a relatively stable de novo clustering method. OTU stability is an important consideration when analyzing microbial diversity and is a feature that should be taken into account during the development of novel OTU clustering methods.

15.
Genome Biol ; 15(12): 531, 2014 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-25517225

RESUMEN

BACKGROUND: It is now apparent that the complex microbial communities found on and in the human body vary across individuals. What has largely been missing from previous studies is an understanding of how these communities vary over time within individuals. To the extent to which it has been considered, it is often assumed that temporal variability is negligible for healthy adults. Here we address this gap in understanding by profiling the forehead, gut (fecal), palm, and tongue microbial communities in 85 adults, weekly over 3 months. RESULTS: We found that skin (forehead and palm) varied most in the number of taxa present, whereas gut and tongue communities varied more in the relative abundances of taxa. Within each body habitat, there was a wide range of temporal variability across the study population, with some individuals harboring more variable communities than others. The best predictor of these differences in variability across individuals was microbial diversity; individuals with more diverse gut or tongue communities were more stable in composition than individuals with less diverse communities. CONCLUSIONS: Longitudinal sampling of a relatively large number of individuals allowed us to observe high levels of temporal variability in both diversity and community structure in all body habitats studied. These findings suggest that temporal dynamics may need to be considered when attempting to link changes in microbiome structure to changes in health status. Furthermore, our findings show that, not only is the composition of an individual's microbiome highly personalized, but their degree of temporal variability is also a personalized feature.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Heces/microbiología , Frente/microbiología , Mano/microbiología , Microbiota , Lengua/microbiología , Adulto , Femenino , Genoma Bacteriano , Genómica/métodos , Voluntarios Sanos , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Filogenia , Adulto Joven
16.
PeerJ ; 2: e545, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25177538

RESUMEN

We present a performance-optimized algorithm, subsampled open-reference OTU picking, for assigning marker gene (e.g., 16S rRNA) sequences generated on next-generation sequencing platforms to operational taxonomic units (OTUs) for microbial community analysis. This algorithm provides benefits over de novo OTU picking (clustering can be performed largely in parallel, reducing runtime) and closed-reference OTU picking (all reads are clustered, not only those that match a reference database sequence with high similarity). Because more of our algorithm can be run in parallel relative to "classic" open-reference OTU picking, it makes open-reference OTU picking tractable on massive amplicon sequence data sets (though on smaller data sets, "classic" open-reference OTU clustering is often faster). We illustrate that here by applying it to the first 15,000 samples sequenced for the Earth Microbiome Project (1.3 billion V4 16S rRNA amplicons). To the best of our knowledge, this is the largest OTU picking run ever performed, and we estimate that our new algorithm runs in less than 1/5 the time than would be required of "classic" open reference OTU picking. We show that subsampled open-reference OTU picking yields results that are highly correlated with those generated by "classic" open-reference OTU picking through comparisons on three well-studied datasets. An implementation of this algorithm is provided in the popular QIIME software package, which uses uclust for read clustering. All analyses were performed using QIIME's uclust wrappers, though we provide details (aided by the open-source code in our GitHub repository) that will allow implementation of subsampled open-reference OTU picking independently of QIIME (e.g., in a compiled programming language, where runtimes should be further reduced). Our analyses should generalize to other implementations of these OTU picking algorithms. Finally, we present a comparison of parameter settings in QIIME's OTU picking workflows and make recommendations on settings for these free parameters to optimize runtime without reducing the quality of the results. These optimized parameters can vastly decrease the runtime of uclust-based OTU picking in QIIME.

19.
Gigascience ; 1(1): 7, 2012 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-23587224

RESUMEN

BACKGROUND: We present the Biological Observation Matrix (BIOM, pronounced "biome") format: a JSON-based file format for representing arbitrary observation by sample contingency tables with associated sample and observation metadata. As the number of categories of comparative omics data types (collectively, the "ome-ome") grows rapidly, a general format to represent and archive this data will facilitate the interoperability of existing bioinformatics tools and future meta-analyses. FINDINGS: The BIOM file format is supported by an independent open-source software project (the biom-format project), which initially contains Python objects that support the use and manipulation of BIOM data in Python programs, and is intended to be an open development effort where developers can submit implementations of these objects in other programming languages. CONCLUSIONS: The BIOM file format and the biom-format project are steps toward reducing the "bioinformatics bottleneck" that is currently being experienced in diverse areas of biological sciences, and will help us move toward the next phase of comparative omics where basic science is translated into clinical and environmental applications. The BIOM file format is currently recognized as an Earth Microbiome Project Standard, and as a Candidate Standard by the Genomic Standards Consortium.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA