Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mar Drugs ; 19(2)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540777

RESUMEN

A potent and heat-stable tetrodotoxin (TTX) has been found to accumulate in various marine bivalve species, including Pacific oysters (Crassostrea gigas), raising a food safety concern. While several studies on geographical occurrence of TTX have been conducted, there is a lack of knowledge about the distribution of the toxin within and between bivalves. We, therefore, measured TTX in the whole flesh, mantle, gills, labial palps, digestive gland, adductor muscle and intravalvular fluid of C. gigas using liquid chromatography-tandem mass spectrometry. Weekly monitoring during summer months revealed the highest TTX concentrations in the digestive gland (up to 242 µg/kg), significantly higher than in other oyster tissues. Intra-population variability of TTX, measured in the whole flesh of each of twenty animals, reached 46% and 32% in the two separate batches, respectively. In addition, an inter-population study was conducted to compare TTX levels at four locations within the oyster production area. TTX concentrations in the whole flesh varied significantly between some of these locations, which was unexplained by the differences in weight of flesh. This is the first study examining TTX distribution in C. gigas and the first confirmation of the preferential accumulation of TTX in oyster digestive gland.


Asunto(s)
Crassostrea/química , Venenos/análisis , Tetrodotoxina/análisis , Contaminantes Químicos del Agua/análisis , Animales , Tracto Gastrointestinal/química , Branquias/química , Espectrometría de Masas en Tándem/métodos , Distribución Tisular/fisiología
2.
Infect Immun ; 86(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29358334

RESUMEN

The QseEF histidine kinase/response regulator system modulates expression of enterohemorrhagic Escherichia coli (EHEC) and Salmonella enterica serovar Typhimurium virulence genes in response to the host neurotransmitters epinephrine and norepinephrine. qseG, which encodes an outer membrane lipoprotein, is cotranscribed with qseEF in these enteric pathogens, but there is little knowledge of its role in virulence. Here, we found that in EHEC QseG interacts with the type III secretion system (T3SS) gate protein SepL and modulates the kinetics of attaching and effacing (AE) lesion formation on tissue-cultured cells. Moreover, an EHEC ΔqseG mutant had reduced intestinal colonization in an infant rabbit model. Additionally, in Citrobacter rodentium, an AE lesion-forming pathogen like EHEC, QseG is required for full virulence in a mouse model. In S Typhimurium, we found that QseG regulates the phase switch between the two flagellin types, FliC and FljB. In an S Typhimurium ΔqseG mutant, the phase-variable promoter for fljB is preferentially switched into the "on" position, leading to overproduction of this phase two flagellin. In infection of tissue-cultured cells, the S Typhimurium ΔqseG mutant provokes increased inflammatory cytokine production versus the wild type; in vivo, in a murine infection model, the ΔqseG strain caused a more severe inflammatory response and was attenuated versus the wild-type strain. Collectively, our findings demonstrate that QseG is important for full virulence in several enteric pathogens and controls flagellar phase variation in S Typhimurium, and they highlight both the complexity and conservation of the regulatory networks that control the virulence of enteric pathogens.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Citrobacter rodentium/fisiología , Escherichia coli Enterohemorrágica/fisiología , Proteínas de Escherichia coli/metabolismo , Flagelos/fisiología , Salmonella typhimurium/fisiología , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Flagelina/biosíntesis , Regulación Bacteriana de la Expresión Génica , Ratones , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Conejos , Eliminación de Secuencia , Transcripción Genética , Virulencia
3.
Nature ; 492(7427): 113-7, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23160491

RESUMEN

The mammalian gastrointestinal tract provides a complex and competitive environment for the microbiota. Successful colonization by pathogens requires scavenging nutrients, sensing chemical signals, competing with the resident bacteria and precisely regulating the expression of virulence genes. The gastrointestinal pathogen enterohaemorrhagic Escherichia coli (EHEC) relies on inter-kingdom chemical sensing systems to regulate virulence gene expression. Here we show that these systems control the expression of a novel two-component signal transduction system, named FusKR, where FusK is the histidine sensor kinase and FusR the response regulator. FusK senses fucose and controls expression of virulence and metabolic genes. This fucose-sensing system is required for robust EHEC colonization of the mammalian intestine. Fucose is highly abundant in the intestine. Bacteroides thetaiotaomicron produces multiple fucosidases that cleave fucose from host glycans, resulting in high fucose availability in the gut lumen. During growth in mucin, B. thetaiotaomicron contributes to EHEC virulence by cleaving fucose from mucin, thereby activating the FusKR signalling cascade, modulating the virulence gene expression of EHEC. Our findings suggest that EHEC uses fucose, a host-derived signal made available by the microbiota, to modulate EHEC pathogenicity and metabolism.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteroides/metabolismo , Escherichia coli Enterohemorrágica/crecimiento & desarrollo , Fucosa/metabolismo , Tracto Gastrointestinal/microbiología , Animales , Bacteroides/enzimología , Bacteroides/crecimiento & desarrollo , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/patogenicidad , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Tracto Gastrointestinal/metabolismo , Regulación Bacteriana de la Expresión Génica , Mucinas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Conejos , Receptores Adrenérgicos/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Virulencia/genética , Factores de Virulencia/genética , alfa-L-Fucosidasa/metabolismo
4.
Mol Microbiol ; 93(1): 199-211, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24846743

RESUMEN

Classical studies have focused on the role that individual regulators play in controlling virulence gene expression. An emerging theme, however, is that bacterial metabolism also plays a key role in this process. Our previous work identified a series of proteins that were implicated in the regulation of virulence. One of these proteins was AdhE, a bi-functional acetaldehyde-CoA dehydrogenase and alcohol dehydrogenase. Deletion of its gene (adhE) resulted in elevated levels of extracellular acetate and a stark pleiotropic phenotype: strong suppression of the Type Three Secretion System (T3SS) and overexpression of non-functional flagella. Correspondingly, the adhE mutant bound poorly to host cells and was unable to swim. Furthermore, the mutant was significantly less virulent than its parent when tested in vivo, which supports the hypothesis that attachment and motility are central to the colonization process. The molecular basis by which AdhE affects virulence gene regulation was found to be multifactorial, involving acetate-stimulated transcription of flagella expression and post-transcriptional regulation of the T3SS through Hfq. Our study reveals fascinating insights into the links between bacterial physiology, the expression of virulence genes, and the underlying molecular mechanism mechanisms by which these processes are regulated.


Asunto(s)
Acetatos/metabolismo , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/metabolismo , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/patogenicidad , Proteínas de Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , Alcohol Deshidrogenasa/genética , Aldehído Oxidorreductasas/genética , Animales , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/patología , Escherichia coli O157/enzimología , Escherichia coli O157/fisiología , Proteínas de Escherichia coli/genética , Flagelos/fisiología , Regulación Bacteriana de la Expresión Génica , Conejos , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
5.
PLoS Pathog ; 8(3): e1002593, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22438811

RESUMEN

Vibrio parahaemolyticus is a leading cause of seafood-borne gastroenteritis in many parts of the world, but there is limited knowledge of the pathogenesis of V. parahaemolyticus-induced diarrhea. The absence of an oral infection-based small animal model to study V. parahaemolyticus intestinal colonization and disease has constrained analyses of the course of infection and the factors that mediate it. Here, we demonstrate that infant rabbits oro-gastrically inoculated with V. parahaemolyticus develop severe diarrhea and enteritis, the main clinical and pathologic manifestations of disease in infected individuals. The pathogen principally colonizes the distal small intestine, and this colonization is dependent upon type III secretion system 2. The distal small intestine is also the major site of V. parahaemolyticus-induced tissue damage, reduced epithelial barrier function, and inflammation, suggesting that disease in this region of the gastrointestinal tract accounts for most of the diarrhea that accompanies V. parahaemolyticus infection. Infection appears to proceed through a characteristic sequence of steps that includes remarkable elongation of microvilli and the formation of V. parahaemolyticus-filled cavities within the epithelial surface, and culminates in villus disruption. Both depletion of epithelial cell cytoplasm and epithelial cell extrusion contribute to formation of the cavities in the epithelial surface. V. parahaemolyticus also induces proliferation of epithelial cells and recruitment of inflammatory cells, both of which occur before wide-spread damage to the epithelium is evident. Collectively, our findings suggest that V. parahaemolyticus damages the host intestine and elicits disease via previously undescribed processes and mechanisms.


Asunto(s)
Disentería/patología , Enteritis/patología , Mucosa Intestinal/patología , Vibriosis/patología , Vibrio parahaemolyticus/fisiología , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Disentería/microbiología , Enteritis/microbiología , Interacciones Huésped-Patógeno , Mucosa Intestinal/microbiología , Intestino Delgado/microbiología , Intestino Delgado/patología , Microvellosidades/patología , Conejos , Vibriosis/microbiología
6.
Microbiol Res ; 285: 127744, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38735242

RESUMEN

Vibrio parahaemolyticus is the leading bacterial cause of gastroenteritis associated with seafood consumption worldwide. Not all members of the species are thought to be pathogenic, thus identification of virulent organisms is essential to protect public health and the seafood industry. Correlations of human disease and known genetic markers (e.g. thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH)) appear complex. Some isolates recovered from patients lack these factors, while their presence has become increasingly noted in isolates recovered from the environment. Here, we used whole-genome sequencing in combination with mammalian and insect models of infection to assess the pathogenic potential of V. parahaemolyticus isolated from European Atlantic shellfish production areas. We found environmental V. parahaemolyticus isolates harboured multiple virulence-associated genes, including TDH and/or TRH. However, carriage of these factors did not necessarily reflect virulence in the mammalian intestine, as an isolate containing TDH and the genes coding for a type 3 secretion system (T3SS) 2α virulence determinant, appeared avirulent. Moreover, environmental V. parahaemolyticus lacking TDH or TRH could be assigned to groups causing low and high levels of mortality in insect larvae, with experiments using defined bacterial mutants showing that a functional T3SS1 contributed to larval death. When taken together, our findings highlight the genetic diversity of V. parahaemolyticus isolates found in the environment, their potential to cause disease and the need for a more systematic evaluation of virulence in diverse V. parahaemolyticus to allow better genetic markers.


Asunto(s)
Proteínas Bacterianas , Toxinas Bacterianas , Proteínas Hemolisinas , Vibriosis , Vibrio parahaemolyticus , Factores de Virulencia , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidad , Vibrio parahaemolyticus/clasificación , Vibrio parahaemolyticus/aislamiento & purificación , Animales , Virulencia/genética , Europa (Continente) , Proteínas Hemolisinas/genética , Factores de Virulencia/genética , Vibriosis/microbiología , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Humanos , Secuenciación Completa del Genoma , Fenotipo , Mariscos/microbiología , Larva/microbiología , Sistemas de Secreción Tipo III/genética , Genoma Bacteriano , Alimentos Marinos/microbiología
7.
Proc Natl Acad Sci U S A ; 107(9): 4359-64, 2010 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-20160087

RESUMEN

Cholera is a severe diarrheal disease caused by the motile Gram-negative rod Vibrio cholerae. Live-attenuated V. cholerae vaccines harboring deletions of the genes encoding cholera toxin have great promise for reducing the global burden of cholera. However, development of live vaccines has been hampered by the tendency of such strains to induce noncholeric reactogenic diarrhea in human subjects. The molecular bases of reactogenicity are unknown, but it has been speculated that reactogenic diarrhea is a response to V. cholerae's flagellum and/or the motility that it enables. Here, we used an infant rabbit model of reactogenicity to determine what V. cholerae factors trigger this response. We found that V. cholerae ctx mutants that produced flagellins induced diarrhea, regardless of whether the proteins were assembled into a flagellum or whether the flagellum was functional. In contrast, approximately 90% of rabbits infected with V. cholerae lacking all five flagellin-encoding genes did not develop diarrhea. Thus, flagellin production, independent of flagellum assembly or motility, is sufficient for reactogenicity. The intestinal colonization and intraintestinal localization of the nonreactogenic flagellin-deficient strain were indistinguishable from those of a flagellated motile strain; however, the flagellin-deficient strain stimulated fewer mRNA transcripts coding for proinflammatory cytokines in the intestine. Thus, reactogenic diarrhea may be a consequence of an innate host inflammatory response to V. cholerae flagellins. Our results suggest a simple genetic blueprint for engineering defined nonreactogenic live-attenuated V. cholerae vaccine strains.


Asunto(s)
Vacunas contra el Cólera/inmunología , Flagelina/inmunología , Vibrio cholerae/inmunología , Animales , Citocinas/biosíntesis , Diarrea/inmunología , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Intestinos/microbiología , Conejos , Vibrio cholerae/crecimiento & desarrollo
8.
Sci Total Environ ; 885: 163905, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37142018

RESUMEN

Tetrodotoxin (TTX), a potent neurotoxin mostly associated with pufferfish poisoning, is also found in bivalve shellfish. Recent studies into this emerging food safety threat reported TTX in a few, mainly estuarine, shellfish production areas in some European countries, including the United Kingdom. A pattern in occurrences has started to emerge, however the role of temperature on TTX has not been investigated in detail. Therefore, we conducted a large systematic TTX screening study, encompassing over 3500 bivalve samples collected throughout 2016 from 155 shellfish monitoring sites along the coast of Great Britain. Overall, we found that only 1.1 % of tested samples contained TTX above the reporting limit of 2 µg/kg whole shellfish flesh and these samples all originated from ten shellfish production sites in southern England. Subsequent continuous monitoring of selected areas over a five-year period showed a potential seasonal TTX accumulation in bivalves, starting in June when water temperatures reached around 15 °C. For the first time, satellite-derived data were also applied to investigate temperature differences between sites with and without confirmed presence of TTX in 2016. Although average annual temperatures were similar in both groups, daily mean values were higher in summer and lower in winter at sites where TTX was found. Here, temperature also increased significantly faster during late spring and early summer, the critical period for TTX. Our study supports the hypothesis that temperature is one of the key triggers of events leading to TTX accumulation in European bivalves. However, other factors are also likely to play an important role, including the presence or absence of a de novo biological source, which remains elusive.


Asunto(s)
Bivalvos , Mariscos , Animales , Tetrodotoxina , Temperatura , Alimentos Marinos
9.
Infect Immun ; 80(8): 2940-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22585964

RESUMEN

The pathogenesis of the diarrheal disease caused by Vibrio parahaemolyticus, a leading cause of seafood-associated enteritis worldwide, is dependent upon a type III secretion system, T3SS2. This apparatus enables the pathogen to inject bacterial proteins (effectors) into the cytosol of host cells and thereby modulate host processes. T3SS effector proteins transit into the host cell via a membrane pore (translocon) typically formed by 3 bacterial proteins. We have identified the third translocon protein for T3SS2: VopW, which was previously classified as an effector protein for a homologous T3SS in V. cholerae. VopW is a hydrophilic translocon protein; like other such proteins, it is not inserted into the host cell membrane but is required for insertion of the two hydrophobic translocators, VopB2 and VopD2, that constitute the membrane channel. VopW is not required for secretion of T3SS2 effectors into the bacterial culture medium; however, it is essential for transfer of these proteins into the host cell cytoplasm. Consequently, deletion of vopW abrogates the virulence of V. parahaemolyticus in several animal models of diarrheal disease. Unlike previously described hydrophilic translocators, VopW is itself translocated into the host cell cytoplasm, raising the possibility that it functions as both a translocator and an effector.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Vibrio parahaemolyticus/metabolismo , Animales , Proteínas Bacterianas/genética , Células CACO-2 , Proteínas Portadoras/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Íleon/microbiología , Íleon/patología , Familia de Multigenes , Transporte de Proteínas , Conejos , Vibriosis/inmunología , Vibriosis/microbiología , Vibrio parahaemolyticus/genética , Vibrio parahaemolyticus/patogenicidad , Virulencia
10.
Infect Immun ; 80(3): 914-20, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22232190

RESUMEN

Escherichia coli O157:H7 causes food and waterborne enteric infections that can result in hemorrhagic colitis and life-threatening hemolytic uremic syndrome. Intimate adherence of the bacteria to intestinal epithelial cells is mediated by intimin, but E. coli O157:H7 also possess several other putative adhesins, including curli and two operons that encode long polar fimbriae (Lpf). To assess the importance of Lpf for intestinal colonization, we performed competition experiments between E. coli O157:H7 and an isogenic ΔlpfA1 ΔlpfA2 double mutant in the infant rabbit model. The mutant was outcompeted in the ileum, cecum, and midcolon, suggesting that Lpf contributes to intestinal colonization. In contrast, the ΔlpfA1 ΔlpfA2 mutant showed increased adherence to colonic epithelial cells in vitro. Transmission electron microscopy revealed curli-like structures on the surface of the ΔlpfA1 ΔlpfA2 mutant, and the presence of curli was confirmed by Congo red binding, immunogold-labeling electron microscopy, immunoblotting, and quantitative real-time reverse transcription-PCR (qRT-PCR) measuring csgA expression. However, deletion of csgA, which encodes the major curli subunit, does not appear to affect intestinal colonization. In addition to suggesting that Lpf can contribute to EHEC intestinal colonization, our observations indicate that the regulatory pathways governing the expression of Lpf and curli are interdependent.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Proteínas Bacterianas/metabolismo , Escherichia coli O157/patogenicidad , Proteínas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/ultraestructura , Animales , Animales Recién Nacidos , Proteínas Bacterianas/genética , Ciego/microbiología , Línea Celular , Extensiones de la Superficie Celular/ultraestructura , Colon/microbiología , Células Epiteliales/microbiología , Escherichia coli O157/genética , Escherichia coli O157/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas Fimbrias/genética , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/ultraestructura , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Íleon/microbiología , Conejos
11.
Antimicrob Agents Chemother ; 55(12): 5469-74, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21947394

RESUMEN

AvR2-V10.3 is an engineered R-type pyocin that specifically kills Escherichia coli O157, an enteric pathogen that is a major cause of food-borne diarrheal disease. New therapeutics to counteract E. coli O157 are needed, as currently available antibiotics can exacerbate the consequences of infection. We show here that orogastric administration of AvR2-V10.3 can prevent or ameliorate E. coli O157:H7-induced diarrhea and intestinal inflammation in an infant rabbit model of infection when the compound is administered either in a postexposure prophylactic regimen or after the onset of symptoms. Notably, administration of AvR2-V10.3 also reduces bacterial carriage and fecal shedding of this pathogen. Our findings support the further development of pathogen-specific R-type pyocins as a way to treat enteric infections.


Asunto(s)
Antibacterianos/uso terapéutico , Diarrea/tratamiento farmacológico , Diarrea/prevención & control , Escherichia coli O157/efectos de los fármacos , Piocinas/uso terapéutico , Animales , Animales Recién Nacidos , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Carga Bacteriana/efectos de los fármacos , Diarrea/microbiología , Diarrea/fisiopatología , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Escherichia coli O157/patogenicidad , Heces/microbiología , Ingeniería Genética/métodos , Humanos , Piocinas/administración & dosificación , Piocinas/farmacología , Conejos , Resultado del Tratamiento
12.
Methods Mol Biol ; 2291: 365-379, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33704764

RESUMEN

Animal models represent part of the arsenal available to researchers studying the pathophysiology of potentially deadly human pathogens such as Shiga toxin-producing Escherichia coli (STEC). The optimal model may differ depending on what aspects of pathogen biology, disease progression, or host response are under study. Here, we provide detailed protocols for the infant rabbit model of STEC, which largely reproduces the intestinal disease seen following natural oral infection, and share insights from studies examining O157 and non-O157 serotypes.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli O157 , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/patología , Escherichia coli O157/metabolismo , Escherichia coli O157/patogenicidad , Humanos , Conejos
13.
Curr Top Microbiol Immunol ; 337: 37-59, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19812979

RESUMEN

Vibrio cholerae is a curved Gram-negative rod that causes the diarrheal disease cholera. One hundred and twenty five years of study of V. cholerae microbiology have made this lethal pathogen arguably the most well-understood non-invasive mucosal pathogen. Over the past 25 years, modern molecular techniques have permitted the identification of many genes and cellular processes that are critical for V. cholerae colonization of the gastrointestinal tract. Review of the literature reveals that there are two classes of genes that influence V. cholerae colonization of the suckling mouse intestine, the most commonly used animal model to study V. cholerae pathogenesis. Inactivation of one class of genes results in profound attenuation of V. cholerae intestinal colonization, whereas inactivation of the other class of genes results in only moderate colonization defects. The latter class of genes suggests that V. cholerae may colonize several intestinal niches that impose distinct requirements and biological challenges, thus raising the possibility that there is physiologic heterogeneity among the infecting population. Efficient V. cholerae intestinal colonization and subsequent dissemination to the environment appears to require temporally ordered expression of sets of genes during the course of infection. Key challenges for future investigations of V. cholerae pathogenicity will be to assess the degree of heterogeneity in the infecting population, whether such heterogeneity has functional significance, and if stochastic processes contribute to generation of heterogeneity in vivo.


Asunto(s)
Cólera/microbiología , Intestinos/microbiología , Vibrio cholerae/patogenicidad , Animales , Modelos Animales de Enfermedad , Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Ratones , Percepción de Quorum/genética , Vibrio cholerae/clasificación , Vibrio cholerae/genética , Virulencia/genética , Factores de Virulencia/genética
14.
Infect Immun ; 77(9): 3713-21, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19564389

RESUMEN

In addition to causing diarrhea, Escherichia coli O157:H7 infection can lead to hemolytic-uremic syndrome (HUS), a severe disease characterized by hemolysis and renal failure. Differences in HUS frequency among E. coli O157:H7 outbreaks have been noted, but our understanding of bacterial factors that promote HUS is incomplete. In 2006, in an outbreak of E. coli O157:H7 caused by consumption of contaminated spinach, there was a notably high frequency of HUS. We sequenced the genome of the strain responsible (TW14359) with the goal of identifying candidate genetic factors that contribute to an enhanced ability to cause HUS. The TW14359 genome contains 70 kb of DNA segments not present in either of the two reference O157:H7 genomes. We identified seven putative virulence determinants, including two putative type III secretion system effector proteins, candidate genes that could result in increased pathogenicity or, alternatively, adaptation to plants, and an intact anaerobic nitric oxide reductase gene, norV. We surveyed 100 O157:H7 isolates for the presence of these putative virulence determinants. A norV deletion was found in over one-half of the strains surveyed and correlated strikingly with the absence of stx(1). The other putative virulence factors were found in 8 to 35% of the O157:H7 isolates surveyed, and their presence also correlated with the presence of norV and the absence of stx(1), indicating that the presence of norV may serve as a marker of a greater propensity for HUS, similar to the correlation between the absence of stx(1) and a propensity for HUS.


Asunto(s)
Brotes de Enfermedades , Escherichia coli O157/genética , Escherichia coli O157/patogenicidad , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/microbiología , Genoma Bacteriano , Spinacia oleracea/microbiología , ADN Bacteriano/análisis , Síndrome Hemolítico-Urémico/etiología , Polimorfismo Genético , Toxina Shiga II/genética , Virulencia
15.
Cell Microbiol ; 10(4): 836-47, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18067584

RESUMEN

Enterohaemorrhagic Escherichia coli (EHEC) O157:H7 induces filamentous actin-rich 'pedestals' on intestinal epithelial cells. Pedestal formation in vitro requires translocation of bacterial effectors into the host cell, including Tir, an EHEC receptor, and EspF(U), which increases the efficiency of actin assembly initiated by Tir. While inactivation of espF(U) does not alter colonization in two reservoir hosts, we utilized two disease models to explore the significance of EspF(U)-promoted actin pedestal formation. EHECDeltaespF(U) efficiently colonized the rabbit intestine during co-infection with wild-type EHEC, but co-infection studies on cultured cells suggested that EspF(U) produced by wild-type bacteria might have rescued the mutant. Significantly, EHECDeltaespF(U) by itself was fully capable of establishing colonization at 2 days post inoculation but unlike wild type, failed to expand in numbers in the caecum and colon by 7 days. In the gnotobiotic piglet model, an espF(U) deletion mutant appeared to generate actin pedestals with lower efficiency than wild type. Furthermore, aggregates of the mutant occupied a significantly smaller area of the intestinal epithelial surface than those of the wild type. Together, these findings suggest that, after initial EHEC colonization of the intestinal surface, EspF(U) may stabilize bacterial association with the epithelial cytoskeleton and promote expansion beyond initial sites of infection.


Asunto(s)
Actinas/metabolismo , Proteínas Portadoras/fisiología , Escherichia coli O157/crecimiento & desarrollo , Proteínas de Escherichia coli/fisiología , Mucosa Intestinal/microbiología , Animales , Animales Recién Nacidos , Adhesión Bacteriana/fisiología , Proteínas Portadoras/metabolismo , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Células HeLa , Humanos , Mucosa Intestinal/citología , Péptidos y Proteínas de Señalización Intracelular , Conejos , Porcinos , Factores de Tiempo
16.
J Bacteriol ; 190(1): 438-41, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17981979

RESUMEN

Shiga toxin 2 (Stx2), one of the principal virulence factors of enterohemorrhagic Escherichia coli, is encoded by 933W, a lambda-like prophage. 933W prophage induction contributes to Stx2 production, and here, we provide evidence that Dam methyltransferase is essential for maintenance of 933W lysogeny. Our findings are consistent with the idea that the 933W prophage has a relatively low threshold for induction, which may promote Stx2 production during infection.


Asunto(s)
Colifagos/metabolismo , Escherichia coli Enterohemorrágica/enzimología , Escherichia coli Enterohemorrágica/virología , Toxina Shiga II/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Colifagos/enzimología , Escherichia coli Enterohemorrágica/efectos de los fármacos , Escherichia coli Enterohemorrágica/genética , Kanamicina/farmacología , Lisogenia , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Virulencia
17.
J Bacteriol ; 190(14): 5063-74, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18502854

RESUMEN

Enterohemorrhagic and enteropathogenic Escherichia coli (EHEC and EPEC, respectively) strains represent a major global health problem. Their virulence is mediated by the concerted activity of an array of virulence factors including toxins, a type III protein secretion system (TTSS), pili, and others. We previously showed that EPEC O127 forms a group 4 capsule (G4C), and in this report we show that EHEC O157 also produces a G4C, whose assembly is dependent on the etp, etk, and wzy genes. We further show that at early time points postinfection, these G4Cs appear to mask surface structures including intimin and the TTSS. This masking inhibited the attachment of EPEC and EHEC to tissue-cultured epithelial cells, diminished their capacity to induce the formation of actin pedestals, and attenuated TTSS-mediated protein translocation into host cells. Importantly, we found that Ler, a positive regulator of intimin and TTSS genes, represses the expression of the capsule-related genes, including etp and etk. Thus, the expression of TTSS and G4C is conversely regulated and capsule production is diminished upon TTSS expression. Indeed, at later time points postinfection, the diminishing capsule no longer interferes with the activities of intimin and the TTSS. Notably, by using the rabbit infant model, we found that the EHEC G4C is required for efficient colonization of the rabbit large intestine. Taken together, our results suggest that temporal expression of the capsule, which is coordinated with that of the TTSS, is required for optimal EHEC colonization of the host intestine.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Cápsulas Bacterianas/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Escherichia coli O157/patogenicidad , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Factores de Virulencia/metabolismo , Animales , Adhesión Bacteriana , Cápsulas Bacterianas/ultraestructura , Línea Celular , Escherichia coli Enteropatógena/metabolismo , Escherichia coli Enteropatógena/ultraestructura , Células Epiteliales/microbiología , Eritrocitos/microbiología , Infecciones por Escherichia coli , Escherichia coli O157/metabolismo , Escherichia coli O157/ultraestructura , Proteínas de Escherichia coli/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Humanos , Intestino Grueso/microbiología , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica de Transmisión , Mutagénesis Insercional , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Conejos , Transactivadores/metabolismo
18.
Infect Immun ; 76(5): 1858-65, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18316380

RESUMEN

Enterohemorrhagic Escherichia coli (EHEC) is a noninvasive food-borne pathogen that colonizes the distal ileum and colon. Proteins encoded in the EHEC locus of enterocyte effacement (LEE) pathogenicity island are known to contribute to this pathogen's adherence to epithelial cells and intestinal colonization. The role of non-LEE-encoded proteins in these processes is not as clear. We found that the Z2053 gene (designated adfO here), a gene located in a cryptic EHEC prophage, exhibits similarity to adherence and/or colonization factor genes found in several other enteric pathogens. An EHEC adfO mutant exhibited marked reductions in adherence to HeLa cells and in the secretion of several proteins into the supernatant. YodA, one of these secreted proteins, was found to be a substrate of the EHEC pO157-encoded type 2 secretion system (T2SS). Both the T2SS and YodA proved to be essential for EHEC adherence to cultured HeLa cell monolayers. Using an infant rabbit model of infection, we found that the adfO mutation did not affect colonization but that the colonization of an etpC (T2SS) mutant was reduced approximately 5-fold. A strain deficient in YodA had a more severe colonization defect; however, this strain also exhibited a growth defect in vitro. Overall, our findings indicate that the pO157-encoded T2SS contributes to EHEC adherence and intestinal colonization and thus show that EHEC pathogenicity depends on type 2 secretion as well as type 3 secretion.


Asunto(s)
Adhesión Bacteriana/fisiología , Proteínas de la Membrana Bacteriana Externa/fisiología , Escherichia coli Enterohemorrágica/fisiología , Escherichia coli Enterohemorrágica/patogenicidad , Proteínas de Escherichia coli/fisiología , Intestinos/microbiología , Factores de Virulencia/fisiología , Animales , Adhesión Bacteriana/genética , Proteínas de la Membrana Bacteriana Externa/genética , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/crecimiento & desarrollo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Células HeLa , Humanos , Conejos , Virulencia , Factores de Virulencia/genética
19.
Infect Immun ; 76(11): 5072-81, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18794292

RESUMEN

Adherence of pathogenic Escherichia coli strains to intestinal epithelia is essential for infection. For enterohemorrhagic E. coli (EHEC) serotype O157:H7, we have previously demonstrated that multiple factors govern this pathogen's adherence to HeLa cells (A. G. Torres and J. B. Kaper, Infect. Immun. 71:4985-4995, 2003). One of these factors is CadA, a lysine decarboxylase, and this protein has been proposed to negatively regulate virulence in several enteric pathogens. In the case of EHEC strains, CadA modulates expression of the intimin, an outer membrane adhesin involved in pathogenesis. Here, we inactivated cadA in O157:H7 strain 86-24 to investigate the role of this gene in EHEC adhesion to tissue-cultured monolayers, global gene expression patterns, and colonization of the infant rabbit intestine. The cadA mutant did not possess lysine decarboxylation activity and was hyperadherent to tissue-cultured cells. Adherence of the cadA mutant was nearly twofold greater than that of the wild type, and the adherence phenotype was independent of pH, lysine, or cadaverine in the media. Additionally, complementation of the cadA defect reduced adherence back to wild-type levels, and it was found that the mutation affected the expression of the intimin protein. Disruption of the eae gene (intimin-encoding gene) in the cadA mutant significantly reduced its adherence to tissue-cultured cells. However, adherence of the cadA eae double mutant was greater than that of an 86-24 eae mutant, suggesting that the enhanced adherence of the cadA mutant is not entirely attributable to enhanced expression of intimin in this background. Gene array analysis revealed that the cadA mutation significantly altered EHEC gene expression patterns; expression of 1,332 genes was downregulated and that of 132 genes was upregulated in the mutant compared to the wild-type strain. Interestingly, the gene expression variation shows an EHEC-biased gene alteration including intergenic regions. Two putative adhesins, flagella and F9 fimbria, were upregulated in the cadA mutant, suggestive of their association with adherence in the absence of the Cad regulatory mechanism. In the infant rabbit model, the cadA mutant outcompeted the wild-type strain in the ileum but not in the cecum or mid-colon, raising the possibility that CadA negatively regulates EHEC pathogenicity in a tissue-specific fashion.


Asunto(s)
Adhesión Bacteriana/fisiología , Carboxiliasas/metabolismo , Infecciones por Escherichia coli/metabolismo , Escherichia coli O157/patogenicidad , Regulación Bacteriana de la Expresión Génica , Adhesinas Bacterianas/biosíntesis , Adhesinas Bacterianas/genética , Animales , Western Blotting , Carboxiliasas/genética , Infecciones por Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Expresión Génica , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Conejos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
Sci Rep ; 8(1): 8390, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29849063

RESUMEN

Vibrio cholerae O1 El Tor is an aquatic Gram-negative bacterium responsible for the current seventh pandemic of the diarrheal disease, cholera. A previous whole-genome analysis on V. cholerae O1 El Tor strains from the 2010 epidemic in Pakistan showed that all strains contained the V. cholerae pathogenicity island-1 and the accessory colonisation gene acfC (VC_0841). Here we show that acfC possess an open reading frame of 770 bp encoding a protein with a predicted size of 28 kDa, which shares high amino acid similarity with two adhesion proteins found in other enteropathogens, including Paa in serotype O45 porcine enteropathogenic Escherichia coli and PEB3 in Campylobacter jejuni. Using a defined acfC deletion mutant, we studied the specific role of AcfC in V. cholerae O1 El Tor environmental survival, colonisation and virulence in two infection model systems (Galleria mellonella and infant rabbits). Our results indicate that AcfC might be a periplasmic sulfate-binding protein that affects chemotaxis towards mucin and bacterial infectivity in the infant rabbit model of cholera. Overall, our findings suggest that AcfC contributes to the chemotactic response of WT V. cholerae and plays an important role in defining the overall distribution of the organism within the intestine.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiotaxis , Vibrio cholerae O1/metabolismo , Vibrio cholerae O1/patogenicidad , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Adhesión Celular , Células HT29 , Humanos , Intestino Delgado/microbiología , Mutación , Periplasma/metabolismo , Transporte de Proteínas , Conejos , Sulfatos/metabolismo , Vibrio cholerae O1/citología , Vibrio cholerae O1/genética , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA