RESUMEN
Tumors originating from thyroid follicular cells are the most common endocrine tumors, with rising incidence. Despite a generally good prognosis, up to 20% of patients experience recurrence and persistence, highlighting the need to identify the underlying molecular mechanisms. Dicer1 has been found to be altered in papillary thyroid cancer (PTC). Studies suggest that Dicer1 functions as a haploinsufficient tumor suppressor gene: partial loss promotes tumorigenesis, while complete loss prevents it. To investigate the effects of partial or total Dicer1 loss in PTC in vitro, we generated stable Dicer1 (+/-) cell lines from TPC1 using CRISPR-Cas9, though no Dicer1 (-/-) lines could be produced. Therefore, siRNA against Dicer1 was transfected into Dicer1 (+/-) cell lines to further decrease its expression. Transcriptomic analysis revealed changes in proliferation and cell locomotion. BrdU staining indicated a slow-down of the cell cycle, with fewer cells in S phase and more in G0-G1-phase. Additionally, transwell assays showed decreased invasion and migration after Dicer1 knockdown by siRNA. Moreover, Dicer1 overexpression led to decreased proliferation, invasion, and increased apoptosis. Our findings deepen the understanding of Dicer1's role in thyroid cancer, demonstrating that both complete elimination and overexpression of Dicer1 inhibit thyroid oncogenesis, highlighting Dicer1 as a promising target for novel therapeutic strategies.
Asunto(s)
Apoptosis , Proliferación Celular , ARN Helicasas DEAD-box , Ribonucleasa III , Neoplasias de la Tiroides , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Humanos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Carcinogénesis/genética , Movimiento Celular/genética , Ciclo Celular/genética , Dosificación de GenRESUMEN
Rationale: The alarmins IL-33 and HMGB1 (high mobility group box 1) contribute to type 2 inflammation and asthma pathogenesis. Objectives: To determine whether P2Y13-R (P2Y13 receptor), a purinergic GPCR (G protein-coupled receptor) and risk allele for asthma, regulates the release of IL-33 and HMGB1. Methods: Bronchial biopsy specimens were obtained from healthy subjects and subjects with asthma. Primary human airway epithelial cells (AECs), primary mouse AECs, or C57Bl/6 mice were inoculated with various aeroallergens or respiratory viruses, and the nuclear-to-cytoplasmic translocation and release of alarmins was measured by using immunohistochemistry and an ELISA. The role of P2Y13-R in AEC function and in the onset, progression, and exacerbation of experimental asthma was assessed by using pharmacological antagonists and mice with P2Y13-R gene deletion. Measurements and Main Results: Aeroallergen exposure induced the extracellular release of ADP and ATP, nucleotides that activate P2Y13-R. ATP, ADP, and aeroallergen (house dust mite, cockroach, or Alternaria antigen) or virus exposure induced the nuclear-to-cytoplasmic translocation and subsequent release of IL-33 and HMGB1, and this response was ablated by genetic deletion or pharmacological antagonism of P2Y13. In mice, prophylactic or therapeutic P2Y13-R blockade attenuated asthma onset and, critically, ablated the severity of a rhinovirus-associated exacerbation in a high-fidelity experimental model of chronic asthma. Moreover, P2Y13-R antagonism derepressed antiviral immunity, increasing IFN-λ production and decreasing viral copies in the lung. Conclusions: We identify P2Y13-R as a novel gatekeeper of the nuclear alarmins IL-33 and HMGB1 and demonstrate that the targeting of this GPCR via genetic deletion or treatment with a small-molecule antagonist protects against the onset and exacerbations of experimental asthma.
Asunto(s)
Asma/inmunología , Proteína HMGB1/metabolismo , Interleucina-33/metabolismo , Receptores Purinérgicos P2/metabolismo , Animales , Asma/metabolismo , Asma/fisiopatología , Biomarcadores/metabolismo , Estudios de Casos y Controles , Progresión de la Enfermedad , Ensayo de Inmunoadsorción Enzimática , Células Epiteliales/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BLRESUMEN
Uridine diphosphate (UDP)-activated purinergic receptor P2Y6 (P2Y6R) plays a crucial role in controlling energy balance through central mechanisms. However, P2Y6R's roles in peripheral tissues regulating energy and glucose homeostasis remain unexplored. Here, we report the surprising finding that adipocyte-specific deletion of P2Y6R protects mice from diet-induced obesity, improving glucose tolerance and insulin sensitivity with reduced systemic inflammation. These changes were associated with reduced JNK signaling and enhanced expression and activity of PPARα affecting downstream PGC1α levels leading to beiging of white fat. In contrast, P2Y6R deletion in skeletal muscle reduced glucose uptake, resulting in impaired glucose homeostasis. Interestingly, whole body P2Y6R knockout mice showed metabolic improvements similar to those observed with mice lacking P2Y6R only in adipocytes. Our findings provide compelling evidence that P2Y6R antagonists may prove useful for the treatment of obesity and type 2 diabetes.
Asunto(s)
Adipocitos/metabolismo , Glucosa/metabolismo , Homeostasis , Receptores Purinérgicos P2/metabolismo , Adipocitos/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Biomarcadores , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Metabolismo Energético , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/etiología , Inflamación/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Obesidad/etiología , Obesidad/metabolismo , Receptores Purinérgicos P2/genéticaRESUMEN
OBJECTIVE: Nucleotides are danger signals that activate inflammatory responses via binding P2 receptors. The nucleoside triphosphate diphosphohydrolase-8 (NTPDase8) is an ectonucleotidase that hydrolyses P2 receptor ligands. We investigated the role of NTPDase8 in intestinal inflammation. DESIGN: We generated NTPDase8-deficient (Entpd8-/-) mice to define the role of NTPDase8 in the dextran sodium sulfate (DSS) colitis model. To assess inflammation, colons were collected and analysed by histopathology, reverse transcriptase-quantitative real-time PCR (RT-qPCR) and immunohistochemistry. P2 receptor expression was analysed by RT-qPCR on primary intestinal epithelium and NTPDase8 activity by histochemistry. The role of intestinal P2Y6 receptors was assessed by bone marrow transplantation experiments and with a P2Y6 receptor antagonist. RESULTS: NTPDase8 is the dominant enzyme responsible for the hydrolysis of nucleotides in the lumen of the colon. Compared with wild-type (WT) control mice, the colon of Entpd8-/- mice treated with DSS displayed significantly more histological damage, immune cell infiltration, apoptosis and increased expression of several proinflammatory cytokines. P2Y6 was the dominant P2Y receptor expressed at the mRNA level by the colonic epithelia. Irradiated P2ry6-/- mice transplanted with WT bone marrow were fully protected from DSS-induced intestinal inflammation. In agreement, the daily intrarectal injection of a P2Y6 antagonist protected mice from DSS-induced intestinal inflammation in a dose-dependent manner. Finally, human intestinal epithelial cells express NTPDase8 and P2Y6 similarly as in mice. CONCLUSION: NTPDase8 protects the intestine from inflammation most probably by limiting the activation of P2Y6 receptors in colonic epithelial cells. This may provide a novel therapeutic strategy for the treatment of inflammatory bowel disease.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Colitis/metabolismo , Isotiocianatos/farmacología , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismo , Tiourea/análogos & derivados , Adenosina Trifosfatasas/genética , Animales , Apoptosis , Trasplante de Médula Ósea , Colon/metabolismo , Citocinas/metabolismo , Sulfato de Dextran/farmacología , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Humanos , Inmunohistoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tiourea/farmacologíaRESUMEN
Microglia sense their environment using an array of membrane receptors. While P2Y12 receptors are known to play a key role in targeting directed motility of microglial processes to sites of damage where ATP/ADP is released, little is known about the role of P2Y13 , which transcriptome data suggest is the second most expressed neurotransmitter receptor in microglia. We show that, in patch-clamp recordings in acute brain slices from mice lacking P2Y13 receptors, the THIK-1 K+ current density evoked by ADP activating P2Y12 receptors was increased by ~50%. This increase suggested that the P2Y12 -dependent chemotaxis response should be potentiated; however, the time needed for P2Y12 -mediated convergence of microglial processes onto an ADP-filled pipette or to a laser ablation was longer in the P2Y13 KO. Anatomical analysis showed that the density of microglia was unchanged, but that they were less ramified with a shorter process length in the P2Y13 KO. Thus, chemotactic processes had to grow further and so arrived later at the target, and brain surveillance was reduced by ~30% in the knock-out. Blocking P2Y12 receptors in brain slices from P2Y13 KO mice did not affect surveillance, demonstrating that tonic activation of these high-affinity receptors is not needed for surveillance. Strikingly, baseline interleukin-1ß release was increased fivefold while release evoked by LPS and ATP was not affected in the P2Y13 KO, and microglia in intact P2Y13 KO brains were not detectably activated. Thus, P2Y13 receptors play a role different from that of their close relative P2Y12 in regulating microglial morphology and function.
Asunto(s)
Interleucina-1beta/metabolismo , Microglía/metabolismo , Microglía/patología , Receptores Purinérgicos P2/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Movimiento Celular/fisiología , Quimiotaxis/fisiologíaRESUMEN
Protein carbamylation by cyanate is a post-translational modification associated with several (patho)physiological conditions, including cardiovascular disorders. However, the biochemical pathways leading to protein carbamylation are incompletely characterized. This work demonstrates that the heme protein myeloperoxidase (MPO), which is secreted at high concentrations at inflammatory sites from stimulated neutrophils and monocytes, is able to catalyze the two-electron oxidation of cyanide to cyanate and promote the carbamylation of taurine, lysine, and low-density lipoproteins. We probed the role of cyanide as both electron donor and low-spin ligand by pre-steady-state and steady-state kinetic analyses and analyzed reaction products by MS. Moreover, we present two further pathways of carbamylation that involve reaction products of MPO, namely oxidation of cyanide by hypochlorous acid and reaction of thiocyanate with chloramines. Finally, using an in vivo approach with mice on a high-fat diet and carrying the human MPO gene, we found that during chronic exposure to cyanide, mimicking exposure to pollution and smoking, MPO promotes protein-bound accumulation of carbamyllysine (homocitrulline) in atheroma plaque, demonstrating a link between cyanide exposure and atheroma. In summary, our findings indicate that cyanide is a substrate for MPO and suggest an additional pathway for in vivo cyanate formation and protein carbamylation that involves MPO either directly or via its reaction products hypochlorous acid or chloramines. They also suggest that chronic cyanide exposure could promote the accumulation of carbamylated proteins in atherosclerotic plaques.
Asunto(s)
Cianatos , Cianuros , Peroxidasa , Placa Aterosclerótica/enzimología , Carbamilación de Proteína , Animales , Citrulina/análogos & derivados , Citrulina/química , Citrulina/genética , Citrulina/metabolismo , Cianatos/química , Cianatos/metabolismo , Cianuros/química , Cianuros/metabolismo , Humanos , Ratones , Ratones Noqueados , Oxidación-Reducción , Peroxidasa/química , Peroxidasa/genética , Peroxidasa/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/patologíaRESUMEN
OBJECTIVE: Myogenic tone (MT) of resistance arteries ensures autoregulation of blood flow in organs and relies on the intrinsic property of smooth muscle to contract in response to stretch. Nucleotides released by mechanical strain on cells are responsible for pleiotropic vascular effects, including vasoconstriction. Here, we evaluated the contribution of extracellular nucleotides to MT. APPROACH AND RESULTS: We measured MT and the associated pathway in mouse mesenteric resistance arteries using arteriography for small arteries and molecular biology. Of the P2 receptors in mouse mesenteric resistance arteries, mRNA expression of P2X1 and P2Y6 was dominant. P2Y6 fully sustained UDP/UTP-induced contraction (abrogated in P2ry6(-/-) arteries). Preventing nucleotide hydrolysis with the ectonucleotidase inhibitor ARL67156 enhanced pressure-induced MT by 20%, whereas P2Y6 receptor blockade blunted MT in mouse mesenteric resistance arteries and human subcutaneous arteries. Despite normal hemodynamic parameters, P2ry6(-/-) mice were protected against MT elevation in myocardial infarction-induced heart failure. Although both P2Y6 and P2Y2 receptors contributed to calcium mobilization, P2Y6 activation was mandatory for RhoA-GTP binding, myosin light chain, P42-P44, and c-Jun N-terminal kinase phosphorylation in arterial smooth muscle cells. In accordance with the opening of a nucleotide conduit in pressurized arteries, MT was altered by hemichannel pharmacological inhibitors and impaired in Cx43(+/-) and P2rx7(-/-) mesenteric resistance arteries. CONCLUSIONS: Signaling through P2 nucleotide receptors contributes to MT. This mechanism encompasses the release of nucleotides coupled to specific autocrine/paracrine activation of the uracil nucleotide P2Y6 receptor and may contribute to impaired tissue perfusion in cardiovascular diseases.
Asunto(s)
Arteriolas/metabolismo , Mesenterio/irrigación sanguínea , Receptores Purinérgicos P2/metabolismo , Vasoconstricción , Adenosina Trifosfatasas/metabolismo , Animales , Arteriolas/efectos de los fármacos , Arteriolas/fisiopatología , Presión Sanguínea , Señalización del Calcio , Células Cultivadas , Conexina 43/deficiencia , Conexina 43/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Genotipo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Hidrólisis , Mecanotransducción Celular , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Músculo Liso Vascular/metabolismo , Infarto del Miocardio/complicaciones , Miocitos del Músculo Liso/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Fenotipo , Fosforilación , Agonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2/deficiencia , Receptores Purinérgicos P2/efectos de los fármacos , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2X7/deficiencia , Receptores Purinérgicos P2X7/genética , Uridina Difosfato/farmacología , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoARESUMEN
Nucleotides are released in the heart under pathological conditions, but little is known about their contribution to cardiac inflammation. The present study defines the P2Y4 nucleotide receptor, expressed on cardiac microvascular endothelial cells and involved in postnatal heart development, as an important regulator of the inflammatory response to cardiac ischemia. P2Y4-null mice displayed smaller infarcts in the left descending artery ligation model, as well as reduced neutrophil infiltration and fibrosis. Gene profiling identified inter alia endothelin-1 (ET-1) as one of the target genes of P2Y4 in ischemic heart. The reduced level of ET-1 was correlated with reduction of microvascular hyperpermeability, neutrophil infiltration, and endothelial adhesion molecule expression, and it could be explained by the decreased number of endothelial cells in P2Y4-null mice. Expression analysis of metalloproteinases and their tissue inhibitors in ischemic heart revealed reduced expression of matrix metalloproteinase (MMP)-9, reported to be potentially regulated by ET-1, and MMP-8, considered as neutrophil collagenase, as well as reduction of tissue inhibitor of MMP-1 and tissue inhibitor of MMP-4 in P2Y4-null mice. Reduction of cardiac permeability and neutrophil infiltration was also observed in P2Y4-null mice in LPS-induced inflammation model. Protection against infarction resulting from loss of P2Y4 brings new therapeutic perspectives for cardiac ischemia and remodeling.
Asunto(s)
Endotelina-1/biosíntesis , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Receptores Purinérgicos P2/deficiencia , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ensayo de Inmunoadsorción Enzimática , Femenino , Inmunohistoquímica , Ratones , Ratones Noqueados , Infarto del Miocardio/fisiopatología , Reacción en Cadena en Tiempo Real de la Polimerasa , TranscriptomaRESUMEN
Extracellular pyrimidines activate P2Y receptors on both smooth muscle cells and endothelial cells, leading to vasoconstriction and relaxation respectively. The aim of this study was to utilize P2Y knock-out (KO) mice to determine which P2Y receptor subtype are responsible for the contraction and relaxation in the coronary circulation and to establish whether P2Y receptors have different functions along the mouse coronary vascular tree. We tested stable pyrimidine analogues on isolated coronary arteries from P2Y2 and P2Y6 receptor KO mice in a myograph setup. In larger diameter segments of the left descending coronary artery (LAD) (lumen diameter~150µm) P2Y6 is the predominant contractile receptor for both UTP (uridine triphosphate) and UDP (uridine diphosphate) induced contraction. In contrast, P2Y2 receptors mediate endothelial-dependent relaxation. However, in smaller diameter LAD segments (lumen diameter~50µm), the situation is opposite, with P2Y2 being the contractile receptor and P2Y6 functioning as a relaxant receptor along with P2Y2. Immunohistochemistry was used to confirm smooth muscle and endothelial localization of the receptors. In vivo measurements of blood pressure in WT mice revealed a biphasic response to the stable analogue UDPßS. Based on the changes in P2Y receptor functionality along the mouse coronary arterial vasculature, we propose that UTP can act as a vasodilator downstream of its release, after being degraded to UDP, without affecting the contractile pyrimidine receptors. We also propose a model, showing physiological relevance for the changes in purinergic receptor functionality along the mouse coronary vascular tree.
Asunto(s)
Vasos Coronarios/metabolismo , Pirimidinas/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Receptores Purinérgicos P2/metabolismo , Animales , Presión Sanguínea/efectos de los fármacos , Endotelio/metabolismo , Femenino , Expresión Génica , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Modelos Biológicos , Miocitos del Músculo Liso/fisiología , Pirimidinas/farmacología , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y2/genética , Uridina Difosfato/metabolismo , Uridina Difosfato/farmacología , Vasoconstricción/efectos de los fármacosRESUMEN
Müller cells, the primary macroglia of the retina, support various functions of retinal ganglion cells (RGCs). Here, we demonstrate a nucleotide-mediated communication between these two types of cells, by which Müller cells control neurite outgrowth of RGCs by activation of P2 receptors such as P2Y6 . Cultured mouse RGCs had significantly enhanced neurite outgrowth when cultured with either cultured mouse Müller cells or conditioned medium derived from Müller cells, and this was completely inhibited by the nucleotide-degrading enzyme, apyrase. This increase in outgrowth was mimicked by exogenously applied nucleotides such as ATP, uridine triphosphate, and uridine diphosphate. Pharmacological and genetic analysis revealed that P2Y6 receptor in RGCs was responsible for the increased neurite outgrowth. P2Y6 receptor was expressed in the ganglion cell layer of the retina and in RGC primary cultures. High performance liquid chromatography has revealed that Müller cells constitutively release uridine triphosphate, which is immediately metabolized into uridine diphosphate, an endogenous agonist for P2Y6 receptor. In the in vitro ocular hypertension model (i.e., glaucoma model), neurite outgrowth in RGCs was significantly reduced, which was associated with a decrease in P2Y6 receptors. Taken together, Müller cells control neurite outgrowth of RGCs by activating P2 receptors such as P2Y6 receptor, and the receptor expression level might be down-regulated in glaucoma. Müller cells support various functions of retina including those of retinal ganglion cells (RGCs). Here, we report an importance of nucleotide-mediated communication between these two types of cells. Müller cells were found to release uridine diphosphate (UTD), uridine triphosphate (UTP), and activate P2Y6 receptors in RGCs, which was essential for neurite outgrowth of RGCs. In addition, P2Y6 receptors in RGCs were reduced in a glaucoma model in vitro, suggesting an involvement of their dysfunction in the pathogenesis of glaucoma.
RESUMEN
Purinergic signaling mediates many cellular processes, including embryonic development and regulation of endocrine signaling. The ADP P2Y13 receptor is known to regulate bone and stem cells activities, although relatively little is known about its role in bone development. In this study we demonstrate, using contemporary techniques, that deletion of the P2Y13 receptor results in an age-dependent skeletal phenotype that is governed by changes in phosphate metabolism and hormone levels. Neonatal and postnatal (2 wk) P2Y13 receptor-knockout (KO) mice were indistinguishable from their wild-type (WT) littermate controls. A clear bone phenotype was observed in young (4-wk-old) KO mice compared WT controls, with 14% more trabecular bone, 35% more osteoblasts, 73% fewer osteoclasts, and a 17% thicker growth plate. Mature (>10 wk of age) KO mice showed the opposite bone phenotype, with 14% less trabecular bone, 22% fewer osteoblasts, and 10% thinner growth plate. This age-dependent phenotype correlated with serum fibroblast growth factor-23 (FGF-23) and phosphorus levels that were 65 and 16% higher, respectively, in young KO mice but remained unchanged in mature mice. These findings provide novel insights for the role of the P2Y13 receptor in skeletal development via coordination with hormonal regulators of phosphate homeostasis.
Asunto(s)
Desarrollo Óseo , Huesos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Fosfatos/metabolismo , Receptores Purinérgicos P2/metabolismo , Animales , Animales Recién Nacidos , Densidad Ósea , Resorción Ósea , Diferenciación Celular , Factor-23 de Crecimiento de Fibroblastos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/citología , Osteoclastos/citología , Fenotipo , Receptores Purinérgicos P2/genética , Transducción de Señal , Tibia/patología , Factores de Tiempo , Microtomografía por Rayos XRESUMEN
Accumulating evidence indicates that extracellular nucleotides, signaling through purinergic receptors, play a significant role in bone remodeling. Mesenchymal stem cells (MSCs) express functional P2Y receptors whose expression level is regulated during osteoblast or adipocyte differentiation. P2Y13 -deficient mice were previously shown to exhibit a decreased bone turnover associated with a reduction in the number of both osteoblasts and osteoclasts on the bone surfaces. We therefore examined whether P2Y13 R activation was involved in the osteogenic differentiation of MSC. Our study demonstrated that ADP stimulation of P2Y13 R(+/+) (but not P2Y13 R(-/-) ) adherent bone marrow stromal cells (BMSCs) increased significantly the formation of alkaline phosphatase-colony-forming units (CFU-ALP) as well as the expression of osteoblastic markers (osterix, alkaline phosphatase, and collagen I) involved in the maturation of preosteoblasts into osteoblasts. The number of CFU-ALP obtained from P2Y13 R(-/-) BMSC and the level of osteoblastic gene expression after osteogenic stimulation were strongly reduced compared to those obtained in wild-type cell cultures. In contrast, when P2Y13 R(-/-) BMSCs were incubated in an adipogenic medium, the number of adipocytes generated and the level of adipogenic gene expression (PPARγ2 and Adipsin) were higher than those obtained in P2Y13 R(+/+) MSC. Interestingly, we observed a significant increase of the number of bone marrow adipocytes in tibia of P2Y13 R(-/-) mice. In conclusion, our findings indicate that the P2Y13 R plays an important role in the balance of osteoblast and adipocyte terminal differentiation of bone marrow progenitors. Therefore, the P2Y13 receptor can be considered as a new pharmacological target for the treatment of bone diseases like osteoporosis. STEM Cells 2013;31:2747-2758.
Asunto(s)
Adipocitos/citología , Células Madre Mesenquimatosas/metabolismo , Osteoblastos/citología , Receptores Purinérgicos P2/fisiología , Adipocitos/metabolismo , Animales , Diferenciación Celular/fisiología , Femenino , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoblastos/metabolismo , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2/metabolismoRESUMEN
Gastrointestinal symptoms have a major impact on the quality of life and are becoming more prevalent in the western population. The enteric nervous system (ENS) is pivotal in regulating gastrointestinal functions. Purinergic neurotransmission conveys a range of short and long-term cellular effects. This study investigated the role of the ADP-sensitive P2Y13 receptor in lipid-induced enteric neuropathy. Littermate P2Y13 (+/+) and P2Y13 (-/-) mice were fed with either a normal diet (ND) or high-fat diet (HFD) for 6 months. The intestines were analysed for morphological changes as well as neuronal numbers and relative numbers of vasoactive intestinal peptide (VIP)- and neuronal nitric oxide synthase (nNOS)-containing neurons. Primary cultures of myenteric neurons from the small intestine of P2Y13 (+/+) or P2Y13 (-/-) mice were exposed to palmitic acid (PA), the P2Y13 receptor agonist 2meSADP and the antagonist MRS2211. Neuronal survival and relative number of VIP-containing neurons were analysed. In P2Y13 (+/+), but not in P2Y13 (-/-) mice, HFD caused a significant loss of myenteric neurons in both ileum and colon. In colon, the relative numbers of VIP-containing submucous neurons were significantly lower in the P2Y13 (-/-) mice compared with P2Y13 (+/+) mice. The relative numbers of nNOS-containing submucous colonic neurons increased in P2Y13 (+/+) HFD mice. HFD also caused ileal mucosal thinning in P2Y13 (+/+) and P2Y13 (-/-) mice, compared to ND fed mice. In vitro PA exposure caused loss of myenteric neurons from P2Y13 (+/+) mice while neurons from P2Y13 (-/-) mice were unaffected. Presence of MRS2211 prevented PA-induced neuronal loss in cultures from P2Y13 (+/+) mice. 2meSADP caused no change in survival of cultured neurons. P2Y13 receptor activation is of crucial importance in mediating the HFD- and PA-induced myenteric neuronal loss in mice. In addition, the results indicate a constitutive activation of enteric neuronal apoptosis by way of P2Y13 receptor stimulation.
Asunto(s)
Dieta Alta en Grasa/efectos adversos , Sistema Nervioso Entérico/metabolismo , Neuronas/metabolismo , Ácido Palmítico/toxicidad , Receptores Purinérgicos P2/deficiencia , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plexo Mientérico/efectos de los fármacos , Plexo Mientérico/metabolismo , Plexo Mientérico/patología , Neuronas/efectos de los fármacos , Técnicas de Cultivo de ÓrganosRESUMEN
BACKGROUND & AIMS: During progression of liver disease, inflammation affects survival of hepatocytes. Endogenous release of adenosine triphosphate (ATP) in the liver activates purinergic P2 receptors (P2R), which regulate inflammatory responses, but little is known about the roles of these processes in the development of acute hepatitis. METHODS: We induced acute hepatitis in C57BL/6 mice by intravenous injection of concanavalin A and then analyzed liver concentrations of ATP and expression of P2R. We assessed P2Y(2)R(-/-) mice and C57BL/6 wild-type mice injected with suramin, a pharmacologic inhibitor of P2YR. Toxic liver failure was induced in mice by intraperitoneal injection of acetaminophen. Hepatocyte-specific functions of P2R signaling were analyzed in primary mouse hepatocytes. RESULTS: Induction of acute hepatitis in wild-type C57BL/6 mice released large amounts of ATP from livers and induced expression of P2Y(2)R. Liver damage and necrosis were greatly reduced in P2Y(2)R(-/-) mice and C57BL/6 mice given injections of suramin. Acetaminophen-induced liver damage was reduced in P2Y(2)R(-/-) mice. Analysis of liver-infiltrating immune cells during acute hepatitis revealed that expression of P2Y(2)R in bone marrow-derived cells was required for liver infiltration by neutrophils and subsequent liver damage. Hepatic expression of P2Y(2)R interfered with expression of genes that regulate cell survival, and promoted tumor necrosis factor-α-mediated cell death, in a cell-autonomous manner. CONCLUSIONS: Extracellular ATP and P2Y(2)R have cell-type specific, but synergistic functions during liver damage that regulate cellular immune responses and promote hepatocyte death. Reagents designed to target P2Y(2)R might be developed to treat inflammatory liver disease.
Asunto(s)
Apoptosis/fisiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Hepatocitos/patología , Infiltración Neutrófila/fisiología , Receptores Purinérgicos P2Y2/fisiología , Enfermedad Aguda , Adenosina Trifosfato/metabolismo , Animales , Movimiento Celular/fisiología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Concanavalina A/efectos adversos , Modelos Animales de Enfermedad , Hepatocitos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Purinérgicos P2Y2/deficiencia , Receptores Purinérgicos P2Y2/efectos de los fármacos , Suramina/farmacologíaRESUMEN
During a systemic inflammatory response endothelial-expressed surface molecules have been strongly implicated in orchestrating immune responses. Previous studies have shown enhanced extracellular nucleotide release during acute inflammatory conditions. Therefore, we hypothesized that endothelial nucleotide receptors could play a role in vascular inflammation. To address this hypothesis, we performed screening experiments and exposed human microvascular endothelia to inflammatory stimuli, followed by measurements of P2Y or P2X transcriptional responses. These studies showed a selective induction of the P2Y(6) receptor (> 4-fold at 24 hours). Moreover, studies that used real-time reverse transcription-polymerase chain reaction, Western blot analysis, or immunofluorescence confirmed time- and dose-dependent induction of P2Y(6) with tumor necrosis factor α or Lipopolysaccharide (LPS) stimulation in vitro and in vivo. Studies that used MRS 2578 as P2Y(6) receptor antagonist showed attenuated nuclear factor κB reporter activity and proinflammatory gene expression in human microvascular endothelial cells in vitro. Moreover, pharmacologic or genetic in vivo studies showed attenuated inflammatory responses in P2Y(6)(-/-) mice or after P2Y(6) antagonist treatment during LPS-induced vascular inflammation. These studies show an important contribution of P2Y(6) signaling in enhancing vascular inflammation during systemic LPS challenge and implicate the P2Y(6) receptor as a therapeutic target during systemic inflammatory responses.
Asunto(s)
Endotelio Vascular/patología , Inflamación/etiología , Receptores Purinérgicos P2/genética , Activación Transcripcional , Animales , Células Endoteliales , Perfilación de la Expresión Génica , Humanos , Lipopolisacáridos/farmacología , Ratones , Ratones Noqueados , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X/genética , Receptores Purinérgicos P2Y/genéticaRESUMEN
The clearance of tissue debris by microglia is a crucial component of maintaining brain homeostasis. Microglia continuously survey the brain parenchyma and utilize extracellular nucleotides to trigger the initiation of their dynamic responses. Extracellular uridine diphosphate (UDP), which leaks or is released from damaged neurons, has been reported to stimulate the phagocytotic activity of microglia through P2Y(6) receptor activation. However, the intracellular mechanisms underlying microglial P2Y(6) receptor signals have not been identified. In this study, we demonstrated that UDP stimulation induced immediate and long-lasting dynamic movements in the cell membrane. After 60 min of UDP stimulation, there was an upregulation in the number of large vacuoles formed in the cell that incorporate extracellular fluorescent-labeled dextran, which indicates microglial macropinocytosis. In addition, UDP-induced vacuole formation and continuous membrane motility were suppressed by the protein kinase D (PKD) inhibitors, Gö6976 and CID755673, unlike Gö6983, which is far less sensitive to PKD. The inhibition of PKD also reduced UDP-induced incorporation of fluorescent-labeled dextran and soluble ß-amyloid and phagocytosis of microspheres. UDP induced rapid phosphorylation and membrane translocation of PKD, which was abrogated by the inhibition of protein kinase C (PKC) with Gö6983. However, Gö6983 failed to suppress UDP-induced incorporation of microspheres. Finally, we found that inhibition of PKD by CID755673 significantly suppressed UDP-induced engulfment of IgG-opsonized microspheres. These data suggest that a PKC-independent function of PKD regulates UDP-induced membrane movement and contributes to the increased uptake of extracellular fluid and microspheres in microglia.
Asunto(s)
Microglía/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Pinocitosis/efectos de los fármacos , Proteína Quinasa C/metabolismo , Uridina Difosfato/farmacología , Animales , Azepinas/farmacología , Benzofuranos/farmacología , Células Cultivadas , Microglía/citología , Microglía/metabolismo , Fagocitosis/fisiología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Pinocitosis/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Ratas , Transducción de Señal/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/metabolismoRESUMEN
Communication between endothelial cells and cardiomyocytes is critical for cardiac development and regeneration. However the mechanisms involved in these endothelial-cardiomyocyte interactions remain poorly understood. Nucleotides are released within the heart, especially under ischemia or pressure overload. The function of P2Y nucleotide receptors in cardiac development has never been investigated. Here we show that adult P2Y(4)-null mice display microcardia. P2Y(4) nucleotide receptor is expressed in cardiac endothelial cells but not in cardiomyocytes. Loss of P2Y(4) in cardiac endothelial cells strongly inhibits their growth, migration and PDGF-B secretion in response to UTP. Proliferation of microvessels and cardiomyocytes is reduced in P2Y(4)-null hearts early after birth, resulting in reduced heart growth. Our study uncovers mouse P2Y(4) receptor as an essential regulator of cardiac endothelial cell function, and illustrates the involvement of endothelial-cardiomyocyte interactions in post-natal heart development. We also detected P2Y(4) expression in human cardiac microvessels. P2Y(4) receptor could constitute a therapeutic target to regulate cardiac remodelling and post-ischemic revascularisation.
Asunto(s)
Corazón/crecimiento & desarrollo , Receptores Purinérgicos P2/fisiología , Animales , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Humanos , Inmunohistoquímica , Ratones , Ratones Noqueados , Neovascularización Fisiológica , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Nucleotides released within the heart under pathological conditions can be involved in cardioprotection or cardiac fibrosis through the activation purinergic P2Y(2) and P2Y(6) receptors, respectively. We previously demonstrated that adult P2Y(4)-null mice display a microcardia phenotype related to a cardiac angiogenic defect. To evaluate the functional consequences of this defect, we performed here a combination of cardiac monitoring and exercise tests. We investigated the exercise capacity of P2Y(4) wild-type and P2Y(4)-null mice in forced swimming and running tests. Analysis of their stress, locomotion, and resignation was realized in open field, black and white box, and tail suspension experiments. Exercise-induced cardiac hypertrophy was evaluated after repeated and prolonged exercise in P2Y(4) wild-type and P2Y(4)-null hearts. We showed that P2Y(4)-null mice have a lower exercise capacity in both swimming and treadmill tests. This was not related to decreased motivation or increased stress, since open field, white and black box, and mouse tail suspension tests gave comparable results in P2Y(4) wild-type and P2Y(4)-null mice. Heart rate and blood pressure rose normally in P2Y(4)-null swimming mice equipped with a telemetric implant. On the contrary, we observed a delayed recovery of postexercise blood pressure after exercise in P2Y(4)-null mice. The heart rate increment in response to catecholamines was also similar in P2Y(4) wild-type and P2Y(4)-null implanted mice, which is consistent with a similar level of cardiac ß-receptor expression. Interestingly, the heart of P2Y(4)-null mice displayed a reduced sympathetic innervation associated with a decreased norepinephrine level. We also demonstrated that exercise-induced cardiac hypertrophy was lower in P2Y(4)-null mice after repeated and prolonged exercise. This was associated with a lower increase in cardiomyocyte size and microvessel density. In conclusion, besides its role in cardiac development, P2Y(4) receptor could constitute an important regulator of acute and chronic response to exercise.
Asunto(s)
Cardiomegalia Inducida por el Ejercicio/genética , Cardiomegalia/prevención & control , Tolerancia al Ejercicio/genética , Eliminación de Gen , Corazón/fisiopatología , Miocardio/metabolismo , Receptores Purinérgicos P2/deficiencia , Natación , Fibras Adrenérgicas/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Conducta Animal , Presión Sanguínea/genética , Monitoreo Ambulatorio de la Presión Arterial , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Catecolaminas/metabolismo , Modelos Animales de Enfermedad , Dobutamina/farmacología , Prueba de Esfuerzo , Tolerancia al Ejercicio/efectos de los fármacos , Genotipo , Corazón/inervación , Frecuencia Cardíaca/genética , Hipotermia/genética , Hipotermia/metabolismo , Hipotermia/fisiopatología , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Fenotipo , Receptores Adrenérgicos beta/efectos de los fármacos , Receptores Adrenérgicos beta/metabolismo , Receptores Purinérgicos P2/genética , Recuperación de la Función , Telemetría , Factores de TiempoRESUMEN
The effects of ADP on the biology of dendritic cells have been studied much less than those of ATP or adenosine. In this study, we showed that adenosine-5'-O-(2-thiodiphosphate) (ADPßS) induced intracellular Ca(2+) transients in murine dendritic cells (DCs). This effect was abolished by AR-C69931MX, a dual P2Y(12) and P2Y(13) receptor antagonist. RT-PCR experiments revealed the expression of both P2Y(12) and P2Y(13) mRNA in DCs. The Ca(2+) response to ADPßS was maintained in P2Y(13)-deficient DCs, whereas it was abolished completely in P2Y(12)(-/-) DCs. ADPßS stimulated FITC-dextran and OVA capture in murine DCs through macropinocytosis, and this effect was abolished in P2Y(12)(-/-) DCs. ADPßS had a similar effect on FITC-dextran uptake by human monocyte-derived DCs. OVA loading in the presence of ADPßS increased the capacity of DCs to stimulate OVA-specific T cells, whereas ADPßS had no effect on the ability of DCs to stimulate allogeneic T cells. Moreover, after immunization against OVA, the serum level of anti-OVA IgG1 was significantly lower in P2Y(12)(-/-) mice than that in wild-type controls. In conclusion, we have shown that the P2Y(12) receptor is expressed in murine DCs and that its activation increased Ag endocytosis by DCs with subsequent enhancement of specific T cell activation.
Asunto(s)
Adenosina Difosfato/análogos & derivados , Células Dendríticas/inmunología , Receptores Purinérgicos P2Y12/inmunología , Tionucleótidos/inmunología , Adenosina Difosfato/inmunología , Adenosina Difosfato/metabolismo , Animales , Presentación de Antígeno/inmunología , Células Dendríticas/metabolismo , Endocitosis/inmunología , Humanos , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Purinérgicos P2Y12/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Linfocitos T/inmunología , Tionucleótidos/metabolismoRESUMEN
ATP has been defined as a key mediator of asthma. In this study, we evaluated lung inflammation in mice deficient for the P2Y(2) purinergic receptor. We observed that eosinophil accumulation, a distinctive feature of lung allergic inflammation, was defective in OVA-treated P2Y(2)-deficient mice compared with OVA-treated wild type animals. Interestingly, the upregulation of VCAM-1 was lower on lung endothelial cells of OVA-treated P2Y(2)(-/-) mice compared with OVA-treated wild type animals. Adhesion assays demonstrated that the action of UTP on leukocyte adhesion through the regulation of endothelial VCAM-1 was abolished in P2Y(2)-deficient lung endothelial cells. Additionally, the level of soluble VCAM-1, reported as an inducer of eosinophil chemotaxis, was strongly reduced in the bronchoalveolar lavage fluid (BALF) of P2Y(2)-deficient mice. In contrast, we observed comparable infiltration of macrophages and neutrophils in the BALF of LPS-aerosolized P2Y(2)(+/+) and P2Y(2)(-/-) mice. This difference could be related to the much lower level of ATP in the BALF of LPS-treated mice compared with OVA-treated mice. Our data define P2Y(2) as a regulator of membrane and soluble forms of VCAM-1 and eosinophil accumulation during lung inflammation.