Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nano Lett ; 24(1): 180-186, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150551

RESUMEN

We investigated the Kondo effect of cobalt(II)-5-15-bis(4'-bromophenyl)-10,20-bis(4'-iodophenyl)porphyrin (CoTPPBr2I2) molecules on Au(111) with low-temperature scanning tunneling microscopy under ultrahigh vacuum conditions. The molecules exhibit four adsorption configurations at the top and bridge sites of the surface with different molecular orientations. The Kondo resonance shows extraordinary sensitivity to the adsorption configuration. By switching the molecule between different configurations, the Kondo temperature is varied over a wide range from ≈8 up to ≈250 K. Density functional theory calculations reveal that changes of the adsorption configuration lead to distinct variations of the hybridization between the molecule and the surface. Furthermore, we show that surface reconstruction plays a significant role for the molecular Kondo effect.

2.
Phys Chem Chem Phys ; 26(20): 14991-15004, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38741574

RESUMEN

We present a first-principles theoretical study of the atomistic footprints in the valence electron energy loss spectroscopy (EELS) of nanometer-size metallic particles. Charge density maps of excited plasmons and EEL spectra for specific electron paths through a nanoparticle (Na380 atom cluster) are modeled using ab initio calculations within time-dependent density functional theory. Our findings unveil the atomic-scale sensitivity of EELS within this low-energy spectral range. Whereas localized surface plasmons (LSPs) are particularly sensitive to the atomistic structure of the surface probed by the electron beam, confined bulk plasmons (CBPs) reveal quantum size effects within the nanoparticle's volume. Moreover, we prove that classical local dielectric theories mimicking the atomistic structure of the nanoparticles reproduce the LSP trends observed in quantum calculations, but fall short in describing the CBP behavior observed under different electron trajectories.

3.
Phys Rev Lett ; 129(3): 037701, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35905343

RESUMEN

Junctions composed of two crossed graphene nanoribbons (GNRs) have been theoretically proposed as electron beam splitters where incoming electron waves in one GNR can be split coherently into propagating waves in two outgoing terminals with nearly equal amplitude and zero back-scattering. Here we scrutinize this effect for devices composed of narrow zigzag GNRs taking explicitly into account the role of Coulomb repulsion that leads to spin-polarized edge states within mean-field theory. We show that the beam-splitting effect survives the opening of the well-known correlation gap and, more strikingly, that a spin-dependent scattering potential emerges which spin polarizes the transmitted electrons in the two outputs. By studying different ribbons and intersection angles we provide evidence that this is a general feature with edge-polarized nanoribbons. A near-perfect polarization can be achieved by joining several junctions in series. Our findings suggest that GNRs are interesting building blocks in spintronics and quantum technologies with applications for interferometry and entanglement.

4.
Phys Chem Chem Phys ; 24(34): 20239-20248, 2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-35996966

RESUMEN

The excitation of low-energy electron-hole pairs is one of the most relevant processes in the gas-surface interaction. An efficient tool to account for these excitations in simulations of atomic and molecular dynamics at surfaces is the so-called local density friction approximation (LDFA). The LDFA is based on a strong approximation that simplifies the dynamics of the electronic system: a local friction coefficient is defined using the value of the electronic density for the unperturbed system at each point of the dynamics. In this work, we apply real-time time-dependent density functional theory to the problem of the electronic friction of a negative point charge colliding with spherical jellium metal clusters. Our non-adiabatic, parameter-free results provide a benchmark for the widely used LDFA approximation and allow the discussion of various processes relevant to the electronic response of the system in the presence of the projectile.

6.
Phys Rev Lett ; 125(14): 146801, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064521

RESUMEN

Graphene nanoribbons (GNRs), low-dimensional platforms for carbon-based electronics, show the promising perspective to also incorporate spin polarization in their conjugated electron system. However, magnetism in GNRs is generally associated with localized states around zigzag edges, difficult to fabricate and with high reactivity. Here we demonstrate that magnetism can also be induced away from physical GNR zigzag edges through atomically precise engineering topological defects in its interior. A pair of substitutional boron atoms inserted in the carbon backbone breaks the conjugation of their topological bands and builds two spin-polarized boundary states around them. The spin state was detected in electrical transport measurements through boron-substituted GNRs suspended between the tip and the sample of a scanning tunneling microscope. First-principle simulations find that boron pairs induce a spin 1, which is modified by tuning the spacing between pairs. Our results demonstrate a route to embed spin chains in GNRs, turning them into basic elements of spintronic devices.

7.
J Chem Phys ; 152(20): 204108, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486661

RESUMEN

A review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta's flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide. The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin-orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as wannier90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering Siesta runs, and various post-processing utilities. Siesta has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments.

8.
Angew Chem Int Ed Engl ; 59(45): 20037-20043, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-32701180

RESUMEN

The catalytic oxidation of CO on transition metals, such as Pt, is commonly viewed as a sharp transition from the CO-inhibited surface to the active metal, covered with O. However, we find that minor amounts of O are present in the CO-poisoned layer that explain why, surprisingly, CO desorbs at stepped and flat Pt crystal planes at once, regardless of the reaction conditions. Using near-ambient pressure X-ray photoemission and a curved Pt(111) crystal we probe the chemical composition at surfaces with variable step density during the CO oxidation reaction. Analysis of C and O core levels across the curved crystal reveals that, right before light-off, subsurface O builds up within (111) terraces. This is key to trigger the simultaneous ignition of the catalytic reaction at different Pt surfaces: a CO-Pt-O complex is formed that equals the CO chemisorption energy at terraces and steps, leading to the abrupt desorption of poisoning CO from all crystal facets at the same temperature.

9.
Phys Chem Chem Phys ; 20(16): 11037-11046, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29648564

RESUMEN

Understanding the mechanisms involved in the covalent attachment of organic molecules to surfaces is a major challenge for nanotechnology and surface science. On the basis of classical organic chemistry mechanistic considerations, key issues such as selectivity and reactivity of the organic adsorbates could be rationalized and exploited for the design of molecular-scale circuits and devices. Here we use tris(benzocyclobutadieno)triphenylene, a singular Y-shaped hydrocarbon containing antiaromatic cyclobutadienoid rings, as a molecular probe to study the reaction of polycyclic conjugated molecules with atomic scale moieties, dangling-bond (DB) dimers on a hydrogen-passivated Ge(001):H surface. By combining molecular design, synthesis, scanning tunneling microscopy and spectroscopy (STM/STS) and computational modeling, we show that the attachment involves a concerted [4+2] cycloaddition reaction that is completely site-selective and fully reversible. This selectivity, governed by the bond alternation induced by the presence of the cyclobutadienoid rings, allows for the control of the orientation of the molecules with respect to the surface DB-patterning. We also demonstrate that by judicious modification of the electronic levels of the polycyclic benzenoid through substituents, the reaction barrier height can be modified. Finally, we show that after deliberate tip-induced covalent bond cleavage, adsorbed molecules can be used to fine tune the electronic states of the DB dimer. This power to engineer deliberately the bonding configuration and electronic properties opens new perspectives for creating prototypical nanoscale circuitry.

10.
Nano Lett ; 17(1): 50-56, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28073274

RESUMEN

Bottom-up chemical reactions of selected molecular precursors on a gold surface can produce high quality graphene nanoribbons (GNRs). Here, we report on the formation of quantum dots embedded in an armchair GNR by substitutional inclusion of pairs of boron atoms into the GNR backbone. The boron inclusion is achieved through the addition of a small amount of boron substituted precursors during the formation of pristine GNRs. In the pristine region between two boron pairs, the nanoribbons show a discretization of their valence band into confined modes compatible with a Fabry-Perot resonator. Transport simulations of the scattering properties of the boron pairs reveal that they selectively confine the first valence band of the pristine ribbon while allowing an efficient electron transmission of the second one. Such band-dependent electron scattering stems from the symmetry matching between the electronic wave functions of the states from the pristine nanoribbons and those localized at the boron pairs.

11.
Nano Lett ; 16(3): 2017-22, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26752001

RESUMEN

A vicinal rutile TiO2(110) crystal with a smooth variation of atomic steps parallel to the [1-10] direction was analyzed locally with STM and ARPES. The step edge morphology changes across the samples, from [1-11] zigzag faceting to straight [1-10] steps. A step-bunching phase is attributed to an optimal (110) terrace width, where all bridge-bonded O atom vacancies (Obr vacs) vanish. The [1-10] steps terminate with a pair of 2-fold coordinated O atoms, which give rise to bright, triangular protrusions (St) in STM. The intensity of the Ti 3d-derived gap state correlates with the sum of Obr vacs plus St protrusions at steps, suggesting that both Obr vacs and steps contribute a similar effective charge to sample doping. The binding energy of the gap state shifts when going from the flat (110) surface toward densely stepped planes, pointing to differences in the Ti(3+) polaron near steps and at terraces.

12.
Phys Chem Chem Phys ; 18(14): 9476-83, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-26979269

RESUMEN

In a recent study [M. Feng, et al., ACS Nano, 2011, 5, 8877], it was shown that CO molecules adsorbed on the quasi-one-dimensional O(2 × 1)/Cu(110) surface reconstruction tend to form highly-ordered single-molecule-wide rows along the direction perpendicular to the Cu-O chains. This stems from the peculiar tilted adsorption configuration of CO on this substrate, which gives rise to short-range attractive dipole-dipole interactions. Motivated by this observation, here we study the adsorption of nitric oxide (NO) on O(2 × 1)/Cu(110) and Cu(110) using density functional theory, with the aim of elucidating whether a similar behaviour can be expected for this molecule. We first study NO adsorption on a clean Cu(110) surface, where the role of short-range attractions between molecules has already been pointed out by the observation of the formation of NO dimers by scanning tunnelling microscopy [A. Shiotari, et al., Phys. Rev. Lett., 2011, 106, 156104]. On the clean Cu(110), the formation of dimers along the [110̄] direction is favourable, in agreement with published experimental results. However, the formation of extended NO rows is found to be unstable. Regarding the O(2 × 1)/Cu(110) substrate, we observe that NO molecules adsorb in between the Cu-O chains, causing a substantial disruption of the surface structure. Although individual molecules can be tilted with negligible energetic cost along the direction of the Cu-O chains, the interaction among neighbouring molecules was found to be repulsive along all directions and, consequently, the formation of dimers unfavourable.

13.
Phys Chem Chem Phys ; 18(28): 19309-17, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27375264

RESUMEN

Dangling bond (DB) arrays on Si(001):H and Ge(001):H surfaces can be patterned with atomic precision and they exhibit complex and rich physics making them interesting from both technological and fundamental perspectives. But their complex behavior often makes scanning tunneling microscopy (STM) images difficult to interpret and simulate. Recently it was shown that low-temperature imaging of unoccupied states of an unpassivated dimer on Ge(001):H results in a symmetric butterfly-like STM pattern, despite the fact that the equilibrium dimer configuration is expected to be a bistable, buckled geometry. Here, based on a thorough characterization of the low-bias switching events on Ge(001):H, we propose a new imaging model featuring a dynamical two-state rate equation. On both Si(001):H and Ge(001):H, this model allows us to reproduce the features of the observed symmetric empty-state images which strongly corroborates the idea that the patterns arise due to fast switching events and provides an insight into the relationship between the tunneling current and switching rates. We envision that our new imaging model can be applied to simulate other bistable systems where fluctuations arise from transiently charged electronic states.

14.
Phys Chem Chem Phys ; 18(5): 3854-61, 2016 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-26766161

RESUMEN

Controlling the strength of the coupling between organic molecules and single atoms provides a powerful tool for tuning electronic properties of single-molecule devices. Here, using scanning tunneling microscopy and spectroscopy (STM/STS) supported by theoretical modeling, we study the interaction of a planar organic molecule (trinaphthylene) with a hydrogen-passivated Ge(001):H substrate and a single dangling bond quantum dot on that surface. The electronic structure of the molecule adsorbed on the hydrogen-passivated surface is similar to the gas phase structure and the measurements show that HOMO and LUMO states contribute to the STM filled and empty state images, respectively. Furthermore, we show that the electronic properties are not significantly affected when the molecule is attached to the single dangling bond, which is in contrast with the strong interaction of the molecule with a dangling bond dimer. Our results show that the dangling bond quantum dots could stabilize organic molecules on a hydrogenated semiconductor without affecting their originally designed gas phase electronic properties. Together with the ability to laterally manipulate the molecules on the surface, this will be advantageous in the construction of single-molecule devices, where the coupling and positioning of the molecules on the substrate could be tuned by a proper design of the surface quantum dot arrays, comprising both single and dimerized dangling bonds.

15.
Phys Chem Chem Phys ; 18(25): 16757-65, 2016 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-27271337

RESUMEN

Construction of single-molecule electronic devices requires the controlled manipulation of organic molecules and their properties. This could be achieved by tuning the interaction between the molecule and individual atoms by local "on-surface" chemistry, i.e., the controlled formation of chemical bonds between the species. We demonstrate here the reversible attachment of a planar conjugated polyaromatic molecule to a pair of unpassivated dangling bonds on a hydrogenated Ge(001):H surface via a Diels-Alder [4+2] addition using the tip of a scanning tunneling microscope (STM). Due to the small stability difference between the covalently bonded and a nearly undistorted structure attached to the dangling bond dimer by long-range dispersive forces, we show that at cryogenic temperatures the molecule can be switched between both configurations. The reversibility of this covalent bond forming reaction may be applied in the construction of complex circuits containing organic molecules with tunable properties.

17.
Phys Chem Chem Phys ; 15(9): 3233-42, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23344647

RESUMEN

Density functional theory calculations have been used to analyze the electronic and magnetic properties of ultrathin zigzag graphene nanoribbons (ZGNRs) with different edge saturations. We have compared a symmetric hydrogen saturation of both edges with an asymmetric saturation in which one of the edges is saturated with sulphur atoms or thiol groups, while the other one is kept hydrogen saturated. The adsorption of such partially thiolated ZGNRs on Au(111) has also been explored. We have considered vertical and tilted adsorption configurations of the ribbons, reminiscent of those found for thiolated organic molecules in self-assembled monolayers (SAM) on gold substrates. We have found that saturation with sulphur atoms or thiol groups removes the corresponding edge state from the Fermi energy and kills the accompanying spin polarization. However, this effect is so local that the electronic and magnetic properties of the mono-hydrogenated edge (H-edge) remain unaffected. Thus, the system develops a spin moment mainly localized at the H-edge. This property is not modified when the partially thiolated ribbon is attached to the gold substrate, and is quite independent of the width of the ribbon. Therefore, the upright adsorption of partially thiolated ZGNRs can be an effective way to decouple the spin-polarized channel provided by the H-edge from an underlying metal substrate. These observations might open a novel route to build spin-filter devices using ZGNRs on gold substrates.

18.
J Phys Chem C Nanomater Interfaces ; 127(33): 16668-16678, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-38075844

RESUMEN

Molecular doping provides a route toward designing new organic compounds with improved performance for optoelectronics. Here, we investigate the p-type doping of crystalline diindenoperylene (DIP) with two recently proposed electron-accepting molecular dopants using many-body perturbation theory. For the pristine DIP crystal, the quasiparticle band structure and the optical absorption spectra are found in agreement with the experimental data. Using the same methodology, we then characterize the optical and electronic properties of the two doped DIP crystals. The bandgap of both doped crystals is narrowed considerably due to the formation of hybridized states at the valence band edge. Moreover, a hybrid unoccupied mid-gap band is created with a host-dopant charge-transfer characteristic, giving rise to broader absorption spectra and a much lower absorption onset as compared to pristine DIP. Our results highlight that the interaction and hybridization with the host environment, including many-body effects, must be carefully considered in order to identify appropriate molecular dopants for a given organic crystal.

19.
J Phys Condens Matter ; 35(37)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37220757

RESUMEN

We study theoretically electron interference in a Mach-Zehnder-like geometry formed by four zigzag graphene nanoribbons arranged in parallel pairs, one on top of the other, such that they form intersection angles of 60∘. Depending on the interribbon separation, each intersection can be tuned to act either as an electron beam splitter or as a mirror, enabling tuneable circuitry with interfering pathways. Based on the mean-field Hubbard model and Green's function techniques, we evaluate the electron transport properties of such eight-terminal devices and identify pairs of terminals that are subject to self-interference. We further show that the scattering matrix formalism in the approximation of independent scattering at the four individual junctions provides accurate results as compared with the Green's function description, allowing for a simple interpretation of the interference process between two dominant pathways. This enables us to characterize the device sensitivity to phase shifts from an external magnetic flux according to the Aharonov-Bohm effect as well as from small geometric variations in the two path lengths. The proposed devices could find applications as magnetic field sensors and as detectors of phase shifts induced by local scatterers on the different segments, such as adsorbates, impurities or defects. The setup could also be used to create and study quantum entanglement.

20.
ACS Nano ; 17(2): 1268-1274, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36440841

RESUMEN

Spin-flip excitations of iron porphyrin molecules on Au(111) are investigated with a low-temperature scanning tunneling microscope. The molecules adopt two distinct adsorption configurations on the surface that exhibit different magnetic anisotropy energies. Density functional theory calculations show that the different structures and excitation energies reflect unlike occupations of the Fe 3d levels. We demonstrate that the magnetic anisotropy energy can be controlled by changing the adsorption site, the orientation, or the tip-molecule distance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA