Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37896688

RESUMEN

A general limitation in assessing the accuracy of land cover mapping is the availability of ground truth data. At sites where ground truth is not available, potentially inaccurate proxy datasets are used for sub-field-scale resolution investigations at large spatial scales, i.e., in the Contiguous United States. The USDA/NASS Cropland Data Layer (CDL) is a popular agricultural land cover dataset due to its high accuracy (>80%), resolution (30 m), and inclusions of many land cover and crop types. However, because the CDL is derived from satellite imagery and has resulting uncertainties, comparisons to available in situ data are necessary for verifying classification performance. This study compares the cropland mapping accuracies (crop/non-crop) of an optical approach (CDL) and the radar-based crop area (CA) approach used for the upcoming NASA-ISRO Synthetic Aperture Radar (NISAR) L- and S-band mission but using Sentinel-1 C-band data. CDL and CA performance are compared to ground truth data that includes 54 agricultural production and research fields located at USDA's Beltsville Agricultural Research Center (BARC) in Maryland, USA. We also evaluate non-crop mapping accuracy using twenty-six built-up and thirteen forest sites at BARC. The results show that the CDL and CA have a good pixel-wise agreement with one another (87%). However, the CA is notably more accurate compared to ground truth data than the CDL. The 2017-2021 mean accuracies for the CDL and CA, respectively, are 77% and 96% for crop, 100% and 94% for built-up, and 100% and 100% for forest, yielding an overall accuracy of 86% for the CDL and 96% for CA. This difference mainly stems from the CDL under-detecting crop cover at BARC, especially in 2017 and 2018. We also note that annual accuracy levels varied less for the CA (91-98%) than for the CDL (79-93%). This study demonstrates that a computationally inexpensive radar-based cropland mapping approach can also give accurate results over complex landscapes with accuracies similar to or better than optical approaches.

2.
Glob Chang Biol ; 27(23): 6005-6024, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34478589

RESUMEN

Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure-volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions-which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts.


Asunto(s)
Sequías , Ecosistema , Bosques , Hojas de la Planta , Árboles , Xilema
3.
IEEE J Biomed Health Inform ; 17(4): 785-97, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25055306

RESUMEN

The ability to discern malignant from benign tissue in excised human breast specimens in Breast Conservation Surgery (BCS) was evaluated using single frequency terahertz radiation. Terahertz (THz) images of the specimens in reflection mode were obtained by employing a gas laser source and mechanical scanning. The images were correlated with optical histological micrographs of the same specimens, and a mean discrimination of 73% was found for five out of six samples using Receiver Operating Characteristic (ROC) analysis. The system design and characterization is discussed in detail. The initial results are encouraging but further development of the technology and clinical evaluation is needed to evaluate its feasibility in the clinical environment.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Histocitoquímica/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imágen por Terahertz/métodos , Diseño de Equipo , Femenino , Humanos , Curva ROC
4.
Proc SPIE Int Soc Opt Eng ; 82212012 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-24353380

RESUMEN

In breast conservation surgery, surgeons attempt to remove malignant tissue along with a surrounding margin of healthy tissue. Subsequent pathological analysis determines if those margins are clear of malignant tissue, a process that typically requires at least one day. Only then can it be determined whether a follow-up surgery is necessary. This possibility of re-excision is undesirable in terms of reducing patient morbidity, emotional stress and healthcare. It has been shown that terahertz (THz) images of breast specimens can accurately differentiate between breast carcinoma, normal fibroglandular tissue, and adipose tissue. That study employed the Time-Domain Spectroscopy (TDS) technique. We are instead developing a new technique, Frequency-Domain Terahertz Imaging (FDTI). In this joint project between UMass/Amherst and UMass Medical School/Worcester (UMMS), we are investigating the feasibility of the FDTI technique for THz reflection imaging of breast cancer margins. Our system, which produces mechanically scanned images of size 2cm × 2cm, uses a THz gas laser. The system is calibrated with mixtures of water and ethanol and reflection coefficients as low as 1% have been measured. Images from phantoms and specimens cut from breast cancer lumpectomies at UMMS will be presented. Finally, there will be a discussion of a possible transition of this FDTI setup to a compact and inexpensive CMOS THz camera for use in the operating room.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA