Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Metab Eng ; 78: 72-83, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37201565

RESUMEN

Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.


Asunto(s)
Lignina , Ingeniería Metabólica , Ingeniería Metabólica/métodos , Lignina/metabolismo
2.
Metab Eng ; 66: 229-238, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33964456

RESUMEN

Pseudomonas putida KT2440 is an emerging biomanufacturing host amenable for use with renewable carbon streams including aromatics such as para-coumarate. We used a pooled transposon library disrupting nearly all (4,778) non-essential genes to characterize this microbe under common stirred-tank bioreactor parameters with quantitative fitness assays. Assessing differential fitness values by monitoring changes in mutant strain abundance identified 33 gene mutants with improved fitness across multiple stirred-tank bioreactor formats. Twenty-one deletion strains from this subset were reconstructed, including GacA, a regulator, TtgB, an ABC transporter, and PP_0063, a lipid A acyltransferase. Thirteen deletion strains with roles in varying cellular functions were evaluated for conversion of para-coumarate, to a heterologous bioproduct, indigoidine. Several mutants, such as the ΔgacA strain improved fitness in a bioreactor by 35 fold and showed an 8-fold improvement in indigoidine production (4.5 g/L, 0.29 g/g, 23% of maximum theoretical yield) from para-coumarate as the carbon source.


Asunto(s)
Pseudomonas putida , Reactores Biológicos , Carbono , Biblioteca de Genes , Ensayos Analíticos de Alto Rendimiento , Pseudomonas putida/genética
3.
Metab Eng ; 63: 34-60, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33221420

RESUMEN

Machine learning provides researchers a unique opportunity to make metabolic engineering more predictable. In this review, we offer an introduction to this discipline in terms that are relatable to metabolic engineers, as well as providing in-depth illustrative examples leveraging omics data and improving production. We also include practical advice for the practitioner in terms of data management, algorithm libraries, computational resources, and important non-technical issues. A variety of applications ranging from pathway construction and optimization, to genetic editing optimization, cell factory testing, and production scale-up are discussed. Moreover, the promising relationship between machine learning and mechanistic models is thoroughly reviewed. Finally, the future perspectives and most promising directions for this combination of disciplines are examined.


Asunto(s)
Aprendizaje Automático , Ingeniería Metabólica , Algoritmos , Edición Génica
4.
Biotechnol Bioeng ; 117(5): 1418-1425, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31981215

RESUMEN

Fatty alcohols (FOHs) are important feedstocks in the chemical industry to produce detergents, cosmetics, and lubricants. Microbial production of FOHs has become an attractive alternative to production in plants and animals due to growing energy demands and environmental concerns. However, inhibition of cell growth caused by intracellular FOH accumulation is one major issue that limits FOH titers in microbial hosts. In addition, identification of FOH-specific exporters remains a challenge and previous studies towards this end are limited. To alleviate the toxicity issue, we exploited nonionic surfactants to promote the export of FOHs in Rhodosporidium toruloides, an oleaginous yeast that is considered an attractive next-generation host for the production of fatty acid-derived chemicals. Our results showed FOH export efficiency was dramatically improved and the growth inhibition was alleviated in the presence of small amounts of tergitol and other surfactants. As a result, FOH titers increase by 4.3-fold at bench scale to 352.6 mg/L. With further process optimization in a 2-L bioreactor, the titer was further increased to 1.6 g/L. The method we show here can potentially be applied to other microbial hosts and may facilitate the commercialization of microbial FOH production.


Asunto(s)
Reactores Biológicos/microbiología , Alcoholes Grasos , Ingeniería Metabólica/métodos , Rhodotorula , Tensoactivos/química , Alcoholes Grasos/análisis , Alcoholes Grasos/metabolismo , Rhodotorula/genética , Rhodotorula/metabolismo
5.
Microb Cell Fact ; 19(1): 167, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811554

RESUMEN

BACKGROUND: Despite the latest advancements in metabolic engineering for genome editing and characterization of host performance, the successful development of robust cell factories used for industrial bioprocesses and accurate prediction of the behavior of microbial systems, especially when shifting from laboratory-scale to industrial conditions, remains challenging. To increase the probability of success of a scale-up process, data obtained from thoroughly performed studies mirroring cellular responses to typical large-scale stimuli may be used to derive crucial information to better understand potential implications of large-scale cultivation on strain performance. This study assesses the feasibility to employ a barcoded yeast deletion library to assess genome-wide strain fitness across a simulated industrial fermentation regime and aims to understand the genetic basis of changes in strain physiology during industrial fermentation, and the corresponding roles these genes play in strain performance. RESULTS: We find that mutant population diversity is maintained through multiple seed trains, enabling large scale fermentation selective pressures to act upon the community. We identify specific deletion mutants that were enriched in all processes tested in this study, independent of the cultivation conditions, which include MCK1, RIM11, MRK1, and YGK3 that all encode homologues of mammalian glycogen synthase kinase 3 (GSK-3). Ecological analysis of beta diversity between all samples revealed significant population divergence over time and showed feed specific consequences of population structure. Further, we show that significant changes in the population diversity during fed-batch cultivations reflect the presence of significant stresses. Our observations indicate that, for this yeast deletion collection, the selection of the feeding scheme which affects the accumulation of the fermentative by-product ethanol impacts the diversity of the mutant pool to a higher degree as compared to the pH of the culture broth. The mutants that were lost during the time of most extreme population selection suggest that specific biological processes may be required to cope with these specific stresses. CONCLUSIONS: Our results demonstrate the feasibility of Bar-seq to assess fermentation associated stresses in yeast populations under industrial conditions and to understand critical stages of a scale-up process where variability emerges, and selection pressure gets imposed. Overall our work highlights a promising avenue to identify genetic loci and biological stress responses required for fitness under industrial conditions.


Asunto(s)
Reactores Biológicos/microbiología , Biotecnología/métodos , Fermentación , Saccharomyces cerevisiae/fisiología , Biodiversidad , Eliminación de Gen , Genes Fúngicos , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Microbiología Industrial , Ingeniería Metabólica , Estrés Fisiológico/genética
6.
Microb Cell Fact ; 19(1): 24, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-32024522

RESUMEN

BACKGROUND: Rhodosporidium toruloides has emerged as a promising host for the production of bioproducts from lignocellulose, in part due to its ability to grow on lignocellulosic feedstocks, tolerate growth inhibitors, and co-utilize sugars and lignin-derived monomers. Ent-kaurene derivatives have a diverse range of potential applications from therapeutics to novel resin-based materials. RESULTS: The Design, Build, Test, and Learn (DBTL) approach was employed to engineer production of the non-native diterpene ent-kaurene in R. toruloides. Following expression of kaurene synthase (KS) in R. toruloides in the first DBTL cycle, a key limitation appeared to be the availability of the diterpene precursor, geranylgeranyl diphosphate (GGPP). Further DBTL cycles were carried out to select an optimal GGPP synthase and to balance its expression with KS, requiring two of the strongest promoters in R. toruloides, ANT (adenine nucleotide translocase) and TEF1 (translational elongation factor 1) to drive expression of the KS from Gibberella fujikuroi and a mutant version of an FPP synthase from Gallus gallus that produces GGPP. Scale-up of cultivation in a 2 L bioreactor using a corn stover hydrolysate resulted in an ent-kaurene titer of 1.4 g/L. CONCLUSION: This study builds upon previous work demonstrating the potential of R. toruloides as a robust and versatile host for the production of both mono- and sesquiterpenes, and is the first demonstration of the production of a non-native diterpene in this organism.


Asunto(s)
Diterpenos de Tipo Kaurano/metabolismo , Lignina/metabolismo , Ingeniería Metabólica , Ustilaginales/metabolismo , Animales , Proteínas de Plantas/metabolismo
7.
Microb Cell Fact ; 18(1): 218, 2019 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-31884968

RESUMEN

Following publication of the original article [1], the authors have noted that the standard curve in Additional file 1: Figure S7 is incorrect.

8.
Microb Cell Fact ; 17(1): 193, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30545355

RESUMEN

BACKGROUND: Beyond pathway engineering, the metabolic state of the production host is critical in maintaining the efficiency of cellular production. The biotechnologically important yeast Saccharomyces cerevisiae adjusts its energy metabolism based on the availability of oxygen and carbon sources. This transition between respiratory and non-respiratory metabolic state is accompanied by substantial modifications of central carbon metabolism, which impact the efficiency of metabolic pathways and the corresponding final product titers. Non-ribosomal peptide synthetases (NRPS) are an important class of biocatalysts that provide access to a wide array of secondary metabolites. Indigoidine, a blue pigment, is a representative NRP that is valuable by itself as a renewably produced pigment. RESULTS: Saccharomyces cerevisiae was engineered to express a bacterial NRPS that converts glutamine to indigoidine. We characterize carbon source use and production dynamics, and demonstrate that indigoidine is solely produced during respiratory cell growth. Production of indigoidine is abolished during non-respiratory growth even under aerobic conditions. By promoting respiratory conditions via controlled feeding, we scaled the production to a 2 L bioreactor scale, reaching a maximum titer of 980 mg/L. CONCLUSIONS: This study represents the first use of the Streptomyces lavendulae NRPS (BpsA) in a fungal host and its scale-up. The final product indigoidine is linked to the activity of the TCA cycle and serves as a reporter for the respiratory state of S. cerevisiae. Our approach can be broadly applied to investigate diversion of flux from central carbon metabolism for NRPS and other heterologous pathway engineering, or to follow a population switch between respiratory and non-respiratory modes.


Asunto(s)
Ingeniería Metabólica/métodos , Péptido Sintasas/síntesis química , Piperidonas/síntesis química , Saccharomyces cerevisiae/metabolismo
9.
Curr Opin Biotechnol ; 84: 103017, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935087

RESUMEN

A wide variety of wasted or underutilized organic feedstocks can be leveraged to build a sustainable bioeconomy, ranging from crop residues to food processor residues and municipal wastes. Leveraging these feedstocks is both high-risk and high-reward. Converting mixed, variable, and/or highly contaminated feedstocks can pose engineering and economic challenges. However, converting these materials to fuels and chemicals can divert waste from landfills, reduce fugitive methane emissions, and enable more responsible forest management to reduce the frequency and severity of wildfires. Historically, low-value components, including ash and lignin, are poised to become valuable coproducts capable of supplementing cement and valuable chemicals. Here, we evaluate the challenges and opportunities associated with converting a range of feedstocks to renewable fuels and chemicals.


Asunto(s)
Metano , Reciclaje , Energía Renovable , Administración de Residuos
10.
Curr Opin Biotechnol ; 79: 102881, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603501

RESUMEN

Self-driving labs (SDLs) combine fully automated experiments with artificial intelligence (AI) that decides the next set of experiments. Taken to their ultimate expression, SDLs could usher a new paradigm of scientific research, where the world is probed, interpreted, and explained by machines for human benefit. While there are functioning SDLs in the fields of chemistry and materials science, we contend that synthetic biology provides a unique opportunity since the genome provides a single target for affecting the incredibly wide repertoire of biological cell behavior. However, the level of investment required for the creation of biological SDLs is only warranted if directed toward solving difficult and enabling biological questions. Here, we discuss challenges and opportunities in creating SDLs for synthetic biology.


Asunto(s)
Inteligencia Artificial , Biología Sintética , Humanos
11.
Nat Commun ; 14(1): 2461, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117207

RESUMEN

Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.


Asunto(s)
Algoritmos , Metabolómica , Espectrometría de Masas/métodos , Metabolómica/métodos , Cromatografía Liquida/métodos , Espectrometría de Movilidad Iónica
12.
Biotechnol Biofuels ; 14(1): 101, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883010

RESUMEN

BACKGROUND: Mitigation of climate change requires that new routes for the production of fuels and chemicals be as oil-independent as possible. The microbial conversion of lignocellulosic feedstocks into terpene-based biofuels and bioproducts represents one such route. This work builds upon previous demonstrations that the single-celled carotenogenic basidiomycete, Rhodosporidium toruloides, is a promising host for the production of terpenes from lignocellulosic hydrolysates. RESULTS: This study focuses on the optimization of production of the monoterpene 1,8-cineole and the sesquiterpene α-bisabolene in R. toruloides. The α-bisabolene titer attained in R. toruloides was found to be proportional to the copy number of the bisabolene synthase (BIS) expression cassette, which in turn influenced the expression level of several native mevalonate pathway genes. The addition of more copies of BIS under a stronger promoter resulted in production of α-bisabolene at 2.2 g/L from lignocellulosic hydrolysate in a 2-L fermenter. Production of 1,8-cineole was found to be limited by availability of the precursor geranylgeranyl pyrophosphate (GPP) and expression of an appropriate GPP synthase increased the monoterpene titer fourfold to 143 mg/L at bench scale. Targeted mevalonate pathway metabolite analysis suggested that 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR), mevalonate kinase (MK) and phosphomevalonate kinase (PMK) may be pathway bottlenecks are were therefore selected as targets for overexpression. Expression of HMGR, MK, and PMK orthologs and growth in an optimized lignocellulosic hydrolysate medium increased the 1,8-cineole titer an additional tenfold to 1.4 g/L. Expression of the same mevalonate pathway genes did not have as large an impact on α-bisabolene production, although the final titer was higher at 2.6 g/L. Furthermore, mevalonate pathway intermediates accumulated in the mevalonate-engineered strains, suggesting room for further improvement. CONCLUSIONS: This work brings R. toruloides closer to being able to make industrially relevant quantities of terpene from lignocellulosic biomass.

13.
Nat Commun ; 11(1): 5385, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097726

RESUMEN

High titer, rate, yield (TRY), and scalability are challenging metrics to achieve due to trade-offs between carbon use for growth and production. To achieve these metrics, we take the minimal cut set (MCS) approach that predicts metabolic reactions for elimination to couple metabolite production strongly with growth. We compute MCS solution-sets for a non-native product indigoidine, a sustainable pigment, in Pseudomonas putida KT2440, an emerging industrial microbe. From the 63 solution-sets, our omics guided process identifies one experimentally feasible solution requiring 14 simultaneous reaction interventions. We implement a total of 14 genes knockdowns using multiplex-CRISPRi. MCS-based solution shifts production from stationary to exponential phase. We achieve 25.6 g/L, 0.22 g/l/h, and ~50% maximum theoretical yield (0.33 g indigoidine/g glucose). These phenotypes are maintained from batch to fed-batch mode, and across scales (100-ml shake flasks, 250-ml ambr®, and 2-L bioreactors).


Asunto(s)
Piperidonas/metabolismo , Pseudomonas putida/metabolismo , Biología Sintética/métodos , Técnicas de Cultivo Celular por Lotes , Biomasa , Reactores Biológicos/microbiología , Carbono/metabolismo , Medios de Cultivo , Fermentación , Técnicas de Inactivación de Genes , Ingeniería Genética , Genoma Bacteriano , Glucosa/metabolismo , Microbiología Industrial , Pseudomonas putida/genética
14.
Trends Microbiol ; 27(6): 524-537, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30819548

RESUMEN

Systems biology and synthetic biology are increasingly used to examine and modulate complex biological systems. As such, many issues arising during scaling-up microbial production processes can be addressed using these approaches. We review differences between laboratory-scale cultures and larger-scale processes to provide a perspective on those strain characteristics that are especially important during scaling. Systems biology has been used to examine a range of microbial systems for their response in bioreactors to fluctuations in nutrients, dissolved gases, and other stresses. Synthetic biology has been used both to assess and modulate strain response, and to engineer strains to improve production. We discuss these approaches and tools in the context of their use in engineering robust microbes for applications in large-scale production.


Asunto(s)
Bioingeniería , Reactores Biológicos , Fermentación , Técnicas Microbiológicas , Biología de Sistemas , Bioingeniería/métodos , Estudios de Asociación Genética , Biología de Sistemas/métodos
15.
Bioresour Technol ; 271: 218-227, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30273825

RESUMEN

Previously, a predictive model was developed to identify optimal blends of expensive high-quality and cheaper low-quality feedstocks for a given geographical location that can deliver high sugar yields. In this study, the optimal process conditions were tested for application at commercially-relevant higher biomass loadings. We observed lower sugar yields but 100% conversion to ethanol from a blend that contained only 20% high-quality feedstock. The impact of applying this predictive model simultaneously with least cost formulation model for a biorefinery location outside of the US Corn Belt in Lee County, Florida was investigated. A blend ratio of 0.30 EC, 0.45 SG, and 0.25 CS in Lee County was necessary to produce sugars at high yields and ethanol at a capacity of 50 MMGY. This work demonstrates utility in applying predictive model and LCF to reduce feedstock costs and supply chain risks while optimizing for product yields.


Asunto(s)
Zea mays , Biomasa , Metabolismo de los Hidratos de Carbono , Carbohidratos , Costos y Análisis de Costo , Etanol/economía , Etanol/metabolismo , Fermentación , Florida
16.
Nat Commun ; 9(1): 4569, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30385744

RESUMEN

Microbial production of fuels and commodity chemicals has been performed primarily using natural or slightly modified enzymes, which inherently limits the types of molecules that can be produced. Type I modular polyketide synthases (PKSs) are multi-domain enzymes that can produce unique and diverse molecular structures by combining particular types of catalytic domains in a specific order. This catalytic mechanism offers a wealth of engineering opportunities. Here we report engineered microbes that produce various short-chain (C5-C7) ketones using hybrid PKSs. Introduction of the genes into the chromosome of Streptomyces albus enables it to produce >1 g · l-1 of C6 and C7 ethyl ketones and several hundred mg · l-1 of C5 and C6 methyl ketones from plant biomass hydrolysates. Engine tests indicate these short-chain ketones can be added to gasoline as oxygenates to increase the octane of gasoline. Together, it demonstrates the efficient and renewable microbial production of biogasolines by hybrid enzymes.


Asunto(s)
Cetonas/metabolismo , Sintasas Poliquetidas/genética , Streptomyces/genética , Biología Sintética
17.
Nat Microbiol ; 3(1): 99-107, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29109478

RESUMEN

Cultivation of microbial consortia provides low-complexity communities that can serve as tractable models to understand community dynamics. Time-resolved metagenomics demonstrated that an aerobic cellulolytic consortium cultivated from compost exhibited community dynamics consistent with the definition of an endogenous heterotrophic succession. The genome of the proposed pioneer population, 'Candidatus Reconcilibacillus cellulovorans', possessed a gene cluster containing multidomain glycoside hydrolases (GHs). Purification of the soluble cellulase activity from a 300litre cultivation of this consortium revealed that ~70% of the activity arose from the 'Ca. Reconcilibacillus cellulovorans' multidomain GHs assembled into cellulase complexes through glycosylation. These remarkably stable complexes have supramolecular structures for enzymatic cellulose hydrolysis that are distinct from cellulosomes. The persistence of these complexes during cultivation indicates that they may be active through multiple cultivations of this consortium and act as public goods that sustain the community. The provision of extracellular GHs as public goods may influence microbial community dynamics in native biomass-deconstructing communities relevant to agriculture, human health and biotechnology.


Asunto(s)
Bacterias/clasificación , Bacterias/enzimología , Celulasa/análisis , Celulosa/metabolismo , Consorcios Microbianos/fisiología , Complejos Multienzimáticos/análisis , Filogenia , Bacterias/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/aislamiento & purificación , Evolución Biológica , Celulasa/aislamiento & purificación , Compostaje , Genoma Bacteriano/genética , Glicósido Hidrolasas/análisis , Glicósido Hidrolasas/aislamiento & purificación , Glicosilación , Procesos Heterotróficos , Metagenómica , Modelos Biológicos , Complejos Multienzimáticos/aislamiento & purificación , Microbiología del Suelo
18.
Biotechnol Biofuels ; 10: 13, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28070222

RESUMEN

BACKGROUND: Lignocellulosic biorefineries have tonnage and throughput requirements that must be met year round and there is no single feedstock available in any given region that is capable of meeting the price and availability demands of the biorefineries scheduled for deployment. Significant attention has been historically given to agriculturally derived feedstocks; however, a diverse range of wastes, including municipal solid wastes (MSW), also have the potential to serve as feedstocks for the production of advanced biofuels and have not been extensively studied. In addition, ionic liquid (IL) pretreatment with certain ILs is receiving great interest as a potential process that enables fractionation of a wide range of feedstocks. Acid catalysts have been used previously to hydrolyze polysaccharides into fermentable sugars following IL pretreatment, which could potentially provide a means of liberating fermentable sugars from lignocellulose without the use of costly enzymes. However, successful optimization and scale-up of the one-pot acid-assisted IL deconstruction for further commercialization involve challenges such as reactor compatibility, mixing at high solid loading, sugar recovery, and IL recycling, which have not been effectively resolved during the development stages at bench scale. RESULTS: Here, we present the successful scale-up demonstration of the acid-assisted IL deconstruction on feedstock blends of municipal solid wastes and agricultural residues (corn stover) by 30-fold, relative to the bench scale (6 vs 0.2 L), at 10% solid loading. By integrating IL pretreatment and acid hydrolysis with subsequent centrifugation and extraction, the sugar and lignin products can be further recovered efficiently. This scale-up development at Advanced Biofuels/Bioproducts Process Demonstration Unit (ABPDU) will leverage the opportunity and synergistic efforts toward developing a cost-effective IL-based deconstruction technology by drastically eliminating enzyme, reducing water usage, and simplifying the downstream sugar/lignin recovery and IL recycling. CONCLUSION: Results indicate that MSW blends are viable and valuable resource to consider when assessing biomass availability and affordability for lignocellulosic biorefineries. This scale-up evaluation demonstrates that the acid-assisted IL deconstruction technology can be effectively scaled up to larger operations and the current study established the baseline of scaling parameters for this process.

19.
Bioresour Technol ; 243: 676-685, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28709073

RESUMEN

Commercial-scale bio-refineries are designed to process 2000tons/day of single lignocellulosic biomass. Several geographical areas in the United States generate diverse feedstocks that, when combined, can be substantial for bio-based manufacturing. Blending multiple feedstocks is a strategy being investigated to expand bio-based manufacturing outside Corn Belt. In this study, we developed a model to predict continuous envelopes of biomass blends that are optimal for a given pretreatment condition to achieve a predetermined sugar yield or vice versa. For example, our model predicted more than 60% glucose yield can be achieved by treating an equal part blend of energy cane, corn stover, and switchgrass with alkali pretreatment at 120°C for 14.8h. By using ionic liquid to pretreat an equal part blend of the biomass feedstocks at 160°C for 2.2h, we achieved 87.6% glucose yield. Such a predictive model can potentially overcome dependence on a single feedstock.


Asunto(s)
Biomasa , Zea mays , Carbohidratos , Hidrólisis , Lignina
20.
Biotechnol Biofuels ; 10: 241, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29075325

RESUMEN

BACKGROUND: Economical conversion of lignocellulosic biomass into biofuels and bioproducts is central to the establishment of a robust bioeconomy. This requires a conversion host that is able to both efficiently assimilate the major lignocellulose-derived carbon sources and divert their metabolites toward specific bioproducts. RESULTS: In this study, the carotenogenic yeast Rhodosporidium toruloides was examined for its ability to convert lignocellulose into two non-native sesquiterpenes with biofuel (bisabolene) and pharmaceutical (amorphadiene) applications. We found that R. toruloides can efficiently convert a mixture of glucose and xylose from hydrolyzed lignocellulose into these bioproducts, and unlike many conventional production hosts, its growth and productivity were enhanced in lignocellulosic hydrolysates relative to purified substrates. This organism was demonstrated to have superior growth in corn stover hydrolysates prepared by two different pretreatment methods, one using a novel biocompatible ionic liquid (IL) choline α-ketoglutarate, which produced 261 mg/L of bisabolene at bench scale, and the other using an alkaline pretreatment, which produced 680 mg/L of bisabolene in a high-gravity fed-batch bioreactor. Interestingly, R. toruloides was also observed to assimilate p-coumaric acid liberated from acylated grass lignin in the IL hydrolysate, a finding we verified with purified substrates. R. toruloides was also able to consume several additional compounds with aromatic motifs similar to lignin monomers, suggesting that this organism may have the metabolic potential to convert depolymerized lignin streams alongside lignocellulosic sugars. CONCLUSIONS: This study highlights the natural compatibility of R. toruloides with bioprocess conditions relevant to lignocellulosic biorefineries and demonstrates its ability to produce non-native terpenes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA