Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Pathol ; 260(4): 478-492, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37310065

RESUMEN

Biliary tract cancer (BTC) has poor prognosis. The Notch receptor is aberrantly expressed in extrahepatic cholangiocarcinoma (eCCA). However, the role of Notch signaling in the initiation and progression of eCCA and gallbladder (GB) cancer remains unknown. Therefore, we investigated the functional role of Notch signaling during tumorigenesis of the extrahepatic bile duct (EHBD) and GB. Activation of Notch signaling and oncogenic Kras resulted in the development of biliary intraepithelial neoplasia (BilINs) in the EHBD and GB, which were premalignant lesions that progressed to adenocarcinoma in mice. The expression of genes involved in the mTORC1 pathway was increased in biliary spheroids from Hnf1b-CreERT2; KrasLSL-G12D ; Rosa26LSL-NotchIC mice and inhibition of the mTORC1 pathway suppressed spheroid growth. Additionally, simultaneous activation of the PI3K-AKT and Notch pathways in EHBD and GB induced biliary cancer development in mice. Consistent with this, we observed a significant correlation between activated NOTCH1 and phosphorylated Ribosomal Protein S6 (p-S6) expression in human eCCA. Furthermore, inhibition of the mTORC1 pathway suppressed the growth of Notch-activated human biliary cancer cells in vitro and in vivo. Mechanistically, the Kras/Notch-Myc axis activated mTORC1 through TSC2 phosphorylation in mutant biliary spheroids. These data indicate that inhibition of the mTORC1 pathway could be an effective treatment strategy for Notch-activated human eCCA. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de los Conductos Biliares , Neoplasias del Sistema Biliar , Carcinoma in Situ , Colangiocarcinoma , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosfatidilinositol 3-Quinasas , Colangiocarcinoma/patología , Carcinoma in Situ/patología , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología
2.
Gastroenterology ; 163(2): 466-480.e6, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35483445

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) arises from several types of premalignant lesions, including intraductal tubulopapillary neoplasm (ITPN); however, the molecular pathogenesis of ITPN remains unknown. METHODS: We performed studies with Hnf1b-CreERT2; Ptenf/f; Arid1af/f mice to investigate the consequence of genetic deletion of Arid1a in adult pancreatic ductal cells in the context of oncogenic PI3K/Akt pathway activation. RESULTS: Simultaneous deletion of Arid1a and Pten in pancreatic ductal cells resulted in the development of ITPN, which progressed to PDAC, in mice. Simultaneous loss of Arid1a and Pten induced dedifferentiation of pancreatic ductal cells and Yes-associated protein 1/Transcriptional coactivator with PDZ-binding motif (YAP/TAZ) pathway activation. Consistent with the mouse data, TAZ expression was found elevated in human ITPNs and ITPN-derived PDACs but not in human intraductal papillary mucinous neoplasms, indicating that activation of the TAZ pathway is a distinctive feature of ITPN. Furthermore, pharmacological inhibition of the YAP/TAZ pathway suppressed the dedifferentiation of pancreatic ductal cells and development of ITPN in Arid1a and Pten double-knockout mice. CONCLUSION: Concurrent loss of Arid1a and Pten in adult pancreatic ductal cells induced ITPN and ITPN-derived PDAC in mice through aberrant activation of the YAP/TAZ pathway, and inhibition of the YAP/TAZ pathway prevented the development of ITPN. These findings provide novel insights into the pathogenesis of ITPN-derived PDAC and highlight the YAP/TAZ pathway as a potential therapeutic target.


Asunto(s)
Carcinoma Ductal Pancreático , Proteínas de Unión al ADN , Fosfohidrolasa PTEN , Neoplasias Pancreáticas , Factores de Transcripción , Animales , Carcinoma Ductal Pancreático/patología , Proteínas de Unión al ADN/genética , Humanos , Ratones , Fosfohidrolasa PTEN/genética , Conductos Pancreáticos/patología , Neoplasias Pancreáticas/patología , Fosfatidilinositol 3-Quinasas , Factores de Transcripción/genética , Neoplasias Pancreáticas
3.
Cancer Sci ; 113(10): 3417-3427, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35924439

RESUMEN

Tumor stem cells (TSCs), capable of self-renewal and continuous production of progeny cells, could be potential therapeutic targets. We have recently reported that chromatin remodeling regulator Brg1 is required for maintenance of murine intestinal TSCs and stemness feature of human colorectal cancer (CRC) cells by inhibiting apoptosis. However, it is still unclear how BRG1 suppression changes the underlying intracellular mechanisms of human CRC cells. We found that Brg1 suppression resulted in upregulation of the JNK signaling pathway in human CRC cells and murine intestinal TSCs. Simultaneous suppression of BRG1 and the JNK pathway, either by pharmacological inhibition or silencing of c-JUN, resulted in even stronger inhibition of the expansion of human CRC cells compared to Brg1 suppression alone. Consistently, high c-JUN expression correlated with worse prognosis for survival in human CRC patients with low BRG1 expression. Therefore, the JNK pathway plays a critical role for expansion and stemness of human CRC cells in the context of BRG1 suppression, and thus a combined blockade of BRG1 and the JNK pathway could be a novel therapeutic approach against human CRC.


Asunto(s)
Neoplasias Colorrectales , Sistema de Señalización de MAP Quinasas , Animales , Apoptosis , Línea Celular Tumoral , Cromatina , Neoplasias Colorrectales/patología , ADN Helicasas , Regulación Neoplásica de la Expresión Génica , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , Ratones , Células Madre Neoplásicas/metabolismo , Proteínas Nucleares , Factores de Transcripción
4.
J Pathol ; 255(3): 257-269, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34415580

RESUMEN

Tumor cells capable of self-renewal and continuous production of progeny cells are called tumor stem cells (TSCs) and are considered to be potential therapeutic targets. However, the mechanisms underlying the survival and function of TSCs are not fully understood. We previously reported that chromatin remodeling regulator Brg1 is essential for intestinal stem cells in mice and Dclk1 is an intestinal TSC marker. In this study, we investigated the role of Brg1 in Dclk1+ intestinal tumor cells for the maintenance of intestinal tumors in mice. Specific ablation of Brg1 in Dclk1+ intestinal tumor cells reduced intestinal tumors in ApcMin mice, and continuous ablation of Brg1 maintained the reduction of intestinal tumors. Lineage tracing in the context of Brg1 ablation in Dclk1+ intestinal tumor cells revealed that Brg1-null Dclk1+ intestinal tumor cells did not give rise to their descendent tumor cells, indicating that Brg1 is essential for the self-renewal of Dclk1+ intestinal tumor cells. Five days after Brg1 ablation, we observed increased apoptosis in Dclk1+ tumor cells. Furthermore, Brg1 was crucial for the stemness of intestinal tumor cells in a spheroid culture system. BRG1 knockdown also impaired cell proliferation and increased apoptosis in human colorectal cancer (CRC) cells. Microarray analysis revealed that apoptosis-related genes were upregulated and stem cell-related genes were downregulated in human CRC cells by BRG1 suppression. Consistently, high BRG1 expression correlated with poor disease-specific survival in human CRC patients. These data indicate that Brg1 plays a crucial role in intestinal TSCs in mice by inhibiting apoptosis and is critical for cell survival and stem cell features in human CRC cells. Thus, BRG1 represents a new therapeutic target for human CRC. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Neoplasias Colorrectales/patología , ADN Helicasas/metabolismo , Células Madre Neoplásicas/patología , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Ratones
5.
Proc Natl Acad Sci U S A ; 116(5): 1704-1713, 2019 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-30635419

RESUMEN

Inactivating mutations of Arid1a, a subunit of the Switch/sucrose nonfermentable chromatin remodeling complex, have been reported in multiple human cancers. Intestinal deletion of Arid1a has been reported to induce colorectal cancer in mice; however, its functional role in intestinal homeostasis remains unclear. We investigated the functional role of Arid1a in intestinal homeostasis in mice. We found that intestinal deletion of Arid1a results in loss of intestinal stem cells (ISCs), decreased Paneth and goblet cells, disorganized crypt-villous structures, and increased apoptosis in adult mice. Spheroids did not develop from intestinal epithelial cells deficient for Arid1a Lineage-tracing experiments revealed that Arid1a deletion in Lgr5+ ISCs leads to impaired self-renewal of Lgr5+ ISCs but does not perturb intestinal homeostasis. The Wnt signaling pathway, including Wnt agonists, receptors, and target genes, was strikingly down-regulated in Arid1a-deficient intestines. We found that Arid1a directly binds to the Sox9 promoter to support its expression. Remarkably, overexpression of Sox9 in intestinal epithelial cells abrogated the above phenotypes, although Sox9 overexpression in intestinal epithelial cells did not restore the expression levels of Wnt agonist and receptor genes. Furthermore, Sox9 overexpression permitted development of spheroids from Arid1a-deficient intestinal epithelial cells. In addition, deletion of Arid1a concomitant with Sox9 overexpression in Lgr5+ ISCs restores self-renewal in Arid1a-deleted Lgr5+ ISCs. These results indicate that Arid1a is indispensable for the maintenance of ISCs and intestinal homeostasis in mice. Mechanistically, this is mainly mediated by Sox9. Our data provide insights into the molecular mechanisms underlying maintenance of ISCs and intestinal homeostasis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Nucleares/metabolismo , Factor de Transcripción SOX9/metabolismo , Células Madre/metabolismo , Animales , Células Epiteliales/metabolismo , Homeostasis/fisiología , Intestinos/fisiología , Ratones , Regiones Promotoras Genéticas/fisiología , Factores de Transcripción , Vía de Señalización Wnt/fisiología
6.
Cancer Sci ; 112(2): 490-497, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33301642

RESUMEN

ATP-dependent chromatin remodeling complexes are a group of epigenetic regulators that can alter the assembly of nucleosomes and regulate the accessibility of transcription factors to DNA in order to modulate gene expression. One of these complexes, the SWI/SNF chromatin remodeling complex is mutated in more than 20% of human cancers. We have investigated the roles of the SWI/SNF complex in pancreatic ductal adenocarcinoma (PDA), which is the most lethal type of cancer. Here, we reviewed the recent literature regarding the role of the SWI/SNF complex in pancreatic tumorigenesis and current knowledge about therapeutic strategies targeting the SWI/SNF complex in PDA. The subunits of the SWI/SNF complex are mutated in 14% of human PDA. Recent studies have shown that they have context-dependent oncogenic or tumor-suppressive roles in pancreatic carcinogenesis. To target its tumor-suppressive properties, synthetic lethal strategies have recently been developed. In addition, their oncogenic properties could be novel therapeutic targets. The SWI/SNF subunits are potential therapeutic targets for PDA, and further understanding of the precise role of the SWI/SNF complex subunits in PDA is required for further development of novel strategies targeting SWI/SNF subunits against PDA.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pancreáticas/genética , Animales , Carcinogénesis/genética , Humanos , Factores de Transcripción/genética , Neoplasias Pancreáticas
7.
Gastroenterology ; 159(2): 682-696.e13, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32360551

RESUMEN

BACKGROUND & AIMS: SETDB1, a histone methyltransferase that trimethylates histone H3 on lysine 9, promotes development of several tumor types. We investigated whether SETDB1 contributes to development of pancreatic ductal adenocarcinoma (PDAC). METHODS: We performed studies with Ptf1aCre; KrasG12D; Setdb1f/f, Ptf1aCre; KrasG12D; Trp53f/+; Setdb1f/f, and Ptf1aCre; KrasG12D; Trp53f/f; Setdb1f/f mice to investigate the effects of disruption of Setdb1 in mice with activated KRAS-induced pancreatic tumorigenesis, with heterozygous or homozygous disruption of Trp53. We performed microarray analyses of whole-pancreas tissues from Ptf1aCre; KrasG12D; Setdb1f/f, and Ptf1aCre; KrasG12D mice and compared their gene expression patterns. Chromatin immunoprecipitation assays were performed using acinar cells isolated from pancreata with and without disruption of Setdb1. We used human PDAC cells for SETDB1 knockdown and inhibitor experiments. RESULTS: Loss of SETDB1 from pancreas accelerated formation of premalignant lesions in mice with pancreata that express activated KRAS. Microarray analysis revealed up-regulated expression of genes in the apoptotic pathway and genes regulated by p53 in SETDB1-deficient pancreata. Deletion of Setdb1 from pancreas prevented formation of PDACs, concomitant with increased apoptosis and up-regulated expression of Trp53 in mice heterozygous for disruption of Trp53. In contrast, pancreata of mice with homozygous disruption of Trp53 had no increased apoptosis, and PDACs developed. Chromatin immunoprecipitation revealed that SETDB1 bound to the Trp53 promoter to regulate its expression. Expression of an inactivated form of SETDB1 in human PDAC cells with wild-type TP53 resulted in TP53-induced apoptosis. CONCLUSIONS: We found that the histone methyltransferase SETDB1 is required for development of PDACs, induced by activated KRAS, in mice. SETDB1 inhibits apoptosis by regulating expression of p53. SETDB1 might be a therapeutic target for PDACs that retain p53 function.


Asunto(s)
Apoptosis , Carcinoma Ductal Pancreático/enzimología , Transformación Celular Neoplásica/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Neoplasias Pancreáticas/enzimología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Sitios de Unión , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Ratones Noqueados , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
8.
Endoscopy ; 53(6): 647-651, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-32961577

RESUMEN

BACKGROUND : Accurate preoperative assessment of the longitudinal extension of perihilar cholangiocarcinoma (PHCC) is essential for treatment planning. Mapping biopsies for PHCC remain challenging owing to technical difficulties and insufficient sample amounts. The aim of this study was to investigate the usefulness of a novel technique for mapping biopsies of PHCC. METHODS : Our novel method focused on a biliary stent delivery system for mapping biopsies. Fifty patients with PHCC undergoing endoscopic transpapillary mapping biopsy using the novel method were reviewed from August 2015 to June 2019. RESULTS : The median number of biopsy samples was six (range 1 - 17), and the rate of adequate sampling was 91.4 % (266 /291). Biopsy from the intrahepatic bile duct was possible in 82.0 % of patients (41 /50), and negative margins were confirmed in the resected specimens from 34 /39 patients who underwent surgery (87.2 %). None of the patients had post-endoscopic retrograde cholangiopancreatography pancreatitis. CONCLUSIONS : With our novel method, accurate assessment of the longitudinal extension of PHCC might be expected with minimal trauma to the duodenal papilla.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Tumor de Klatskin , Neoplasias de los Conductos Biliares/cirugía , Conductos Biliares Intrahepáticos , Biopsia , Colangiopancreatografia Retrógrada Endoscópica , Humanos
9.
Nature ; 524(7566): 462-5, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26258298

RESUMEN

The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.


Asunto(s)
Ciona intestinalis/citología , Ciona intestinalis/embriología , Neuronas/citología , Vertebrados/anatomía & histología , Vertebrados/embriología , Animales , Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Ectodermo/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Células HEK293 , Proteínas de Homeodominio/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Larva/citología , Larva/metabolismo , Datos de Secuencia Molecular , Neuronas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Vertebrados/fisiología
10.
Endoscopy ; 52(8): 664-668, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32316040

RESUMEN

BACKGROUND: Few reports have evaluated the effectiveness of laser-cut, covered, self-expandable metal stents (LC-CSEMS) for unresectable malignant distal biliary obstruction (MDBO) and whether reintervention is feasible after placement. We describe our experience with LC-CSEMS placement for unresectable MDBO. METHODS: Patients undergoing LC-CSEMS placement for unresectable MDBO from November 2014 to December 2018 were reviewed. Recurrent biliary obstruction (RBO), median time to RBO (TRBO), and reintervention were analyzed. RESULTS: 52 patients who underwent LC-CSEMS placement for unresectable MDBO were included in the analysis. The RBO rate was 15 % and the median TRBO was 445 days. Reintervention was attempted in nine patients and stent removal was successful in eight patients. CONCLUSIONS: Our experience suggests the effectiveness of LC-CSEMS in patients with unresectable MDBO in terms of stent patency and feasibility of reintervention.


Asunto(s)
Colestasis , Stents Metálicos Autoexpandibles , Colestasis/etiología , Colestasis/cirugía , Remoción de Dispositivos , Humanos , Rayos Láser , Estudios Retrospectivos , Stents
11.
Proc Natl Acad Sci U S A ; 114(23): 6028-6033, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533401

RESUMEN

Ci-opsin1 is a visible light-sensitive opsin present in the larval ocellus of an ascidian, Ciona intestinalis This invertebrate opsin belongs to the vertebrate visual and nonvisual opsin groups in the opsin phylogenetic tree. Ci-opsin1 contains candidate counterions (glutamic acid residues) at positions 113 and 181; the former is a newly acquired position in the vertebrate visual opsin lineage, whereas the latter is an ancestral position widely conserved among invertebrate opsins. Here, we show that Glu113 and Glu181 in Ci-opsin1 act synergistically as counterions, which imparts molecular properties to Ci-opsin1 intermediate between those of vertebrate- and invertebrate-type opsins. Synergy between the counterions in Ci-opsin1 was demonstrated by E113Q and E181Q mutants that exhibit a pH-dependent spectral shift, whereas only the E113Q mutation in vertebrate rhodopsin yields this spectral shift. On absorbing light, Ci-opsin1 forms an equilibrium between two intermediates with protonated and deprotonated Schiff bases, namely the MI-like and MII-like intermediates, respectively. Adding G protein caused the equilibrium to shift toward the MI-like intermediate, indicating that Ci-opsin1 has a protonated Schiff base in its active state, like invertebrate-type opsins. Ci-opsin1's G protein activation efficiency is between the efficiencies of vertebrate- and invertebrate-type opsins. Interestingly, the E113Y and E181S mutations change the molecular properties of Ci-opsin1 into those resembling invertebrate-type or bistable opsins and vertebrate ancient/vertebrate ancient-long or monostable opsins, respectively. These results strongly suggest that acquisition of counterion Glu113 changed the molecular properties of visual opsin in a vertebrate/tunicate common ancestor as a crucial step in the evolution of vertebrate visual opsins.


Asunto(s)
Opsinas/química , Opsinas/metabolismo , Opsinas/fisiología , Secuencia de Aminoácidos , Animales , Evolución Biológica , Ciona intestinalis/fisiología , Evolución Molecular , Proteínas de Unión al GTP/metabolismo , Ácido Glutámico/metabolismo , Filogenia , Receptores Acoplados a Proteínas G/metabolismo , Rodopsina/metabolismo , Opsinas de Bastones/metabolismo , Urocordados/fisiología
12.
Gut ; 68(5): 882-892, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-29798841

RESUMEN

OBJECTIVE: Nardilysin (NRDC), a zinc peptidase, exhibits multiple localisation-dependent functions including as an enhancer of ectodomain shedding in the extracellular space and a transcriptional coregulator in the nucleus. In this study, we investigated its functional role in exocrine pancreatic development, homeostasis and the formation of pancreatic ductal adenocarcinoma (PDA). DESIGN: We analysed Ptf1a-Cre; Nrdcflox/flox mice to investigate the impact of Nrdc deletion. Pancreatic acinar cells were isolated from Nrdcflox/flox mice and infected with adenovirus expressing Cre recombinase to examine the impact of Nrdc inactivation. Global gene expression in Nrdc-cKO pancreas was analysed compared with wild-type pancreas by microarray analysis. We also analysed Ptf1a-Cre; KrasG12D; Nrdcflox/flox mice to investigate the impact of Nrdc deletion in the context of oncogenic Kras. A total of 51 human samples of pancreatic intraepithelial lesions (PanIN) and PDA were examined by immunohistochemistry for NRDC. RESULTS: We found that pancreatic deletion of Nrdc leads to spontaneous chronic pancreatitis concomitant with acinar-to-ductal conversion, increased apoptosis and atrophic pancreas in mice. Acinar-to-ductal conversion was observed mainly through a non-cell autonomous mechanism, and the expression of several chemokines was significantly increased in Nrdc-null pancreatic acinar cells. Furthermore, pancreatic deletion of Nrdc dramatically accelerated KrasG12D -driven PanIN and subsequent PDA formation in mice. These data demonstrate a previously unappreciated anti-inflammatory and tumour suppressive functions of Nrdc in the pancreas in mice. Finally, absence of NRDC expression was observed in a subset of human PanIN and PDA. CONCLUSION: Nrdc inhibits pancreatitis and suppresses PDA initiation in mice.


Asunto(s)
Carcinoma Ductal Pancreático/prevención & control , Metaloendopeptidasas/fisiología , Neoplasias Pancreáticas/prevención & control , Pancreatitis/prevención & control , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Ratones , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pancreatitis/metabolismo , Pancreatitis/patología
13.
Gastroenterology ; 155(1): 194-209.e2, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29604291

RESUMEN

BACKGROUND & AIMS: The ARID1A gene encodes a protein that is part of the large adenosine triphosphate (ATP)-dependent chromatin remodeling complex SWI/SNF and is frequently mutated in human pancreatic ductal adenocarcinomas (PDACs). We investigated the functions of ARID1A during formation of PDACs in mice. METHODS: We performed studies with Ptf1a-Cre;KrasG12D mice, which express activated Kras in the pancreas and develop pancreatic intraepithelial neoplasias (PanINs), as well as those with disruption of Aird1a (Ptf1a-Cre;KrasG12D;Arid1af/f mice) or disruption of Brg1 (encodes a catalytic ATPase of the SWI/SNF complex) (Ptf1a-Cre;KrasG12D; Brg1f/fmice). Pancreatic ductal cells (PDCs) were isolated from Arid1af/f mice and from Arid1af/f;SOX9OE mice, which overexpress human SOX9 upon infection with an adenovirus-expressing Cre recombinase. Pancreatic tissues were collected from all mice and analyzed by histology and immunohistochemistry; cells were isolated and grown in 2-dimensional and 3-dimensional cultures. We performed microarray analyses to compare gene expression patterns in intraductal papillary mucinous neoplasms (IPMNs) from the different strains of mice. We obtained 58 samples of IPMNs and 44 samples of PDACs from patients who underwent pancreatectomy in Japan and analyzed them by immunohistochemistry. RESULTS: Ptf1a-Cre;KrasG12D mice developed PanINs, whereas Ptf1a-Cre;KrasG12D;Arid1af/f mice developed IPMNs and PDACs; IPMNs originated from PDCs. ARID1A-deficient IPMNs did not express SOX9. ARID1A-deficient PDCs had reduced expression of SOX9 and dedifferentiated in culture. Overexpression of SOX9 in these cells allowed them to differentiate and prevented dilation of ducts. Among mice with pancreatic expression of activated Kras, those with disruption of Arid1a developed fewer PDACs from IPMNs than mice with disruption of Brg1. ARID1A-deficient IPMNs had reduced activity of the mTOR pathway. Human IPMN and PDAC specimens had reduced levels of ARID1A, SOX9, and phosphorylated S6 (a marker of mTOR pathway activation). Levels of ARID1A correlated with levels of SOX9 and phosphorylated S6. CONCLUSIONS: ARID1A regulates expression of SOX9, activation of the mTOR pathway, and differentiation of PDCs. ARID1A inhibits formation of PDACs from IPMNs in mice with pancreatic expression of activated KRAS and is down-regulated in IPMN and PDAC tissues from patients.


Asunto(s)
Adenocarcinoma in Situ/genética , Carcinoma Ductal Pancreático/genética , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Conductos Pancreáticos/citología , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Factor de Transcripción SOX9/genética , Adenocarcinoma in Situ/metabolismo , Animales , Carcinogénesis/genética , Carcinoma Ductal Pancreático/metabolismo , Técnicas de Cultivo de Célula , Ratones , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Factores de Transcripción
14.
Gut ; 65(8): 1322-32, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26964842

RESUMEN

OBJECTIVE: IgG4-related disease (IgG4-RD) is a systemic disease characterised by elevated serum IgG4 and IgG4-positive lymphoplasmacytic infiltration in the affected tissues. The pathogenic role of IgGs, including IgG4, in patients with IgG4-RD, however, is unknown. DESIGN: We examined the pathogenic activity of circulating IgGs in patients with IgG4-RD by injecting their IgGs into neonatal male Balb/c mice. Binding of patient IgGs to pancreatic tissue was also analysed in an ex vivo mouse organ culture model and in tissue samples from patients with autoimmune pancreatitis (AIP). RESULTS: Subcutaneous injection of patient IgG, but not control IgG, resulted in pancreatic and salivary gland injuries. Pancreatic injury was also induced by injecting patient IgG1 or IgG4, with more destructive changes induced by IgG1 than by IgG4. The potent pathogenic activity of patient IgG1 was significantly inhibited by simultaneous injection of patient IgG4. Binding of patient IgG, especially IgG1 and IgG4, to pancreatic tissue was confirmed in both the mouse model and AIP tissue samples. CONCLUSIONS: IgG1 and IgG4 from patients with IgG4-RD have pathogenic activities through binding affected tissues in neonatal mice.


Asunto(s)
Enfermedades Autoinmunes , Inmunoglobulina G , Páncreas , Pancreatitis , Glándulas Salivales , Animales , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/patología , Técnicas de Cultivo de Célula , Modelos Animales de Enfermedad , Humanos , Inmunoglobulina G/administración & dosificación , Inmunoglobulina G/sangre , Masculino , Ratones , Páncreas/inmunología , Páncreas/patología , Pancreatitis/inmunología , Pancreatitis/patología , Glándulas Salivales/inmunología , Glándulas Salivales/patología
15.
Nat Genet ; 38(6): 674-81, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16682973

RESUMEN

The molecular basis of nephronophthisis, the most frequent genetic cause of renal failure in children and young adults, and its association with retinal degeneration and cerebellar vermis aplasia in Joubert syndrome are poorly understood. Using positional cloning, we here identify mutations in the gene CEP290 as causing nephronophthisis. It encodes a protein with several domains also present in CENPF, a protein involved in chromosome segregation. CEP290 (also known as NPHP6) interacts with and modulates the activity of ATF4, a transcription factor implicated in cAMP-dependent renal cyst formation. NPHP6 is found at centrosomes and in the nucleus of renal epithelial cells in a cell cycle-dependent manner and in connecting cilia of photoreceptors. Abrogation of its function in zebrafish recapitulates the renal, retinal and cerebellar phenotypes of Joubert syndrome. Our findings help establish the link between centrosome function, tissue architecture and transcriptional control in the pathogenesis of cystic kidney disease, retinal degeneration, and central nervous system development.


Asunto(s)
Factor de Transcripción Activador 4/genética , Antígenos de Neoplasias/genética , Mutación , Proteínas de Neoplasias/genética , Animales , Proteínas de Ciclo Celular , Proteínas del Citoesqueleto , Femenino , Ligamiento Genético , Humanos , Hibridación in Situ , Masculino , Linaje , Síndrome , Pez Cebra
16.
Nat Genet ; 37(3): 282-8, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15723066

RESUMEN

Nephronophthisis (NPHP) is the most frequent genetic cause of chronic renal failure in children. Identification of four genes mutated in NPHP subtypes 1-4 (refs. 4-9) has linked the pathogenesis of NPHP to ciliary functions. Ten percent of affected individuals have retinitis pigmentosa, constituting the renal-retinal Senior-Loken syndrome (SLSN). Here we identify, by positional cloning, mutations in an evolutionarily conserved gene, IQCB1 (also called NPHP5), as the most frequent cause of SLSN. IQCB1 encodes an IQ-domain protein, nephrocystin-5. All individuals with IQCB1 mutations have retinitis pigmentosa. Hence, we examined the interaction of nephrocystin-5 with RPGR (retinitis pigmentosa GTPase regulator), which is expressed in photoreceptor cilia and associated with 10-20% of retinitis pigmentosa. We show that nephrocystin-5, RPGR and calmodulin can be coimmunoprecipitated from retinal extracts, and that these proteins localize to connecting cilia of photoreceptors and to primary cilia of renal epithelial cells. Our studies emphasize the central role of ciliary dysfunction in the pathogenesis of SLSN.


Asunto(s)
Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/metabolismo , Calmodulina/metabolismo , Proteínas del Ojo/metabolismo , Mutación , Secuencia de Aminoácidos , Northern Blotting , Proteínas de Unión a Calmodulina/química , Femenino , Humanos , Masculino , Datos de Secuencia Molecular , Linaje , Síndrome , Técnicas del Sistema de Dos Híbridos
17.
Development ; 137(13): 2197-203, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20530547

RESUMEN

Ascidian larvae have a hollow, dorsal central nervous system that shares many morphological features with vertebrate nervous systems yet is composed of very few cells. We show here that a null mutation in the gene dmrt1 in the ascidian Ciona savignyi results in profound abnormalities in the development of the sensory vesicle (brain), as well as other anterior ectodermal derivatives, including the palps and oral siphon primordium (OSP). Although the phenotype of the mutant embryos is variable, the majority have a complete loss of the most anterior structures (palps and OSP) and extensive disruption of sensory structures, such as the light-sensitive ocellus, in the sensory vesicle. dmrt1 is expressed early in the blastula embryo in a small group of presumptive ectodermal cells as they become restricted to anterior neural, OSP and palp fates. Despite the early and restricted expression of dmrt1, we were unable, using several independent criteria, to observe a defect in the mutant embryos until the early tailbud stage. We speculate that the variability and late onset in the phenotype may be due to partially overlapping activities of other gene products.


Asunto(s)
Factores de Transcripción/metabolismo , Urocordados/metabolismo , Animales , Sistema Nervioso Central/embriología , Mutación , Urocordados/genética
18.
Oncogene ; 42(26): 2139-2152, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37198398

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. We previously reported that chromatin remodeler Brg1 is essential for acinar cell-derived PDAC formation in mice. However, the functional role of Brg1 in established PDAC and its metastasis remains unknown. Here, we investigated the importance of Brg1 for established PDAC by using a mouse model with a dual recombinase system. We discovered that Brg1 was a critical player for the cell survival and growth of spontaneously developed PDAC in mice. In addition, Brg1 was essential for metastasis of PDAC cells by inhibiting apoptosis in splenic injection and peritoneal dissemination models. Moreover, cancer stem-like property was compromised in PDAC cells by Brg1 ablation. Mechanistically, the hypoxia pathway was downregulated in Brg1-deleted mouse PDAC and BRG1-low human PDAC. Brg1 was essential for HIF-1α to bind to its target genes to augment the hypoxia pathway, which was important for PDAC cells to maintain their stem-like properties and to metastasize to the liver. Human PDAC cells with high BRG1 expression were more susceptible to BRG1 suppression. In conclusion, Brg1 plays a critical role for cell survival, stem-like property and metastasis of PDAC through the regulation of hypoxia pathway, and thus could be a novel therapeutic target for PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Hipoxia , Neoplasias Pancreáticas/patología , Animales , Ratones , Neoplasias Pancreáticas
19.
J Clin Invest ; 133(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37712427

RESUMEN

RECK is downregulated in various human cancers; however, how RECK inactivation affects carcinogenesis remains unclear. We addressed this issue in a pancreatic ductal adenocarcinoma (PDAC) mouse model and found that pancreatic Reck deletion dramatically augmented the spontaneous development of PDAC with a mesenchymal phenotype, which was accompanied by increased liver metastases and decreased survival. Lineage tracing revealed that pancreatic Reck deletion induced epithelial-mesenchymal transition (EMT) in PDAC cells, giving rise to inflammatory cancer-associated fibroblast-like cells in mice. Splenic transplantation of Reck-null PDAC cells resulted in numerous liver metastases with a mesenchymal phenotype, whereas reexpression of RECK markedly reduced metastases and changed the PDAC tumor phenotype into an epithelial one. Consistently, low RECK expression correlated with low E-cadherin expression, poor differentiation, metastasis, and poor prognosis in human PDAC. RECK reexpression in the PDAC cells was found to downregulate MMP2 and MMP3, with a concomitant increase in E-cadherin and decrease in EMT-promoting transcription factors. An MMP inhibitor recapitulated the effects of RECK on the expression of E-cadherin and EMT-promoting transcription factors and invasive activity. These results establish the authenticity of RECK as a pancreatic tumor suppressor, provide insights into its underlying mechanisms, and support the idea that RECK could be an important therapeutic effector against human PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Cadherinas/genética , Carcinoma Ductal Pancreático/genética , Transición Epitelial-Mesenquimal/genética , Proteínas Ligadas a GPI/genética , Neoplasias Hepáticas/genética , Páncreas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
20.
Pharmaceutics ; 15(12)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38139993

RESUMEN

Pancreatic cancer remains a formidable challenge due to limited treatment options and its aggressive nature. In recent years, the naturally occurring anticancer compound juglone has emerged as a potential therapeutic candidate, showing promising results in inhibiting tumor growth and inducing cancer cell apoptosis. However, concerns over its toxicity have hampered juglone's clinical application. To address this issue, we have explored the use of polymeric micelles as a delivery system for juglone in pancreatic cancer treatment. These micelles, formulated using Poloxamer 407 and D-α-Tocopherol polyethylene glycol 1000 succinate, offer an innovative solution to enhance juglone's therapeutic potential while minimizing toxicity. In-vitro studies have demonstrated that micelle-formulated juglone (JM) effectively decreases proliferation and migration and increases apoptosis in pancreatic cancer cell lines. Importantly, in-vivo, JM exhibited no toxicity, allowing for increased dosing frequency compared to free drug administration. In mice, JM significantly reduced tumor growth in subcutaneous xenograft and orthotopic pancreatic cancer models. Beyond its direct antitumor effects, JM treatment also influenced the tumor microenvironment. In immunocompetent mice, JM increased immune cell infiltration and decreased stromal deposition and activation markers, suggesting an immunomodulatory role. To understand JM's mechanism of action, we conducted RNA sequencing and subsequent differential expression analysis on tumors that were treated with JM. The administration of JM treatment reduced the expression levels of the oncogenic protein MYC, thereby emphasizing its potential as a focused, therapeutic intervention. In conclusion, the polymeric micelles-mediated delivery of juglone holds excellent promise in pancreatic cancer therapy. This approach offers improved drug delivery, reduced toxicity, and enhanced therapeutic efficacy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA