Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Stem Cells ; 40(4): 423-434, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35278073

RESUMEN

Mesenchymal stem cells (MSCs) respond to environmental forces with both cytoskeletal re-structuring and activation of protein chaperones of mechanical information, ß-catenin, and yes-associated protein 1 (YAP1). To function, MSCs must differentiate between dynamic forces such as cyclic strains of extracellular matrix due to physical activity and static strains due to ECM stiffening. To delineate how MSCs recognize and respond differently to both force types, we compared effects of dynamic (200 cycles × 2%) and static (1 × 2% hold) strain on nuclear translocation of ß-catenin and YAP1 at 3 hours after force application. Dynamic strain induced nuclear accumulation of ß-catenin, and increased cytoskeletal actin structure and cell stiffness, but had no effect on nuclear YAP1 levels. Critically, both nuclear actin and nuclear stiffness increased along with dynamic strain-induced ß-catenin transport. Augmentation of cytoskeletal structure using either static strain or lysophosphatidic acid did not increase nuclear content of ß-catenin or actin, but induced robust nuclear increase in YAP1. As actin binds ß-catenin, we considered whether ß-catenin, which lacks a nuclear localization signal, was dependent on actin to gain entry to the nucleus. Knockdown of cofilin-1 (Cfl1) or importin-9 (Ipo9), which co-mediate nuclear transfer of G-actin, prevented dynamic strain-mediated nuclear transfer of both ß-catenin and actin. In sum, dynamic strain induction of actin re-structuring promotes nuclear transport of G-actin, concurrently supporting nuclear access of ß-catenin via mechanisms used for actin transport. Thus, dynamic and static strain activate alternative mechanoresponses reflected by differences in the cellular distributions of actin, ß-catenin, and YAP1.


Asunto(s)
Células Madre Mesenquimatosas , beta Catenina , Actinas/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Células Madre Mesenquimatosas/metabolismo , beta Catenina/metabolismo
2.
Stem Cells ; 38(1): 102-117, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31648392

RESUMEN

Nuclear actin plays a critical role in mediating mesenchymal stem cell (MSC) fate commitment. In marrow-derived MSCs, the principal diaphanous-related formin Diaph3 (mDia2) is present in the nucleus and regulates intranuclear actin polymerization, whereas Diaph1 (mDia1) is localized to the cytoplasm and controls cytoplasmic actin polymerization. We here show that mDia2 can be used as a tool to query actin-lamin nucleoskeletal structure. Silencing mDia2 affected the nucleoskeletal lamin scaffold, altering nuclear morphology without affecting cytoplasmic actin cytoskeleton, and promoted MSC differentiation. Attempting to target intranuclear actin polymerization by silencing mDia2 led to a profound loss in lamin B1 nuclear envelope structure and integrity, increased nuclear height, and reduced nuclear stiffness without compensatory changes in other actin nucleation factors. Loss of mDia2 with the associated loss in lamin B1 promoted Runx2 transcription and robust osteogenic differentiation and suppressed adipogenic differentiation. Hence, mDia2 is a potent tool to query intranuclear actin-lamin nucleoskeletal structure, and its presence serves to retain multipotent stromal cells in an undifferentiated state.


Asunto(s)
Lamina Tipo B/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , NADPH Deshidrogenasa/metabolismo , Actinas/metabolismo , Animales , Diferenciación Celular/fisiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/biosíntesis , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Técnicas de Silenciamiento del Gen , Ratones , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , NADPH Deshidrogenasa/deficiencia , NADPH Deshidrogenasa/genética , Membrana Nuclear/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis
3.
Int J Mol Sci ; 22(12)2021 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-34205295

RESUMEN

Mesenchymal stem cells (MSCs) maintain the musculoskeletal system by differentiating into multiple lineages, including osteoblasts and adipocytes. Mechanical signals, including strain and low-intensity vibration (LIV), are important regulators of MSC differentiation via control exerted through the cell structure. Lamin A/C is a protein vital to the nuclear architecture that supports chromatin organization and differentiation and contributes to the mechanical integrity of the nucleus. We investigated whether lamin A/C and mechanoresponsiveness are functionally coupled during adipogenesis in MSCs. siRNA depletion of lamin A/C increased the nuclear area, height, and volume and decreased the circularity and stiffness. Lamin A/C depletion significantly decreased markers of adipogenesis (adiponectin, cellular lipid content) as did LIV treatment despite depletion of lamin A/C. Phosphorylation of focal adhesions in response to mechanical challenge was also preserved during loss of lamin A/C. RNA-seq showed no major adipogenic transcriptome changes resulting from LIV treatment, suggesting that LIV regulation of adipogenesis may not occur at the transcriptional level. We observed that during both lamin A/C depletion and LIV, interferon signaling was downregulated, suggesting potentially shared regulatory mechanism elements that could regulate protein translation. We conclude that the mechanoregulation of adipogenesis and the mechanical activation of focal adhesions function independently from those of lamin A/C.


Asunto(s)
Adipogénesis , Adhesiones Focales/fisiología , Lamina Tipo A/fisiología , Células Madre Mesenquimatosas/fisiología , Animales , Módulo de Elasticidad , Interferones/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Transducción de Señal , Proteínas de Unión a Telómeros/metabolismo , Vibración
4.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32244989

RESUMEN

The Center of Biomedical Research Excellence in Matrix Biology strives to improve our understanding of extracellular matrix at molecular, cellular, tissue, and organismal levels to generate new knowledge about pathophysiology, normal development, and regenerative medicine. The primary goals of the Center are to i) support junior investigators, ii) enhance the productivity of established scientists, iii) facilitate collaboration between both junior and established researchers, and iv) build biomedical research infrastructure that will support research relevant to cell-matrix interactions in disease progression, tissue repair and regeneration, and v) provide access to instrumentation and technical support. A Pilot Project program provides funding to investigators who propose applying their expertise to matrix biology questions. Support from the National Institute of General Medical Sciences at the National Institutes of Health that established the Center of Biomedical Research Excellence in Matrix Biology has significantly enhanced the infrastructure and the capabilities of researchers at Boise State University, leading to new approaches that address disease diagnosis, prevention, and treatment. New multidisciplinary collaborations have been formed with investigators who may not have previously considered how their biomedical research programs addressed fundamental and applied questions involving the extracellular matrix. Collaborations with the broader matrix biology community are encouraged.


Asunto(s)
Investigación Biomédica , Conducta Cooperativa , Matriz Extracelular/metabolismo , Investigadores , Comités Consultivos , Selección de Profesión , Humanos , Estudiantes
5.
Stem Cells ; 35(6): 1624-1635, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28371128

RESUMEN

Actin structure contributes to physiologic events within the nucleus to control mesenchymal stromal cell (MSC) differentiation. Continuous cytochalasin D (Cyto D) disruption of the MSC actin cytoskeleton leads to osteogenic or adipogenic differentiation, both requiring mass transfer of actin into the nucleus. Cyto D remains extranuclear, thus intranuclear actin polymerization is potentiated by actin transfer: we asked whether actin structure affects differentiation. We show that secondary actin filament branching via the Arp2/3 complex is required for osteogenesis and that preventing actin branching stimulates adipogenesis, as shown by expression profiling of osteogenic and adipogenic biomarkers and unbiased RNA-seq analysis. Mechanistically, Cyto D activates osteoblast master regulators (e.g., Runx2, Sp7, Dlx5) and novel coregulated genes (e.g., Atoh8, Nr4a3, Slfn5). Formin-induced primary actin filament formation is critical for Arp2/3 complex recruitment: osteogenesis is prevented by silencing of the formin mDia1, but not its paralog mDia2. Furthermore, while inhibition of actin, branching is a potent adipogenic stimulus, silencing of either mDia1 or mDia2 blocks adipogenic gene expression. We propose that mDia1, which localizes in the cytoplasm of multipotential MSCs and traffics into the nucleus after cytoskeletal disruption, joins intranuclear mDia2 to facilitate primary filament formation before mediating subsequent branching via Arp2/3 complex recruitment. The resulting intranuclear branched actin network specifies osteogenic differentiation, while actin polymerization in the absence of Arp2/3 complex-mediated secondary branching causes adipogenic differentiation. Stem Cells 2017;35:1624-1635.


Asunto(s)
Actinas/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Adipogénesis/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Citocalasina D/farmacología , Silenciador del Gen , Indoles/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones , Osteogénesis/efectos de los fármacos , PPAR gamma/metabolismo , Polimerizacion
6.
Exerc Sport Sci Rev ; 46(1): 42-47, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28795956

RESUMEN

Marrow mesenchymal stem cells supply bone osteoblasts and adipocytes. Exercise effects to increase bone and decrease fat involve transfer of signals from the cytoplasm into the nucleus to regulate gene expression. We propose that exercise control of stem cell fate relies on structural connections that terminate in the nucleus and involve intranuclear actin structures that regulate epigenetic gene expression.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Ejercicio Físico/fisiología , Células Madre Mesenquimatosas/citología , Actinas/fisiología , Adipocitos/fisiología , Citoesqueleto/fisiología , Expresión Génica , Humanos , Matriz Nuclear/fisiología , Osteoblastos/fisiología
7.
Stem Cells ; 34(6): 1455-63, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26891206

RESUMEN

Numerous factors including chemical, hormonal, spatial, and physical cues determine stem cell fate. While the regulation of stem cell differentiation by soluble factors is well-characterized, the role of mechanical force in the determination of lineage fate is just beginning to be understood. Investigation of the role of force on cell function has largely focused on "outside-in" signaling, initiated at the plasma membrane. When interfaced with the extracellular matrix, the cell uses integral membrane proteins, such as those found in focal adhesion complexes to translate force into biochemical signals. Akin to these outside-in connections, the internal cytoskeleton is physically linked to the nucleus, via proteins that span the nuclear membrane. Although structurally and biochemically distinct, these two forms of mechanical coupling influence stem cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of how mechanical coupling occurs at the plasma and nuclear membranes. We also discuss the role of force on stem cell differentiation, with focus on the biochemical signals generated at the cell membrane and the nucleus, and how those signals influence various diseases. While the interaction of stem cells with their physical environment and how they respond to force is complex, an understanding of the mechanical regulation of these cells is critical in the design of novel therapeutics to combat diseases associated with aging, cancer, and osteoporosis. Stem Cells 2016;34:1455-1463.


Asunto(s)
Linaje de la Célula , Membrana Celular/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Membrana Nuclear/metabolismo , Animales , Fenómenos Biomecánicos , Diferenciación Celular , Humanos
8.
Stem Cells ; 33(10): 3065-76, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26140478

RESUMEN

Depolymerization of the actin cytoskeleton induces nuclear trafficking of regulatory proteins and global effects on gene transcription. We here show that in mesenchymal stem cells (MSCs), cytochalasin D treatment causes rapid cofilin-/importin-9-dependent transfer of G-actin into the nucleus. The continued presence of intranuclear actin, which forms rod-like structures that stain with phalloidin, is associated with induction of robust expression of the osteogenic genes osterix and osteocalcin in a Runx2-dependent manner, and leads to acquisition of osteogenic phenotype. Adipogenic differentiation also occurs, but to a lesser degree. Intranuclear actin leads to nuclear export of Yes-associated protein (YAP); maintenance of nuclear YAP inhibits Runx2 initiation of osteogenesis. Injection of cytochalasin into the tibial marrow space of live mice results in abundant bone formation within the space of 1 week. In sum, increased intranuclear actin forces MSC into osteogenic lineage through controlling Runx2 activity; this process may be useful for clinical objectives of forming bone.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Citoesqueleto de Actina/genética , Factores Despolimerizantes de la Actina/metabolismo , Animales , Linaje de la Célula/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Citocalasina D/administración & dosificación , Ratones , Faloidina/metabolismo , Transporte de Proteínas/genética
9.
Stem Cells ; 33(6): 2063-76, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25787126

RESUMEN

A cell's ability to recognize and adapt to the physical environment is central to its survival and function, but how mechanical cues are perceived and transduced into intracellular signals remains unclear. In mesenchymal stem cells (MSCs), high-magnitude substrate strain (HMS, ≥2%) effectively suppresses adipogenesis via induction of focal adhesion (FA) kinase (FAK)/mTORC2/Akt signaling generated at FAs. Physiologic systems also rely on a persistent barrage of low-level signals to regulate behavior. Exposing MSC to extremely low-magnitude mechanical signals (LMS) suppresses adipocyte formation despite the virtual absence of substrate strain (<0.001%), suggesting that LMS-induced dynamic accelerations can generate force within the cell. Here, we show that MSC response to LMS is enabled through mechanical coupling between the cytoskeleton and the nucleus, in turn activating FAK and Akt signaling followed by FAK-dependent induction of RhoA. While LMS and HMS synergistically regulated FAK activity at the FAs, LMS-induced actin remodeling was concentrated at the perinuclear domain. Preventing nuclear-actin cytoskeleton mechanocoupling by disrupting linker of nucleoskeleton and cytoskeleton (LINC) complexes inhibited these LMS-induced signals as well as prevented LMS repression of adipogenic differentiation, highlighting that LINC connections are critical for sensing LMS. In contrast, FAK activation by HMS was unaffected by LINC decoupling, consistent with signal initiation at the FA mechanosome. These results indicate that the MSC responds to its dynamic physical environment not only with "outside-in" signaling initiated by substrate strain, but vibratory signals enacted through the LINC complex enable matrix independent "inside-inside" signaling.


Asunto(s)
Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Células Madre Mesenquimatosas/citología , Adipocitos/metabolismo , Adipogénesis/fisiología , Animales , Células Cultivadas , Humanos , Ratones Endogámicos C57BL
10.
Stem Cells ; 31(11): 2528-37, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23836527

RESUMEN

Mechanical strain provides an anti-adipogenic, pro-osteogenic stimulus to mesenchymal stem cells (MSC) through generating intracellular signals and via cytoskeletal restructuring. Recently, mTORC2 has been shown to be a novel mechanical target critical for the anti-adipogenic signal leading to preservation of ß-catenin. As mechanical activation of mTORC2 requires focal adhesions (FAs), we asked whether proximal signaling involved Src and FAK, which are early responders to integrin-FA engagement. Application of mechanical strain to marrow-derived MSCs was unable to activate mTORC2 when Src family kinases were inhibited. Fyn, but not Src, was specifically required for mechanical activation of mTORC2 and was recruited to FAs after strain. Activation of mTORC2 was further diminished following FAK inhibition, and as FAK phosphorylation (Tyr-397) required Fyn activity, provided evidence of Fyn/FAK cooperativity. Inhibition of Fyn also prevented mechanical activation of RhoA as well as mechanically induced actin stress fiber formation. We thus asked whether RhoA activation by strain was dependent on mTORC2 downstream of Fyn. Inhibition of mTORC2 or its downstream substrate, Akt, both prevented mechanical RhoA activation, indicating that Fyn/FAK affects cytoskeletal structure via mTORC2. We then sought to ascertain whether this Fyn-initiated signal pathway modulated MSC lineage decisions. siRNA knockdown of Fyn, but not Src, led to rapid attainment of adipogenic phenotype with significant increases in adipocyte protein 2, peroxisome proliferator-activated receptor gamma, adiponectin, and perilipin. As such, Fyn expression in mdMSCs contributes to basal cytoskeletal architecture and, when associated with FAs, functions as a proximal mechanical effector for environmental signals that influence MSC lineage allocation.


Asunto(s)
Adipogénesis/fisiología , Células Madre Mesenquimatosas/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Técnicas de Cultivo de Célula , Humanos , Células MCF-7 , Diana Mecanicista del Complejo 2 de la Rapamicina , Células Madre Mesenquimatosas/citología , Complejos Multiproteicos/genética , Fosforilación , Proteínas Proto-Oncogénicas c-fyn/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Transfección
11.
J Orthop Res ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602438

RESUMEN

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex is a crucial connective component between the nuclear envelope and the cytoskeleton involving various cellular processes including nuclear positioning, nuclear architecture, and mechanotransduction. How LINC complexes regulate bone formation in vivo, however, is not well understood. To start bridging this gap, here we created a LINC disruption murine model using transgenic mice expressing Cre recombinase enzyme under the control of the Osterix (Osx-Cre) which is primarily active in pre-osteoblasts and floxed Tg(CAG-LacZ/EGFP-KASH2) mice. Tg(CAG-LacZ/EGFP-KASH2) mice contain a lox-STOP-lox flanked LacZ gene which is deleted upon cre recombination allowing for the overexpression of an EGFP-KASH2 fusion protein. This overexpressed protein disrupts endogenous Nesprin-Sun binding leading to disruption of LINC complexes. Thus, crossing these two lines results in an  Osx- driven  LINC  disruption (ODLD) specific to pre-osteoblasts. In this study, we investigated how this LINC disruption affects exercise-induced bone accrual. ODLD cells had decreased osteogenic and adipogenic potential in vitro compared to non-disrupted controls and sedentary ODLD mice showed decreased bone quality at 8 weeks. Upon access to a voluntary running wheel, ODLD animals showed increased running time and distance; however, our 6-week exercise intervention did not significantly affect bone microarchitecture and bone mechanical properties.

12.
Nat Commun ; 15(1): 4095, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750021

RESUMEN

Polymerized ß-actin may provide a structural basis for chromatin accessibility and actin transport into the nucleus can guide mesenchymal stem cell (MSC) differentiation. Using MSC, we show that using CK666 to inhibit Arp2/3 directed secondary actin branching results in decreased nuclear actin structure, and significantly alters chromatin access measured with ATACseq at 24 h. The ATAC-seq results due to CK666 are distinct from those caused by cytochalasin D (CytoD), which enhances nuclear actin structure. In addition, nuclear visualization shows Arp2/3 inhibition decreases pericentric H3K9me3 marks. CytoD, alternatively, induces redistribution of H3K27me3 marks centrally. Such alterations in chromatin landscape are consistent with differential gene expression associated with distinctive differentiation patterns. Further, knockdown of the non-enzymatic monomeric actin binding protein, Arp4, leads to extensive chromatin unpacking, but only a modest increase in transcription, indicating an active role for actin-Arp4 in transcription. These data indicate that dynamic actin remodeling can regulate chromatin interactions.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina , Actinas , Núcleo Celular , Cromatina , Células Madre Mesenquimatosas , Actinas/metabolismo , Cromatina/metabolismo , Núcleo Celular/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Animales , Diferenciación Celular , Citocalasina D/farmacología , Histonas/metabolismo , Humanos , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Ratones , Ensamble y Desensamble de Cromatina
13.
J Orthop Res ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650103

RESUMEN

While it is well-established that early detection and initiation of treatment of developmental dysplasia of the hip (DDH) is crucial to successful clinical outcomes, research on the mechanics of the hip joint during healthy and pathological hip development in infants is limited. Quantification of mechanical behavior in both the healthy and dysplastic developing joints may provide insight into the causes of DDH and facilitate innovation in treatment options. In this study, subject-specific three-dimensional finite element models of two pigs were developed: one healthy pig and one pig with induced dysplasia in the right hindlimb. The objectives of this study were: (1) to characterize mechanical behavior in the acetabular articular cartilage during a normal walking cycle by analyzing six metrics: contact pressure, contact area, strain energy density, von Mises stress, principal stress, and principal strain; and (2) to quantify the effect on joint mechanics of three anatomic abnormalities previously identified as related to DDH: variation in acetabular coverage, morphological changes in the femoral head, and changes in the articular cartilage. All metrics, except the contact area, were elevated in the dysplastic joint. Morphological changes in the femoral head were determined to be the most significant factors in elevating contact pressure in the articular cartilage, while the effects of acetabular coverage and changes in the articular cartilage were less significant. The quantification of the pathomechanics of DDH in this study can help identify key mechanical factors that restore normal hip development and can lead to mechanics-driven treatment options.

14.
bioRxiv ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38045225

RESUMEN

The advent of extended-duration human spaceflight demands a better comprehension of the physiological impacts of microgravity. One primary concern is the adverse impact on the musculoskeletal system, including muscle atrophy and bone density reduction. Ground-based microgravity simulations have provided insights, with vibrational bioreactors emerging as potential mitigators of these negative effects. Despite the potential they have, the adaptation of vibrational bioreactors for space remains unfulfilled, resulting in a significant gap in microgravity research. This paper introduces the first automated low-intensity vibrational (LIV) bioreactor designed specifically for the International Space Station (ISS) environment. Our research covers the bioreactor's design and characterization, the selection of an optimal linear guide for consistent 1-axis acceleration, a thorough analysis of its thermal and diffusion dynamics, and the pioneering use of BioMed Clear resin for enhanced scaffold design. This advancement sets the stage for more authentic space-based biological studies, vital for ensuring the safety of future space explorations.

15.
Obes Facts ; 17(2): 145-157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38224679

RESUMEN

INTRODUCTION: Longitudinal effect of diet-induced obesity on bone is uncertain. Prior work showed both no effect and a decrement in bone density or quality when obesity begins prior to skeletal maturity. We aimed to quantify long-term effects of obesity on bone and bone marrow adipose tissue (BMAT) in adulthood. METHODS: Skeletally mature, female C57BL/6 mice (n = 70) aged 12 weeks were randomly allocated to low-fat diet (LFD; 10% kcal fat; n = 30) or high-fat diet (HFD; 60% kcal fat; n = 30), with analyses at 12, 15, 18, and 24 weeks (n = 10/group). Tibial microarchitecture was analyzed by µCT, and volumetric BMAT was quantified via 9.4T MRI/advanced image analysis. Histomorphometry of adipocytes and osteoclasts, and qPCR were performed. RESULTS: Body weight and visceral white adipose tissue accumulated in response to HFD started in adulthood. Trabecular bone parameters declined with advancing experimental age. BV/TV declined 22% in LFD (p = 0.0001) and 17% in HFD (p = 0.0022) by 24 weeks. HFD failed to appreciably alter BV/TV and had negligible impact on other microarchitecture parameters. Both dietary intervention and age accounted for variance in BMAT, with regional differences: distal femoral BMAT was more responsive to diet, while proximal femoral BMAT was more attenuated by age. BMAT increased 60% in the distal metaphysis in HFD at 18 and 24 weeks (p = 0.0011). BMAT in the proximal femoral diaphysis, unchanged by diet, decreased 45% due to age (p = 0.0002). Marrow adipocyte size via histomorphometry supported MRI quantification. Osteoclast number did not differ between groups. Tibial qPCR showed attenuation of some adipose, metabolism, and bone genes. A regulator of fatty acid ß-oxidation, cytochrome C (CYCS), was 500% more abundant in HFD bone (p < 0.0001; diet effect). CYCS also increased due to age, but to a lesser extent. HFD mildly increased OCN, TRAP, and SOST. CONCLUSIONS: Long-term high fat feeding after skeletal maturity, despite upregulation of visceral adiposity, body weight, and BMAT, failed to attenuate bone microarchitecture. In adulthood, we found aging to be a more potent regulator of microarchitecture than diet-induced obesity.


Asunto(s)
Adiposidad , Osteoporosis , Ratones , Animales , Femenino , Médula Ósea/metabolismo , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Peso Corporal , Osteoporosis/metabolismo , Dieta Alta en Grasa/efectos adversos
16.
Curr Osteoporos Rep ; 11(1): 36-44, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23371467

RESUMEN

The delivery of mechanical signals to the skeleton using vibration is being considered as a non-drug treatment of osteoporosis. Delivered over a range of magnitudes and frequencies, vibration has been shown to be both anabolic and anti-catabolic to the musculoskeletal tissues, yet caution must be emphasized as these mechanical signals, particularly chronic exposure to higher intensities, is a known pathogen to many physiological systems. In contrast, accumulating preclinical and clinical evidence indicates that low intensity vibration (LIV) improves bone quality through regulating the activity of cells responsible for bone remodeling, as well as biasing the differentiation fate of their mesenchymal and hematopoietic stem cell progenitors. In vitro studies provide insights into the biologic mechanisms of LIV, and indicate that cells respond to these low magnitude signals through a distinct mechanism driven not by matrix strain but acceleration. These cell, animal, and human studies may represent the foundation of a safe, non-drug means to protect and improve the musculoskeletal system of the elderly, injured, and infirmed.


Asunto(s)
Osteoporosis/prevención & control , Osteoporosis/terapia , Vibración/uso terapéutico , Animales , Remodelación Ósea/fisiología , Huesos/fisiología , Modelos Animales de Enfermedad , Humanos , Mecanotransducción Celular/fisiología , Ratones , Osteoporosis/fisiopatología , Medición de Riesgo , Vibración/efectos adversos
17.
bioRxiv ; 2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37662368

RESUMEN

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex is a crucial connective component between the nuclear envelope and the cytoskeleton involving various cellular processes including nuclear positioning, nuclear architecture, and mechanotransduction. How LINC complexes regulate bone formation in vivo, however, is not well understood. To start bridging this gap, here we created a LINC disruption murine model using transgenic mice expressing Cre recombinase enzyme under the control of the Osterix (Osx-Cre) which is primarily active in pre-osteoblasts and floxed Tg(CAG-LacZ/EGFP-KASH2) mice. Tg(CAG-LacZ/EGFP-KASH2) mice contain a lox-STOP-lox flanked LacZ gene which is deleted upon cre recombination allowing for the overexpression of an EGFP-KASH2 fusion protein. This overexpressed protein disrupts endogenous Nesprin-Sun binding leading to disruption of LINC complexes. Thus, crossing these two lines results in a Osx-driven LINC disruption (ODLD) specific to pre-osteoblasts. In this study, we investigated how this LINC disruption affects exercise induced bone accrual. ODLD cells had decreased osteogenic and adipogenic potential in vitro compared to non-disrupted controls and sedentary ODLD mice showed decreased bone quality at 8-weeks. Upon access to a voluntary running wheel ODLD animals showed increased running time and distance; however, our 6-week exercise intervention did not significantly affect bone microarchitecture and bone mechanical properties.

18.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066142

RESUMEN

Quantitative and volumetric assessment of filamentous actin fibers (F-actin) remains challenging due to their interconnected nature, leading researchers to utilize threshold based or qualitative measurement methods with poor reproducibility. Here we introduce a novel machine learning based methodology for accurate quantification and reconstruction of nuclei-associated F-actin. Utilizing a Convolutional Neural Network (CNN), we segment actin filaments and nuclei from 3D confocal microscopy images and then reconstruct each fiber by connecting intersecting contours on cross-sectional slices. This allowed measurement of the total number of actin filaments and individual actin filament length and volume in a reproducible fashion. Focusing on the role of F-actin in supporting nucleocytoskeletal connectivity, we quantified apical F-actin, basal F-actin, and nuclear architecture in mesenchymal stem cells (MSCs) following the disruption of the Linker of Nucleoskeleton and Cytoskeleton (LINC) Complexes. Disabling LINC in mesenchymal stem cells (MSCs) generated F-actin disorganization at the nuclear envelope characterized by shorter length and volume of actin fibers contributing a less elongated nuclear shape. Our findings not only present a new tool for mechanobiology but introduce a novel pipeline for developing realistic computational models based on quantitative measures of F-actin.

19.
bioRxiv ; 2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37790521

RESUMEN

The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex serves to connect the nuclear envelope and the cytoskeleton, influencing cellular processes such as nuclear arrangement, architecture, and mechanotransduction. The role LINC plays in mechanotransduction pathways in bone progenitor cells has been well studied; however, the mechanisms by which LINC complexes govern in vivo bone formation remain less clear. To bridge this knowledge gap, we established a murine model disrupting LINC using transgenic Prx-Cre mice and floxed Tg(CAG-LacZ/EGFP-KASH2) mice. Prx-Cre mice express the Cre recombinase enzyme controlled by the paired-related homeobox gene-1 promoter, a pivotal regulator of skeletal development. Tg(CAG-LacZ/EGFP-KASH2) mice carry a lox-stop-lox flanked LacZ gene allowing for the overexpression of an EGFP-KASH2 fusion protein via cre recombinase mediated deletion of the LacZ cassette. This disrupts endogenous Nesprin-Sun binding in a dominant negative manner disconnecting nesprin from the nuclear envelope. By combining these lines, we generated a Prrx1(+) cell-specific LINC disruption model to study its impact on the developing skeleton and subsequently exercise-induced bone accrual. The findings presented here indicate Prx-driven LINC disruption (PDLD) cells exhibit no change in osteogenic and adipogenic potential compared to controls in vitro nor are there bone quality changes when compared to in sedentary animals at 8 weeks. Although PDLD animals displayed increased voluntary running activity, a 6-week exercise intervention did not significantly alter bone microarchitecture or mechanical properties.

20.
bioRxiv ; 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38014288

RESUMEN

There is limited understanding of how mechanical signals regulate tendon development. The nucleus has emerged as a major regulator of cellular mechanosensation, via the linker of nucleoskeleton and cytoskeleton (LINC) protein complex. Specific roles of LINC in tenogenesis have not been explored. In this study, we investigate how LINC regulates tendon development by disabling LINC-mediated mechanosensing via dominant negative (dn) expression of the Klarsicht, ANC-1, and Syne Homology (KASH) domain, which is necessary for LINC to function. We hypothesized that LINC regulates mechanotransduction in developing tendon, and that disabling LINC would impact tendon mechanical properties and structure in a mouse model of dnKASH. We used Achilles (AT) and tail (TT) tendons as representative energy-storing and limb-positioning tendons, respectively. Mechanical testing at postnatal day 10 showed that disabling the LINC complex via dnKASH significantly impacted tendon mechanical properties and cross-sectional area, and that effects differed between ATs and TTs. Collagen crimp distance was also impacted in dnKASH tendons, and was significantly decreased in ATs, and increased in TTs. Overall, we show that disruption to the LINC complex specifically impacts tendon mechanics and collagen crimp structure, with unique responses between an energy-storing and limb-positioning tendon. This suggests that nuclear mechanotransduction through LINC plays a role in regulating tendon formation during neonatal development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA