Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Rev ; 124(8): 4778-4821, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563799

RESUMEN

The shortage of resources such as lithium and cobalt has promoted the development of novel battery systems with low cost, abundance, high performance, and efficient environmental adaptability. Due to the abundance and low cost of sodium, sodium-ion battery chemistry has drawn worldwide attention in energy storage systems. It is widely considered that wide-temperature tolerance sodium-ion batteries (WT-SIBs) can be rapidly developed due to their unique electrochemical and chemical properties. However, WT-SIBs, especially for their electrode materials and electrolyte systems, still face various challenges in harsh-temperature conditions. In this review, we focus on the achievements, failure mechanisms, fundamental chemistry, and scientific challenges of WT-SIBs. The insights of their design principles, current research, and safety issues are presented. Moreover, the possible future research directions on the battery materials for WT-SIBs are deeply discussed. Progress toward a comprehensive understanding of the emerging chemistry for WT-SIBs comprehensively discussed in this review will accelerate the practical applications of wide-temperature tolerance rechargeable batteries.

2.
Cardiology ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599198

RESUMEN

INTRODUCTION: The use of angiotensin II receptor blockers (ARBs) in the treatment of hypertrophic cardiomyopathy (HCM) remains a subject of controversy. METHODS: We conducted a comprehensive search of the Cochrane Library, PubMed, EMBASE, ClinicalTrials.gov, and Web of Science databases until October 2023 to identify articles investigating the effects of ARBs in patients diagnosed with HCM. Predefined criteria were utilized for selecting data on study characteristics and results. RESULTS: The study included a total of 387 patients from 6 randomized controlled trials, which were reported in 7 articles. The results of the meta-analysis revealed that the utilization of ARBs did not yield a reduction in left ventricular (LV) mass (p = 0.07) and maximum LV wall thickness (p = 0.25), nor did it demonstrate any improvement in LV fibrosis (p = 0.39). Furthermore, there was no significant impact observed on early diastolic mitral annular velocity (p = 0.19) and LV ejection fraction (p = 0.44). CONCLUSIONS: The administration of ARBs does not appear to yield improvements in cardiac structure, function, and myocardial fibrosis in patients with HCM.

3.
Mol Biol Rep ; 51(1): 313, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374452

RESUMEN

BACKGROUND: Glucagon-like peptide-1 (GLP-1) (7-36) amide, an endogenous active form of GLP-1, has been shown to modulate oxidative stress and neuronal cell survival in various neurological diseases. OBJECTIVE: This study investigated the potential effects of GLP-1(7-36) on oxidative stress and apoptosis in neuronal cells following traumatic brain injury (TBI) and explored the underlying mechanisms. METHODS: Traumatic brain injury (TBI) models were established in male SD rats for in vivo experiments. The extent of cerebral oedema was assessed using wet-to-dry weight ratios following GLP-1(7-36) intervention. Neurological dysfunction and cognitive impairment were evaluated through behavioural experiments. Histopathological changes in the brain were observed using haematoxylin and eosin staining. Oxidative stress levels in hippocampal tissues were measured. TUNEL staining and Western blotting were employed to examine cell apoptosis. In vitro experiments evaluated the extent of oxidative stress and neural apoptosis following ERK5 phosphorylation activation. Immunofluorescence colocalization of p-ERK5 and NeuN was analysed using immunofluorescence cytochemistry. RESULTS: Rats with TBI exhibited neurological deterioration, increased oxidative stress, and enhanced apoptosis, which were ameliorated by GLP-1(7-36) treatment. Notably, GLP-1(7-36) induced ERK5 phosphorylation in TBI rats. However, upon ERK5 inhibition, oxidative stress and neuronal apoptosis levels were elevated, even in the presence of GLP-1(7-36). CONCLUSION: In summary, this study suggested that GLP-1(7-36) suppressed oxidative damage and neuronal apoptosis after TBI by activating ERK5/CREB.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Péptido 1 Similar al Glucagón , Fármacos Neuroprotectores , Animales , Masculino , Ratas , Apoptosis , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Modelos Animales de Enfermedad , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/uso terapéutico , Hipocampo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Ratas Sprague-Dawley , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/uso terapéutico , Proteína Quinasa 7 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/efectos de los fármacos , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo
4.
Environ Res ; 256: 119246, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810824

RESUMEN

Straw incorporation holds significant promise for enhancing soil fertility and mitigating air pollution stemming from straw burning. However, this practice concurrently elevates the production and emission of methane (CH4) from paddy ecosystems. Despite its environmental impact, the precise mechanisms behind the heightened CH4 production resulting from long-term straw incorporation remain elusive. In a 32-year field experiment featuring three fertilization treatments (CFS-chemical fertilizer with wheat straw, CF-chemical fertilizer, and CK-unamended), we investigated the impact of abiotic (soil physicochemical properties) and biotic (methanogenic abundance, diversity, and community composition) factors on CH4 production in paddy fields. Results revealed a significantly higher CH4 production potential under CFS treatment compared to CF and CK treatments. The partial least squares path model revealed that soil physicochemical properties (path coefficient = 0.61), methanogenic diversity (path coefficient = -0.43), and methanogenic abundance (path coefficient = 0.29) collectively determined CH4 production potential, explaining 77% of the variance. Enhanced soil organic carbon content and water content, resulting from straw incorporation, emerged as pivotal factors positively correlated with CH4 production potential. Under CFS treatment, lower Shannon index of methanogens, compared to CF and CK treatments, was attributed to increased Methanosarcina. Notably, the Shannon index and relative abundance of Methanosarcina exhibited negative and positive correlations with CH4 production potential, respectively. Methanogenic abundance, bolstered by straw incorporation, significantly amplified overall potential. This comprehensive analysis underscores the joint influence of abiotic and biotic factors in regulating CH4 production potential during multi-decadal straw incorporation.


Asunto(s)
Metano , Microbiología del Suelo , Suelo , Metano/biosíntesis , Metano/metabolismo , Suelo/química , Oryza , Agricultura/métodos , Fertilizantes/análisis
5.
J Environ Manage ; 365: 121649, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955049

RESUMEN

In recent years, China has adopted numerous policies and regulations to control NOx emissions to further alleviate the adverse impacts of NO3--N deposition. However, the variation in wet NO3--N deposition under such policies is not clear. In this study, the southeastern area, with highly developed industries and traditional agriculture, was selected to explore the variation in NO3--N deposition and its sources changes after such air pollution control through field observation and isotope tracing. Results showed that the annual mean concentrations of NO3--N in precipitation were 0.67 mg L-1 and 0.54 mg L-1 in 2014-2015 and 2021-2022, respectively. The average wet NO3--N depositions in 2014-2015 and 2021-2022 was 7.76 kg N ha-1 yr-1 and 5.03 kg N ha-1 yr-1, respectively, indicating a 35% decrease. The δ15N-NO3- and δ18O-NO3- values were lower in warm seasons and higher in cold seasons, and both showed a lower trend in 2021-2022 compared with 2014-2015. The Bayesian model results showed that the NOx emitted from coal-powered plants contributed 53.6% to wet NO3--N deposition, followed by vehicle exhaust (22.9%), other sources (17.1%), and soil emissions (6.4%) during 2014-2015. However, the contribution of vehicle exhaust (33.3%) overpassed the coal combustion (32.3%) and followed by other sources (25.4%) and soil emissions (9.0%) in 2021-2022. Apart from the control of air pollution, meteorological factors such as temperature, precipitation, and solar radiation are closely related to the changes in atmospheric N transformation and deposition. The results suggest phased achievements in air pollution control and that more attention should be paid to the control of motor vehicle exhaust pollution in the future, at the same time maintaining current actions and supervision of coal-powered plants.

6.
Water Sci Technol ; 89(5): 1124-1141, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483489

RESUMEN

In this study, a fixed-bed biofilm membrane bioreactor was used to assess denitrification and carbon removal performance, membrane fouling, composition, and the dynamics of microbial communities across 10 salinity levels. As salinity levels increased (from 0 to 30 g/L), the removal efficiency of total nitrogen and chemical oxygen demand decreased from 98 and 86% in Phase I to 25 and 45% in Phase X, respectively. Beyond a salinity level of 10 g/L, membrane fouling accelerated considerably. The analysis of fouling resistance distribution suggested that soluble microbial products (SMPs) were the primary cause of this phenomenon. The irregularity in microbial community succession reflected the varying adaptability of different bacteria to different salinity levels. The relative abundance of Sulfuritalea, Lentimircobium, Thauera, and Pseudomonas increased from 20.2 to 47.7% as the experiments progressed. Extracellular polymeric substances-related analysis suggested that Azospirillum plays a positive role in preserving the structural integrity of the biofilm carrier. The SMP-related analysis showed a positive correlation between Lentimircobium, Thauera, Pseudomonas, and the SMP content. These results suggested that these three bacterial genera significantly promoted the release of SMP under salt stress, which in turn led to severe membrane fouling.


Asunto(s)
Desnitrificación , Salinidad , Biopelículas , Matriz Extracelular de Sustancias Poliméricas , Bacterias , Pseudomonas
7.
Macromol Rapid Commun ; 44(4): e2200705, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36461768

RESUMEN

Hydrogel shape memory and actuating functionalities are heavily pursued and have found great potential in various application fields. However, their combination for more flexible and complicated morphing behaviors is still challenging. Herein, it is reported that by controlling the light-initiated polymerization of active hydrogel layers on shape memory hydrogel substrates, advanced morphing behaviors based on programmable hydrogel shapes and actuating trajectories are realized. The formation and photo-reduction-induced dissociation of Fe3+ -carboxylate coordination endow the hydrogel substrates with the shape memory functionality. The photo-reduced Fe2+ ions can diffuse from the substrates into the monomer solutions to initiate the polymerization of the thermally responsive active layers, whose actuating temperatures and amplitudes can be facially tuned by controlling their thicknesses and compositions. One potential application, a shape-programmable 3D hook that can lift an object with a specific shape, is also unveiled. The demonstrated strategy is extendable to other hydrogel systems to realize more versatile and complicated actuating behaviors.


Asunto(s)
Ácidos Carboxílicos , Hidrogeles , Hidrogeles/química , Temperatura , Polimerizacion , Iones
8.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38139053

RESUMEN

Aluminum (Al) toxicity is the most common factor limiting the growth of alfalfa in acidic soil conditions. Melatonin (MT), a significant pleiotropic molecule present in both plants and animals, has shown promise in mitigating Al toxicity in various plant species. This study aims to elucidate the underlying mechanism by which melatonin alleviates Al toxicity in alfalfa through a combined physiological and transcriptomic analysis. The results reveal that the addition of 5 µM melatonin significantly increased alfalfa root length by 48% and fresh weight by 45.4% compared to aluminum treatment alone. Moreover, the 5 µM melatonin application partially restored the enlarged and irregular cell shape induced by aluminum treatment, resulting in a relatively compact arrangement of alfalfa root cells. Moreover, MT application reduces Al accumulation in alfalfa roots and shoots by 28.6% and 27.6%, respectively. Additionally, MT plays a crucial role in scavenging Al-induced excess H2O2 by enhancing the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), consequently reducing malondialdehyde (MDA) levels. More interestingly, the RNA-seq results reveal that MT application significantly upregulates the expression of xyloglucan endotransglucosylase/hydrolase (XTH) and carbon metabolism-related genes, including those involved in the glycolysis process, as well as sucrose and starch metabolism, suggesting that MT application may mitigate Al toxicity by facilitating the binding of Al to the cell walls, thereby reducing intracellular Al accumulation, and improving respiration and the content of sucrose and trehalose. Taken together, our study demonstrates that MT alleviates Al toxicity in alfalfa by reducing Al accumulation and restoring redox homeostasis. These RNA-seq results suggest that the alleviation of Al toxicity by MT may occur through its influence on cell wall composition and carbon metabolism. This research advances our understanding of the mechanisms underlying MT's effectiveness in mitigating Al toxicity, providing a clear direction for our future investigations into the underlying mechanisms by which MT alleviates Al toxicity in alfalfa.


Asunto(s)
Melatonina , Melatonina/farmacología , Melatonina/metabolismo , Medicago sativa/metabolismo , Aluminio/toxicidad , Aluminio/metabolismo , Peróxido de Hidrógeno/metabolismo , Perfilación de la Expresión Génica , Sacarosa/metabolismo , Carbono/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo
9.
J Am Chem Soc ; 144(48): 21961-21971, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36416753

RESUMEN

Improving the reversibility of lithium metal batteries is one of the challenges in current battery research. This requires better fundamental understanding of the evolution of the lithium deposition morphology, which is very complex due to the various parameters involved in different systems. Here, we clarify the fundamental origins of lithium deposition coverage in achieving highly reversible and compact lithium deposits, providing a comprehensive picture in the relationship between the lithium microstructure and solid electrolyte interphase (SEI) for lithium metal batteries. Systematic variation of the salt concentration offers a framework that brings forward the different aspects that play a role in cycling reversibility. Higher nucleation densities are formed in lower concentration electrolytes, which have the advantage of higher lithium deposition coverage; however, it goes along with the formation of an organic-rich instable SEI which is unfavorable for the reversibility during (dis)charging. On the other hand, the growth of large deposits benefiting from the formation of an inorganic-rich stable SEI is observed in higher concentration electrolytes, but the initial small nucleation density prevents full coverage of the current collector, thus compromising the plated lithium metal density. Taking advantages of the paradox, a nanostructured substrate is rationally applied, which increases the nucleation density realizing a higher deposition coverage and thus more compact plating at intermediate concentration (∼1.0 M) electrolytes, leading to extended reversible cycling of batteries.

10.
Environ Microbiol ; 24(11): 5005-5018, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35799420

RESUMEN

The process of nitrite-dependent anaerobic methane oxidation (n-damo) catalysed by Candidatus Methylomirabilis oxyfera (M. oxyfera)-like bacteria is a novel pathway in regulating methane (CH4 ) emissions from paddy fields. Nitrogen fertilization is essential to improve rice yields and soil fertility; however, its effect on the n-damo process is largely unknown. Here, the potential n-damo activity, abundance and community composition of M. oxyfera-like bacteria were investigated in paddy fields under three long-term (32 years) fertilization treatments, i.e. unfertilized control (CK), chemical fertilization (NPK) and straw incorporation with chemical fertilization (SNPK). Relative to the CK, both NPK and SNPK treatments significantly (p < 0.05) increased the potential n-damo activity (88%-110%) and the abundance (52%-105%) of M. oxyfera-like bacteria. The variation of soil organic carbon (OrgC) content and inorganic nitrogen content caused by the input of chemical fertilizers and straw returning were identified as the key factors affecting the potential n-damo activity and the abundance of M. oxyfera-like bacteria. However, the community composition and diversity of M. oxyfera-like bacteria did not change significantly by the input of fertilizers. Overall, our results provide the first evidence that long-term fertilization greatly stimulates the n-damo process, indicating its active role in controlling CH4 emissions from paddy fields.


Asunto(s)
Nitritos , Suelo , Nitritos/metabolismo , Anaerobiosis , Fertilizantes , Carbono/metabolismo , Oxidación-Reducción , Metano/metabolismo , Bacterias/metabolismo , Methanosarcinales/metabolismo , Nitrógeno/metabolismo , Fertilización
11.
Small ; 18(8): e2106427, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34889053

RESUMEN

Lithium (Li) metal batteries (LMBs) face huge challenges to achieve long cycling life at wide temperature range owing to the severe dendrite growth at subambient temperature and the intense side reactions with electrolyte at high temperature. Herein, an ultrathin LiBO2 layer with an extremely high Young's modulus of 8.0 GPa is constructed on Li anode via an in situ reaction between Li metal and 4,4,5,5-tetramethyl-1,3,2-dioxa-borolane (TDB) to form LiBO2 @Li anode, which presents two times higher exchange current density than pristine Li anode. The LiBO2 layer presents a strong absorption to Li ions and greatly improves the interfacial dynamics of Li-ion migration, which induces homogenous lithium nucleation and deposition to form a dense lithium layer. Consequently, the Li dendrite growth during cycling at subambient temperature and the side reactions with electrolyte at high temperature are simultaneously suppressed. The LiBO2 @Li/LiNi0.8 Co0.1 Mn0.1 O2 (NCM811) full batteries with limited Li capacity and high cathode mass loading of 9.9 mg cm-2 can steadily cycle for 300 cycles with a capacity retention of 86.6%. The LiBO2 @Li/NCM811 full batteries and LiBO2 @Li/LiBO2 @Li symmetric batteries also present excellent cycling performance at both -20 and 60 °C. This work develops a strategy to achieve outstanding performance of LMBs at wide working temperature-range.

12.
EMBO Rep ; 21(6): e50164, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32250038

RESUMEN

Potassium (K) is essential for plant growth and development. Here, we show that the KUP/HAK/KT K+ transporter KUP9 controls primary root growth in Arabidopsis thaliana. Under low-K+ conditions, kup9 mutants displayed a short-root phenotype that resulted from reduced numbers of root cells. KUP9 was highly expressed in roots and specifically expressed in quiescent center (QC) cells in root tips. The QC acts to maintain root meristem activity, and low-K+ conditions induced QC cell division in kup9 mutants, resulting in impaired root meristem activity. The short-root phenotype and enhanced QC cell division in kup9 mutants could be rescued by exogenous auxin treatment or by specifically increasing auxin levels in QC cells, suggesting that KUP9 affects auxin homeostasis in QC cells. Further studies showed that KUP9 mainly localized to the endoplasmic reticulum (ER), where it mediated K+ and auxin efflux from the ER lumen to the cytoplasm in QC cells under low-K+ conditions. These results demonstrate that KUP9 maintains Arabidopsis root meristem activity and root growth by regulating K+ and auxin homeostasis in response to low-K+ stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Meristema/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Potasio , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis
13.
BMC Cardiovasc Disord ; 22(1): 443, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229771

RESUMEN

BACKGROUND: The incidence and mortality of aortic dissection (AD) are increasing. In pathological studies, macrophages, T lymphocytes and dendritic cells were found in the tunica media of the aorta. Acetaldehyde dehydrogenase 2 (ALDH2) gene polymorphisms are associated with a high incidence of hypertension in Asian populations. However, there is no clear evidence of the relationship between ALDH2 and aortic dissection in Asians. The aim of this study was to investigate the incidence of aortic dissection in different ALDH2 genotypes and explore changes in the vasculature. MATERIALS AND METHODS: Three-week-old male mice were administered freshly prepared ß-aminopropionitrile solution dissolved in drinking water (1 g/kg/d) for 28 days to induce TAD. An animal ultrasound imaging system was used to observe the formation of arterial dissection and changes in cardiac function. Subsequently, mice were euthanized by cervical dislocation. The aortas were fixed for HE staining and EVG staining to observe aortic elastic fiber tears and pseudoluma formation under a microscope. RESULTS: Knockout of ALDH2 mitigated ß-aminopropionitrile-induced TAD formation in animal studies. Ultrasound results showed that ALDH2 knockout reduced the degree of ascending aortic widening and the incidence of aortic dissection rupture. Pathological sections of multiple aortic segments showed that the protective effect of ALDH2 knockout was observed in not only the ascending aorta but also the aortic arch and descending aorta. The expression levels of genes related to NK CD56bright cells, Th17 cells, T cells and T helper cells were decreased in ALDH2 knockout mice treated with ß-aminopropionitrile for 28 days. CONCLUSION: ALDH2 knockout protects against aortic dissection by altering the inflammatory response and immune response and protecting elastic fibers.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial/metabolismo , Aneurisma de la Aorta Torácica , Disección Aórtica , Rotura de la Aorta , Agua Potable , Aminopropionitrilo , Disección Aórtica/inducido químicamente , Disección Aórtica/diagnóstico por imagen , Disección Aórtica/genética , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
14.
J Clin Lab Anal ; 36(2): e24234, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35034385

RESUMEN

The serum Chitinase 3-like protein 1 (CHI3L1) protein level can distinguish the stages of liver fibrosis to a great extent. However, the diagnostic and prognostic significance of serum CHI3L1 in hepatocellular carcinoma (HCC) is not clarified. To evaluate the diagnostic and prognostic value of CHI3L1 in HCC, a total of 128 HCC patients treated in the HwaMei Hospital, University of Chinese Academy of Sciences, from December 2018 to April 2020 were collected retrospectively. Matched age and gender subjects, 40 patients with liver cirrhosis, 40 patients with chronic hepatitis, and 40 healthy subjects were enrolled in the control group. The relevant clinical laboratory and examination data and the overall survival time (OS) of the HCC patients were collected. The serum CHI3L1 expression level is related to α-fetoprotein (AFP), tumor-node-metastasis (TNM) stage, maximum tumor diameter, liver cirrhosis, and HCC patient's OS (p < 0.05). The area under the curve (AUC) of CHI3L1 was 0.7875 with the cutoff value of 91.36 ng/ml. Combining the serum CHI3L1 and α-fetoprotein (AFP) by a binary logistic regression model can increase the diagnostic sensitivity to 97.5%. Multivariate Cox regression analysis indicated that CHI3L1 is an independent prognostic factor in patients with HCC.


Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/diagnóstico , Proteína 1 Similar a Quitinasa-3/sangre , Neoplasias Hepáticas/diagnóstico , Área Bajo la Curva , Carcinoma Hepatocelular/sangre , Estudios de Casos y Controles , Femenino , Hepatitis Crónica/sangre , Humanos , Neoplasias Hepáticas/sangre , Masculino , Persona de Mediana Edad , Pronóstico , Modelos de Riesgos Proporcionales , Curva ROC , Estudios Retrospectivos
15.
J Card Surg ; 37(7): 2197-2201, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35462439

RESUMEN

Extended left ventricular septal myectomy remains the gold standard for the treatment of hypertrophic obstructive cardiomyopathy (HOCM) with refractory symptoms. On the basis of traditional modified transaortic Morrow myectomy, we innovatively performed a minimally invasive, video-assisted single-port thoracotomy through the right infra-axillary region. Our procedure can provide good visualization of the left ventricular outflow tract and hypertrophic ventricular septum for accurate resection. It also ensures optimal exposure of the mitral valve in the presence of complex mitral subvalvular structures.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Cardiomiopatía Hipertrófica , Procedimientos Quirúrgicos Cardíacos/métodos , Cardiomiopatía Hipertrófica/cirugía , Humanos , Válvula Mitral/cirugía , Toracotomía , Resultado del Tratamiento
16.
J Sci Food Agric ; 102(5): 1862-1871, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34468988

RESUMEN

BACKGROUND: The Xinjiang Uygur Autonomous Region is an arid and semi-arid region with low rainfall and strong sunlight; thus, grape berries in this region accumulate sugar content rapidly, and the ripening process is shorter than that in other regions. Although previous studies illustrated that altered sunlight conditions could influence the aroma profiles of grape berries, less attention has been paid to the effect of vine top shading on volatile compounds under a dry-hot climate. RESULT: We focused on the effects of vine top shading on the concentrations of linolenic and linoleic acids, as well as their metabolites, the C6/C9 compounds, in grape berries. Four vine top shading treatments at veraison (ripening onset) and post-veraison (skin full coloration) were performed by reducing solar exposure to the grapevines by 20% and 50% respectively. Apart from (E)-2-hexenal in the 20% shading treatment of 2016, (E)-2-hexenal were not promoted by the 50% shading and 20% shading treatments during veraison to harvest in both of the vintages. By contrast, the influence of vine top shading from post-veraison till harvest was different between the two vintages; these C6 compounds were decreased in both of the shading treatments in 2016, whereas most of them were promoted in 2017, possibly related to daily sunshine hours in this period. In addition, the C9 compound nonanal with very low concentration exhibits a significant difference among various treatments by two-factor analysis of variance. As for linolenic acid and linoleic acid, two types of C6 compound biosynthetic precursors, four shading treatments all reduced their concentration, except for linolenic acid in the 50% shading treatment of 2016. Moreover, it appeared to have no apparent correlation between the variations of two precursors and their volatile metabolites, indicating that there is a complex impact of vine shading on C6 compound biosynthesis. CONCLUSION: Vine top shading at veraison can reduce the accumulation of some C6 compounds in grape berries, but no consistent consequence was attained for the vine shading at pre-veraison. The findings indicate the significance of grapevine solar exposure management at veraison in controlling the level of C6 compounds in a dry-hot region like Xinjiang. © 2021 Society of Chemical Industry.


Asunto(s)
Frutas , Vitis , Vino , China , Frutas/química , Luz Solar , Vitis/química , Vino/análisis
17.
Small ; 17(34): e2102055, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34288385

RESUMEN

The thermal instability is a major problem in high-energy nickel-rich layered cathode materials for large-scale battery application. Due to the scarce investigation of thick electrodes at the practical full-cell level, the understanding of thermal failure mechanism is still insufficient. Herein, an intrinsic origin of thermal instability in fully charged industrial pouch cells during high-temperature storage is discovered. Through the investigation from crystals to particles, and from electrodes to cells, it is shown that serious top-down heterogeneous degradation occurs along the depth direction of the thick electrode, including phase transition, cationic disordering, intergranular/intragranular cracks, and side reactions. Such degradation originates from the abundant oxygen vacancies and reduced catalytic Ni2+ at cathode surface, causing microstructural defects and directly leading to the thermal instability. Nonmagnetic elements doping and surface modification are suggested to be effective in mitigating the thermal instability through modulating cationic disordering.

18.
Biotechnol Appl Biochem ; 68(4): 726-731, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32621620

RESUMEN

The urinary C-terminal telopeptide fragment of type II collagen (uCTX-II) has been reported as the efficient blood-based biomarker for osteoarthritis, which affects knees, hands, spine, and hips. This study reports a sensing strategy with antibody-conjugated gold nanoparticles (GNP) on an interdigitated electrode (IDE) to determine uCTX-II. The GNP-antibody complex was chemically immobilized on the IDE surface through the amine linker. uCTX-II was determined by monitoring the alteration in current upon interacting the GNP-complexed antibody. This strategy was improved the detection by attracting higher uCTX-II molecules, and the detection limit falls in the range of 10-100 pM with an acceptable regression value [y = 0.6254x - 0.4073, R² = 0.9787]. The sensitivity of the detection was recognized at 10 pM. Additionally, upon increasing the uCTX-II concentration, the current changes were increased in a linear fashion. Control detection with nonimmune antibody and control protein do not increase the current level, confirming the specific detection of uCTX-II. This method of detection helps in diagnosing osteoarthritis and its follow-up treatment.


Asunto(s)
Colágeno Tipo II/orina , Técnicas Electroquímicas , Oro/química , Nanopartículas del Metal/química , Osteoartritis/orina , Péptidos/orina , Biomarcadores/orina , Humanos
19.
Phys Rev Lett ; 125(12): 126801, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-33016726

RESUMEN

Doping a topological insulator (TI) film with transition metal ions can break its time-reversal symmetry and lead to the realization of the quantum anomalous Hall (QAH) effect. Prior studies have shown that the longitudinal resistance of the QAH samples usually does not vanish when the Hall resistance shows a good quantization. This has been interpreted as a result of the presence of possible dissipative conducting channels in magnetic TI samples. By studying the temperature- and magnetic-field-dependence of the magnetoresistance of a magnetic TI sandwich heterostructure device, we demonstrate that the predominant dissipation mechanism in thick QAH insulators can switch between nonchiral edge states and residual bulk states in different magnetic-field regimes. The interactions between bulk states, chiral edge states, and nonchiral edge states are also investigated. Our Letter provides a way to distinguish between the dissipation arising from the residual bulk states and nonchiral edge states, which is crucial for achieving true dissipationless transport in QAH insulators and for providing deeper insights into QAH-related phenomena.

20.
Neurochem Res ; 45(11): 2723-2731, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32902742

RESUMEN

Blast-induced traumatic brain injury (bTBI) is a leading cause of disability and mortality in soldiers during the conflicts in Iraq and Afghanistan. Although substantial clinical and animal studies have investigated the pathophysiology and treatments of bTBI, few effective therapies have been found, especially for the early rescue in the battlefield. The aim of this study is to evaluate neuroprotective effects of early normobaric hyperoxia (NBO) on bTBI. We established a rat model of bTBI caused by explosion in the cabin. It exhibited typical changes of mild bTBI, like impaired neurological function, brain edema, minor intracranial hemorrhage and neuron necrosis. The rats were divided into 4 groups (n = 12): Sham, Vehicle, hyperbaric oxygen (HBO) and NBO. Neurological function of the rats was assessed by the Neurological Severity Scores (NSS) at 24 h and 72 h after explosion. Serum interleukin-6 (IL-6), neuron specific enolase (NSE) and tau protein were measured at 24 h and 72 h after explosion. Brain water content was measured and Aquaporin-4 (AQP4) immunostaining was performed. Neuronal apoptosis was analyzed by TUNEL staining. NBO demonstrated curative effects on protecting the neurological function. Serum levels of NSE and tau protein were reduced at 24 h and 72 h after explosion. But the levels of IL-6 were not reduced significantly at both time points. Cerebral edema was alleviated. Simultaneously, AQP4 immunostaining of the hippocampus showed remarkably decreased expression after treatment. The number of apoptotic cells in hippocampus was also decreased. Compared with HBO, NBO is simple and convenient, and can be administered in remote areas. It may be a promising therapy for early rescue of bTBI in the battlefield.


Asunto(s)
Traumatismos por Explosión/terapia , Lesiones Traumáticas del Encéfalo/terapia , Neuroprotección/fisiología , Terapia por Inhalación de Oxígeno , Oxígeno/uso terapéutico , Animales , Apoptosis/fisiología , Acuaporina 4/metabolismo , Explosiones , Hipocampo/metabolismo , Interleucina-6/metabolismo , Masculino , Fosfopiruvato Hidratasa/metabolismo , Ratas Sprague-Dawley , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA