Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(32): e2322360121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39074288

RESUMEN

Heteromorphic sex chromosomes (XY or ZW) present problems of gene dosage imbalance between sexes and with autosomes. A need for dosage compensation has long been thought to be critical in vertebrates. However, this was questioned by findings of unequal mRNA abundance measurements in monotreme mammals and birds. Here, we demonstrate unbalanced mRNA levels of X genes in platypus males and females and a correlation with differential loading of histone modifications. We also observed unbalanced transcripts of Z genes in chicken. Surprisingly, however, we found that protein abundance ratios were 1:1 between the sexes in both species, indicating a post-transcriptional layer of dosage compensation. We conclude that sex chromosome output is maintained in chicken and platypus (and perhaps many other non therian vertebrates) via a combination of transcriptional and post-transcriptional control, consistent with a critical importance of sex chromosome dosage compensation.


Asunto(s)
Pollos , Compensación de Dosificación (Genética) , Ornitorrinco , Cromosomas Sexuales , Animales , Pollos/genética , Cromosomas Sexuales/genética , Masculino , Femenino , Ornitorrinco/genética , Transcripción Genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(36): e2412185121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190362

RESUMEN

X chromosome inactivation (XCI) is an epigenetic process that results in the transcriptional silencing of one X chromosome in the somatic cells of females. This phenomenon is common to both eutherian and marsupial mammals, but there are fundamental differences. In eutherians, the X chosen for silencing is random. DNA methylation on the eutherian inactive X is high at transcription start sites (TSSs) and their flanking regions, resulting in universally high DNA methylation. This contrasts XCI in marsupials where the paternally derived X is always silenced, and in which DNA methylation is low at TSSs and flanking regions. Here, we examined the DNA methylation status of the tammar wallaby X chromosome during spermatogenesis to determine the DNA methylation profile of the paternal X prior to and at fertilization. Whole genome enzymatic methylation sequencing was carried out on enriched flow-sorted populations of premeiotic, meiotic, and postmeiotic cells. We observed that the X displayed a pattern of DNA methylation from spermatogonia to mature sperm that reflected the inactive X in female somatic tissue. Therefore, the paternal X chromosome arrives at the egg with a DNA methylation profile that reflects the transcriptionally silent X in adult female somatic tissue. We present this epigenetic signature as a candidate for the long sought-after imprint for paternal XCI in marsupials.


Asunto(s)
Metilación de ADN , Inactivación del Cromosoma X , Cromosoma X , Animales , Inactivación del Cromosoma X/genética , Masculino , Femenino , Cromosoma X/genética , Impresión Genómica , Espermatogénesis/genética , Macropodidae/genética , Óvulo/metabolismo , Marsupiales/genética , Espermatozoides/metabolismo , Epigénesis Genética
3.
Mol Biol Evol ; 41(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39101626

RESUMEN

Retroviruses are an ancient viral family that have globally coevolved with vertebrates and impacted their evolution. In Australia, a continent that has been geographically isolated for millions of years, little is known about retroviruses in wildlife, despite the devastating impacts of a retrovirus on endangered koala populations. We therefore sought to identify and characterize Australian retroviruses through reconstruction of endogenous retroviruses from marsupial genomes, in particular the Tasmanian devil due to its high cancer incidence. We screened 19 marsupial genomes and identified over 80,000 endogenous retrovirus fragments which we classified into eight retrovirus clades. The retroviruses were similar to either Betaretrovirus (5/8) or Gammaretrovirus (3/8) retroviruses, but formed distinct phylogenetic clades compared to extant retroviruses. One of the clades (MEBrv 3) lost an envelope but retained retrotranspositional activity, subsequently amplifying throughout all Dasyuridae genomes. Overall, we provide insights into Australian retrovirus evolution and identify a highly active endogenous retrovirus within Dasyuridae genomes.


Asunto(s)
Retrovirus Endógenos , Genoma , Marsupiales , Filogenia , Animales , Retrovirus Endógenos/genética , Marsupiales/virología , Australia , Evolución Molecular
4.
Bioessays ; 45(2): e2200123, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36529688

RESUMEN

The molecular mechanism of temperature-dependent sex determination (TSD) is a long-standing mystery. How is the thermal signal sensed, captured and transduced to regulate key sex genes? Although there is compelling evidence for pathways via which cells capture the temperature signal, there is no known mechanism by which cells transduce those thermal signals to affect gene expression. Here we propose a novel hypothesis we call 3D-TSD (the three dimensions of thermolabile sex determination). We postulate that the genome has capacity to remodel in response to temperature by changing 3D chromatin conformation, perhaps via temperature-sensitive transcriptional condensates. This could rewire enhancer-promoter interactions to alter the expression of key sex-determining genes. This hypothesis can accommodate monogenic or multigenic thermolabile sex-determining systems, and could be combined with upstream thermal sensing and transduction to the epigenome to commit gonadal fate.


Asunto(s)
Gónadas , Procesos de Determinación del Sexo , Procesos de Determinación del Sexo/genética , Cromatina , Temperatura , Regiones Promotoras Genéticas , Razón de Masculinidad
5.
PLoS Genet ; 18(2): e1010040, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35130272

RESUMEN

During meiotic prophase I, homologous chromosomes pair, synapse and recombine in a tightly regulated process that ensures the generation of genetically variable haploid gametes. Although the mechanisms underlying meiotic cell division have been well studied in model species, our understanding of the dynamics of meiotic prophase I in non-traditional model mammals remains in its infancy. Here, we reveal key meiotic features in previously uncharacterised marsupial species (the tammar wallaby and the fat-tailed dunnart), plus the fat-tailed mouse opossum, with a focus on sex chromosome pairing strategies, recombination and meiotic telomere homeostasis. We uncovered differences between phylogroups with important functional and evolutionary implications. First, sex chromosomes, which lack a pseudo-autosomal region in marsupials, had species specific pairing and silencing strategies, with implications for sex chromosome evolution. Second, we detected two waves of γH2AX accumulation during prophase I. The first wave was accompanied by low γH2AX levels on autosomes, which correlated with the low recombination rates that distinguish marsupials from eutherian mammals. In the second wave, γH2AX was restricted to sex chromosomes in all three species, which correlated with transcription from the X in tammar wallaby. This suggests non-canonical functions of γH2AX on meiotic sex chromosomes. Finally, we uncover evidence for telomere elongation in primary spermatocytes of the fat-tailed dunnart, a unique strategy within mammals. Our results provide new insights into meiotic progression and telomere homeostasis in marsupials, highlighting the importance of capturing the diversity of meiotic strategies within mammals.


Asunto(s)
Emparejamiento Cromosómico/fisiología , Cromosomas Sexuales/fisiología , Telómero/fisiología , Animales , Macropodidae/genética , Marsupiales/genética , Meiosis/genética , Meiosis/fisiología , Profase Meiótica I/fisiología , Zarigüeyas/genética , Cromosomas Sexuales/genética , Telómero/genética , Cromosoma X/genética , Cromosoma Y/genética
6.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34725164

RESUMEN

Microchromosomes, once considered unimportant shreds of the chicken genome, are gene-rich elements with a high GC content and few transposable elements. Their origin has been debated for decades. We used cytological and whole-genome sequence comparisons, and chromosome conformation capture, to trace their origin and fate in genomes of reptiles, birds, and mammals. We find that microchromosomes as well as macrochromosomes are highly conserved across birds and share synteny with single small chromosomes of the chordate amphioxus, attesting to their origin as elements of an ancient animal genome. Turtles and squamates (snakes and lizards) share different subsets of ancestral microchromosomes, having independently lost microchromosomes by fusion with other microchromosomes or macrochromosomes. Patterns of fusions were quite different in different lineages. Cytological observations show that microchromosomes in all lineages are spatially separated into a central compartment at interphase and during mitosis and meiosis. This reflects higher interaction between microchromosomes than with macrochromosomes, as observed by chromosome conformation capture, and suggests some functional coherence. In highly rearranged genomes fused microchromosomes retain most ancestral characteristics, but these may erode over evolutionary time; surprisingly, de novo microchromosomes have rapidly adopted high interaction. Some chromosomes of early-branching monotreme mammals align to several bird microchromosomes, suggesting multiple microchromosome fusions in a mammalian ancestor. Subsequently, multiple rearrangements fueled the extraordinary karyotypic diversity of therian mammals. Thus, microchromosomes, far from being aberrant genetic elements, represent fundamental building blocks of amniote chromosomes, and it is mammals, rather than reptiles and birds, that are atypical.


Asunto(s)
Evolución Biológica , Cordados/genética , Cromosomas de los Mamíferos , Genoma , Animales , Secuencia de Bases , Secuencia Conservada
7.
Trends Genet ; 36(10): 728-738, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32773168

RESUMEN

The Y has been described as a wimpy degraded relic of the X, with imminent demise should it lose sex-determining function. Why then has it persisted in almost all mammals? Here we present a novel mechanistic explanation for its evolutionary perseverance: the persistent Y hypothesis. The Y chromosome bears genes that act as their own judge, jury, and executioner in the tightly regulated meiotic surveillance pathways. These executioners are crucial for successful meiosis, yet need to be silenced during the meiotic sex chromosome inactivation window, otherwise germ cells die. Only rare transposition events to the X, where they remain subject to obligate meiotic silencing, are heritable, posing strong evolutionary constraint for the Y chromosome to persist.


Asunto(s)
Cromosomas Humanos X/genética , Cromosomas Humanos Y/genética , Genes , Células Germinativas/fisiología , Meiosis , Inactivación del Cromosoma X , Células Germinativas/citología , Humanos
8.
Heredity (Edinb) ; 129(1): 22-30, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35459933

RESUMEN

Sex-linked inheritance is a stark exception to Mendel's Laws of Heredity. Here we discuss how the evolution of heteromorphic sex chromosomes (mainly the Y) has been shaped by the intricacies of the meiotic programme. We propose that persistence of Y chromosomes in distantly related mammalian phylogroups can be explained in the context of pseudoautosomal region (PAR) size, meiotic pairing strategies, and the presence of Y-borne executioner genes that regulate meiotic sex chromosome inactivation. We hypothesise that variation in PAR size can be an important driver for the evolution of recombination frequencies genome wide, imposing constraints on Y fate. If small PAR size compromises XY segregation during male meiosis, the stress of producing aneuploid gametes could drive function away from the Y (i.e., a fragile Y). The Y chromosome can avoid fragility either by acquiring an achiasmatic meiotic XY pairing strategy to reduce aneuploid gamete production, or gain meiotic executioner protection (a persistent Y). Persistent Ys will then be under strong pressure to maintain high recombination rates in the PAR (and subsequently genome wide), as improper segregation has fatal consequences for germ cells. In the event that executioner protection is lost, the Y chromosome can be maintained in the population by either PAR rejuvenation (extension by addition of autosome material) or gaining achiasmatic meiotic pairing, the alternative is Y loss. Under this dynamic cyclic evolutionary scenario, understanding the meiotic programme in vertebrate and invertebrate species will be crucial to further understand the plasticity of the rise and fall of heteromorphic sex chromosomes.


Asunto(s)
Meiosis , Cromosomas Sexuales , Aneuploidia , Animales , Masculino , Mamíferos/genética , Meiosis/genética , Cromosomas Sexuales/genética , Cromosoma Y
9.
RNA ; 25(8): 1004-1019, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31097619

RESUMEN

The marsupial inactive X chromosome expresses a long noncoding RNA (lncRNA) called Rsx that has been proposed to be the functional analog of eutherian Xist Despite the possibility that Xist and Rsx encode related functions, the two lncRNAs harbor no linear sequence similarity. However, both lncRNAs harbor domains of tandemly repeated sequence. In Xist, these repeat domains are known to be critical for function. Using k-mer based comparison, we show that the repeat domains of Xist and Rsx unexpectedly partition into two major clusters that each harbor substantial levels of nonlinear sequence similarity. Xist Repeats B, C, and D were most similar to each other and to Rsx Repeat 1, whereas Xist Repeats A and E were most similar to each other and to Rsx Repeats 2, 3, and 4. Similarities at the level of k-mers corresponded to domain-specific enrichment of protein-binding motifs. Within individual domains, protein-binding motifs were often enriched to extreme levels. Our data support the hypothesis that Xist and Rsx encode similar functions through different spatial arrangements of functionally analogous protein-binding domains. We propose that the two clusters of repeat domains in Xist and Rsx function in part to cooperatively recruit PRC1 and PRC2 to chromatin. The physical manner in which these domains engage with protein cofactors may be just as critical to the function of the domains as the protein cofactors themselves. The general approaches we outline in this report should prove useful in the study of any set of RNAs.


Asunto(s)
Marsupiales/genética , ARN Largo no Codificante/química , ARN Largo no Codificante/genética , Animales , Análisis por Conglomerados , Humanos , Marsupiales/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Dominios Proteicos , Homología de Secuencia de Ácido Nucleico , Secuencias Repetidas en Tándem , Inactivación del Cromosoma X
10.
Nature ; 508(7497): 488-93, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24759410

RESUMEN

Y chromosomes underlie sex determination in mammals, but their repeat-rich nature has hampered sequencing and associated evolutionary studies. Here we trace Y evolution across 15 representative mammals on the basis of high-throughput genome and transcriptome sequencing. We uncover three independent sex chromosome originations in mammals and birds (the outgroup). The original placental and marsupial (therian) Y, containing the sex-determining gene SRY, emerged in the therian ancestor approximately 180 million years ago, in parallel with the first of five monotreme Y chromosomes, carrying the probable sex-determining gene AMH. The avian W chromosome arose approximately 140 million years ago in the bird ancestor. The small Y/W gene repertoires, enriched in regulatory functions, were rapidly defined following stratification (recombination arrest) and erosion events and have remained considerably stable. Despite expression decreases in therians, Y/W genes show notable conservation of proto-sex chromosome expression patterns, although various Y genes evolved testis-specificities through differential regulatory decay. Thus, although some genes evolved novel functions through spatial/temporal expression shifts, most Y genes probably endured, at least initially, because of dosage constraints.


Asunto(s)
Evolución Molecular , Mamíferos/genética , Cromosoma Y/genética , Animales , Aves/genética , Secuencia Conservada/genética , Femenino , Dosificación de Gen/genética , Genes sry/genética , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Marsupiales/genética , Receptores de Péptidos/genética , Receptores de Factores de Crecimiento Transformadores beta/genética , Selección Genética/genética , Cromosomas Sexuales/genética , Análisis Espacio-Temporal , Espermatogénesis/genética , Testículo/metabolismo , Transcriptoma/genética
11.
BMC Genomics ; 20(1): 460, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31170930

RESUMEN

BACKGROUND: Hibernation is a physiological state exploited by many animals exposed to prolonged adverse environmental conditions associated with winter. Large changes in metabolism and cellular function occur, with many stress response pathways modulated to tolerate physiological challenges that might otherwise be lethal. Many studies have sought to elucidate the molecular mechanisms of mammalian hibernation, but detailed analyses are lacking in reptiles. Here we examine gene expression in the Australian central bearded dragon (Pogona vitticeps) using mRNA-seq and label-free quantitative mass spectrometry in matched brain, heart and skeletal muscle samples from animals at late hibernation, 2 days post-arousal and 2 months post-arousal. RESULTS: We identified differentially expressed genes in all tissues between hibernation and post-arousal time points; with 4264 differentially expressed genes in brain, 5340 differentially expressed genes in heart, and 5587 differentially expressed genes in skeletal muscle. Furthermore, we identified 2482 differentially expressed genes across all tissues. Proteomic analysis identified 743 proteins (58 differentially expressed) in brain, 535 (57 differentially expressed) in heart, and 337 (36 differentially expressed) in skeletal muscle. Tissue-specific analyses revealed enrichment of protective mechanisms in all tissues, including neuroprotective pathways in brain, cardiac hypertrophic processes in heart, and atrophy protective pathways in skeletal muscle. In all tissues stress response pathways were induced during hibernation, as well as evidence for gene expression regulation at transcription, translation and post-translation. CONCLUSIONS: These results reveal critical stress response pathways and protective mechanisms that allow for maintenance of both tissue-specific function, and survival during hibernation in the central bearded dragon. Furthermore, we provide evidence for multiple levels of gene expression regulation during hibernation, particularly enrichment of miRNA-mediated translational repression machinery; a process that would allow for rapid and energy efficient reactivation of translation from mature mRNA molecules at arousal. This study is the first molecular investigation of its kind in a hibernating reptile, and identifies strategies not yet observed in other hibernators to cope stress associated with this remarkable state of metabolic depression.


Asunto(s)
Hibernación/genética , Reptiles/genética , Adaptación Fisiológica , Animales , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Especificidad de Órganos , Estrés Oxidativo/genética , Reptiles/metabolismo , Reptiles/fisiología , Proteínas de Reptiles/genética , Proteínas de Reptiles/metabolismo
12.
Mol Biol Evol ; 35(2): 431-439, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29161408

RESUMEN

DNA methylation plays a key role in maintaining transcriptional silence on the inactive X chromosome of eutherian mammals. Beyond eutherians, there are limited genome wide data on DNA methylation from other vertebrates. Previous studies of X borne genes in various marsupial models revealed no differential DNA methylation of promoters between the sexes, leading to the conclusion that CpG methylation plays no role in marsupial X-inactivation. Using reduced representation bisulfite sequencing, we generated male and female CpG methylation profiles in four representative vertebrates (mouse, gray short-tailed opossum, platypus, and chicken). A variety of DNA methylation patterns were observed. Platypus and chicken displayed no large-scale differential DNA methylation between the sexes on the autosomes or the sex chromosomes. As expected, a metagene analysis revealed hypermethylation at transcription start sites (TSS) of genes subject to X-inactivation in female mice. This contrasted with the opossum, in which metagene analysis did not detect differential DNA methylation between the sexes at TSSs of genes subject to X-inactivation. However, regions flanking TSSs of these genes were hypomethylated. Our data are the first to demonstrate that, for genes subject to X-inactivation in both eutherian and marsupial mammals, there is a consistent difference between DNA methylation levels at TSSs and immediate flanking regions, which we propose has a silencing effect in both groups.


Asunto(s)
Metilación de ADN , Marsupiales/genética , Cromosomas Sexuales , Sitio de Iniciación de la Transcripción , Inactivación del Cromosoma X , Animales , Pollos , Femenino , Masculino , Ratones
13.
Genome Res ; 23(9): 1486-95, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23788650

RESUMEN

Although more than thirty mammalian genomes have been sequenced to draft quality, very few of these include the Y chromosome. This has limited our understanding of the evolutionary dynamics of gene persistence and loss, our ability to identify conserved regulatory elements, as well our knowledge of the extent to which different types of selection act to maintain genes within this unique genomic environment. Here, we present the first MSY (male-specific region of the Y chromosome) sequences from two carnivores, the domestic dog and cat. By combining these with other available MSY data, our multiordinal comparison allows for the first accounting of levels of selection constraining the evolution of eutherian Y chromosomes. Despite gene gain and loss across the phylogeny, we show the eutherian ancestor retained a core set of 17 MSY genes, most being constrained by negative selection for nearly 100 million years. The X-degenerate and ampliconic gene classes are partitioned into distinct chromosomal domains in most mammals, but were radically restructured on the human lineage. We identified multiple conserved noncoding elements that potentially regulate eutherian MSY genes. The acquisition of novel ampliconic gene families was accompanied by signatures of positive selection and has differentially impacted the degeneration and expansion of MSY gene repertoires in different species.


Asunto(s)
Gatos/genética , Cromosomas de los Mamíferos/genética , Perros/genética , Evolución Molecular , Filogenia , Cromosoma Y/genética , Animales , Sitios Genéticos , Masculino , Selección Genética
14.
PLoS Genet ; 9(7): e1003635, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23874231

RESUMEN

X chromosome inactivation in eutherian mammals has been thought to be tightly controlled, as expected from a mechanism that compensates for the different dosage of X-borne genes in XX females and XY males. However, many X genes escape inactivation in humans, inactivation of the X in marsupials is partial, and the unrelated sex chromosomes of monotreme mammals have incomplete and gene-specific inactivation of X-linked genes. The bird ZW sex chromosome system represents a third independently evolved amniote sex chromosome system with dosage compensation, albeit partial and gene-specific, via an unknown mechanism (i.e. upregulation of the single Z in females, down regulation of one or both Zs in males, or a combination). We used RNA-fluorescent in situ hybridization (RNA-FISH) to demonstrate, on individual fibroblast cells, inactivation of 11 genes on the chicken Z and 28 genes on the X chromosomes of platypus. Each gene displayed a reproducible frequency of 1Z/1X-active and 2Z/2X-active cells in the homogametic sex. Our results indicate that the probability of inactivation is controlled on a gene-by-gene basis (or small domains) on the chicken Z and platypus X chromosomes. This regulatory mechanism must have been exapted independently to the non-homologous sex chromosomes in birds and mammals in response to an over-expressed Z or X in the homogametic sex, highlighting the universal importance that (at least partial) silencing plays in the evolution on amniote dosage compensation and, therefore, the differentiation of sex chromosomes.


Asunto(s)
Evolución Biológica , Pollos/genética , Ornitorrinco/genética , Cromosomas Sexuales/genética , Inactivación del Cromosoma X/genética , Animales , Pollos/fisiología , Compensación de Dosificación (Genética) , Femenino , Genes Ligados a X , Humanos , Masculino , Ornitorrinco/fisiología , Transcripción Genética
15.
Neurogenetics ; 16(3): 201-13, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25819921

RESUMEN

Pervasive transcription of the genome produces a diverse array of functional non-coding RNAs (ncRNAs). One particular class of ncRNAs, long intervening non-coding RNAs (lincRNAs) are thought to play a role in regulating gene expression and may be a major contributor to organism and tissue complexity. The human brain with its heterogeneous cellular make-up is a rich source of lincRNAs; however, the functions of the majority of lincRNAs are unknown. Recently, by completing RNA sequencing (RNA-Seq) of the human frontal cortex, we identified linc00320 as being highly expressed in the white matter compared to grey matter in multiple system atrophy (MSA) brain. Here, we further investigate the expression patterns of linc00320 and conclude that it is involved in specific brain regions rather than having involvement in the MSA disease process. We also show that the full-length linc00320 is only expressed in human brain tissue and not in other primates, suggesting that it may be involved in improved functional connectivity for higher human brain cognition.


Asunto(s)
Corteza Cerebral/metabolismo , Atrofia de Múltiples Sistemas/metabolismo , ARN Largo no Codificante/metabolismo , Sustancia Blanca/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Empalme Alternativo , Femenino , Feto , Sustancia Gris/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Isoformas de ARN , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN
16.
Genome Res ; 22(3): 498-507, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22128133

RESUMEN

We report here the isolation and sequencing of 10 Y-specific tammar wallaby (Macropus eugenii) BAC clones, revealing five hitherto undescribed tammar wallaby Y genes (in addition to the five genes already described) and several pseudogenes. Some genes on the wallaby Y display testis-specific expression, but most have low widespread expression. All have partners on the tammar X, along with homologs on the human X. Nonsynonymous and synonymous substitution ratios for nine of the tammar XY gene pairs indicate that they are each under purifying selection. All 10 were also identified as being on the Y in Tasmanian devil (Sarcophilus harrisii; a distantly related Australian marsupial); however, seven have been lost from the human Y. Maximum likelihood phylogenetic analyses of the wallaby YX genes, with respective homologs from other vertebrate representatives, revealed that three marsupial Y genes (HCFC1X/Y, MECP2X/Y, and HUWE1X/Y) were members of the ancestral therian pseudoautosomal region (PAR) at the time of the marsupial/eutherian split; three XY pairs (SOX3/SRY, RBMX/Y, and ATRX/Y) were isolated from each other before the marsupial/eutherian split, and the remaining three (RPL10X/Y, PHF6X/Y, and UBA1/UBE1Y) have a more complex evolutionary history. Thus, the small marsupial Y chromosome is surprisingly rich in ancient genes that are retained in at least Australian marsupials and evolved from testis-brain expressed genes on the X.


Asunto(s)
Evolución Molecular , Genes sry , Macropodidae/genética , Cromosoma Y , Animales , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos , Expresión Génica , Biblioteca de Genes , Masculino , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
17.
BMC Evol Biol ; 14: 267, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25539578

RESUMEN

BACKGROUND: X chromosome inactivation is the transcriptional silencing of one X chromosome in the somatic cells of female mammals. In eutherian mammals (e.g. humans) one of the two X chromosomes is randomly chosen for silencing, with about 15% (usually in younger evolutionary strata of the X chromosome) of genes escaping this silencing. In contrast, in the distantly related marsupial mammals the paternally derived X is silenced, although not as completely as the eutherian X. A chromosome wide examination of X inactivation, using RNA-seq, was recently undertaken in grey short-tailed opossum (Monodelphis domestica) brain and extraembryonic tissues. However, no such study has been conduced in Australian marsupials, which diverged from their American cousins ~80 million years ago, leaving a large gap in our understanding of marsupial X inactivation. RESULTS: We used RNA-seq data from blood or liver of a family (mother, father and daughter) of tammar wallabies (Macropus eugenii), which in conjunction with available genome sequence from the mother and father, permitted genotyping of 42 expressed heterozygous SNPs on the daughter's X. These 42 SNPs represented 34 X loci, of which 68% (23 of the 34) were confirmed as inactivated on the paternally derived X in the daughter's liver; the remaining 11 X loci escaped inactivation. Seven of the wallaby loci sampled were part of the old X evolutionary stratum, of which three escaped inactivation. Three loci were classified as part of the newer X stratum, of which two escaped inactivation. A meta-analysis of previously published opossum X inactivation data revealed that 5 of 52 genes in the old X stratum escaped inactivation. CONCLUSIONS: We demonstrate that chromosome wide inactivation of the paternal X is common to an Australian marsupial representative, but that there is more escape from inactivation than reported for opossum (32% v 14%). We also provide evidence that, unlike the human X chromosome, the location of loci within the oldest evolutionary stratum on the marsupial X does not correlate with their probability of escape from inactivation.


Asunto(s)
Evolución Biológica , Cromosomas de los Mamíferos/genética , Macropodidae/genética , Mamíferos/genética , Monodelphis/genética , Inactivación del Cromosoma X , Cromosoma X/genética , Animales , Australia , Femenino , Humanos , Masculino , Mamíferos/clasificación , Monodelphis/clasificación
18.
Nature ; 453(7192): 175-83, 2008 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-18464734

RESUMEN

We present a draft genome sequence of the platypus, Ornithorhynchus anatinus. This monotreme exhibits a fascinating combination of reptilian and mammalian characters. For example, platypuses have a coat of fur adapted to an aquatic lifestyle; platypus females lactate, yet lay eggs; and males are equipped with venom similar to that of reptiles. Analysis of the first monotreme genome aligned these features with genetic innovations. We find that reptile and platypus venom proteins have been co-opted independently from the same gene families; milk protein genes are conserved despite platypuses laying eggs; and immune gene family expansions are directly related to platypus biology. Expansions of protein, non-protein-coding RNA and microRNA families, as well as repeat elements, are identified. Sequencing of this genome now provides a valuable resource for deep mammalian comparative analyses, as well as for monotreme biology and conservation.


Asunto(s)
Evolución Molecular , Genoma/genética , Ornitorrinco/genética , Animales , Composición de Base , Dentición , Femenino , Impresión Genómica/genética , Humanos , Inmunidad/genética , Masculino , Mamíferos/genética , MicroARNs/genética , Proteínas de la Leche/genética , Filogenia , Ornitorrinco/inmunología , Ornitorrinco/fisiología , Receptores Odorantes/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Reptiles/genética , Análisis de Secuencia de ADN , Espermatozoides/metabolismo , Ponzoñas/genética , Zona Pelúcida/metabolismo
19.
20.
Genetics ; 228(1)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39044674

RESUMEN

The genes encoding ribosomal RNA are highly conserved across life and in almost all eukaryotes are present in large tandem repeat arrays called the rDNA. rDNA repeat unit size is conserved across most eukaryotes but has expanded dramatically in mammals, principally through the expansion of the intergenic spacer region that separates adjacent rRNA coding regions. Here, we used long-read sequence data from representatives of the major amniote lineages to determine where in amniote evolution rDNA unit size increased. We find that amniote rDNA unit sizes fall into two narrow size classes: "normal" (∼11-20 kb) in all amniotes except monotreme, marsupial, and eutherian mammals, which have "large" (∼35-45 kb) sizes. We confirm that increases in intergenic spacer length explain much of this mammalian size increase. However, in stark contrast to the uniformity of mammalian rDNA unit size, mammalian intergenic spacers differ greatly in sequence. These results suggest a large increase in intergenic spacer size occurred in a mammalian ancestor and has been maintained despite substantial sequence changes over the course of mammalian evolution. This points to a previously unrecognized constraint on the length of the intergenic spacer, a region that was thought to be largely neutral. We finish by speculating on possible causes of this constraint.


Asunto(s)
Evolución Molecular , Mamíferos , Animales , Mamíferos/genética , ADN Espaciador Ribosómico/genética , Humanos , ADN Ribosómico/genética , Genes de ARNr , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA