Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Molecules ; 29(7)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38611779

RESUMEN

Drug discovery involves a crucial step of optimizing molecules with the desired structural groups. In the domain of computer-aided drug discovery, deep learning has emerged as a prominent technique in molecular modeling. Deep generative models, based on deep learning, play a crucial role in generating novel molecules when optimizing molecules. However, many existing molecular generative models have limitations as they solely process input information in a forward way. To overcome this limitation, we propose an improved generative model called BD-CycleGAN, which incorporates BiLSTM (bidirectional long short-term memory) and Mol-CycleGAN (molecular cycle generative adversarial network) to preserve the information of molecular input. To evaluate the proposed model, we assess its performance by analyzing the structural distribution and evaluation matrices of generated molecules in the process of structural transformation. The results demonstrate that the BD-CycleGAN model achieves a higher success rate and exhibits increased diversity in molecular generation. Furthermore, we demonstrate its application in molecular docking, where it successfully increases the docking score for the generated molecules. The proposed BD-CycleGAN architecture harnesses the power of deep learning to facilitate the generation of molecules with desired structural features, thus offering promising advancements in the field of drug discovery processes.


Asunto(s)
Fármacos Anti-VIH , Simulación del Acoplamiento Molecular , Descubrimiento de Drogas , Hidrolasas , Memoria a Largo Plazo
2.
BMC Bioinformatics ; 24(1): 444, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996806

RESUMEN

For ligand binding prediction, it is crucial for molecular docking programs to integrate template-based modeling with a precise scoring function. Here, we proposed the CoDock-Ligand docking method that combines template-based modeling and the GNINA scoring function, a Convolutional Neural Network-based scoring function, for the ligand binding prediction in CASP15. Among the 21 targets, we obtained successful predictions in top 5 submissions for 14 targets and partially successful predictions for 4 targets. In particular, for the most complicated target, H1114, which contains 56 metal cofactors and small molecules, our docking method successfully predicted the binding of most ligands. Analysis of the failed systems showed that the predicted receptor protein presented conformational changes in the backbone and side chains of the binding site residues, which may cause large structural deviations in the ligand binding prediction. In summary, our hybrid docking scheme was efficiently adapted to the ligand binding prediction challenges in CASP15.


Asunto(s)
Proteínas , Proteínas/química , Simulación del Acoplamiento Molecular , Unión Proteica , Ligandos , Sitios de Unión , Conformación Proteica
3.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36835231

RESUMEN

Circular RNAs (circRNAs) are a novel class of non-coding RNA that, unlike linear RNAs, form a covalently closed loop without the 5' and 3' ends. Growing evidence shows that circular RNAs play important roles in life processes and have great potential implications in clinical and research fields. The accurate modeling of circRNAs structure and stability has far-reaching impact on our understanding of their functions and our ability to develop RNA-based therapeutics. The cRNAsp12 server offers a user-friendly web interface to predict circular RNA secondary structures and folding stabilities from the sequence. Through the helix-based landscape partitioning strategy, the server generates distinct ensembles of structures and predicts the minimal free energy structures for each ensemble with the recursive partition function calculation and backtracking algorithms. For structure predictions in the limited structural ensemble, the server also provides users with the option to set the structural constraints of forcing the base pairs and/or forcing the unpaired bases, such that only structures that meet the criteria are enumerated recursively.


Asunto(s)
ARN Circular , Programas Informáticos , Conformación de Ácido Nucleico , Algoritmos , ARN/genética , Internet
4.
Molecules ; 28(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38005179

RESUMEN

Persistent organic pollutants (POPs) are ubiquitous and bioaccumulative, posing potential and long-term threats to human health and the ecological environment. Quantitative structure-activity relationship (QSAR) studies play a guiding role in analyzing the toxicity and environmental fate of different organic pollutants. In the current work, five molecular descriptors are utilized to construct QSAR models for predicting the mean and maximum air half-lives of POPs, including specifically the energy of the highest occupied molecular orbital (HOMO_Energy_DMol3), a component of the dipole moment along the z-axis (Dipole_Z), fragment contribution to SAscore (SAscore_Fragments), subgraph counts (SC_3_P), and structural information content (SIC). The QSAR models were achieved through the application of three machine learning methods: partial least squares (PLS), multiple linear regression (MLR), and genetic function approximation (GFA). The determination coefficients (R2) and relative errors (RE) for the mean air half-life of each model are 0.916 and 3.489% (PLS), 0.939 and 5.048% (MLR), 0.938 and 5.131% (GFA), respectively. Similarly, the determination coefficients (R2) and RE for the maximum air half-life of each model are 0.915 and 5.629% (PLS), 0.940 and 10.090% (MLR), 0.939 and 11.172% (GFA), respectively. Furthermore, the mechanisms that elucidate the significant factors impacting the air half-lives of POPs have been explored. The three regression models show good predictive and extrapolation abilities for POPs within the application domain.

5.
Molecules ; 27(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36296416

RESUMEN

COVID-19 can cause different neurological symptoms in some people, including smell, inability to taste, dizziness, confusion, delirium, seizures, stroke, etc. Owing to the issue of vaccine effectiveness, update and coverage, we still need one or more diversified strategies as the backstop to manage illness. Characterizing the structural basis of ligand recognition in the main protease (Mpro) of SARS-CoV-2 will facilitate its rational design and development of potential drug candidates with high affinity and selectivity against COVID-19. Up to date, covalent-, non-covalent inhibitors and allosteric modulators have been reported to bind to different active sites of Mpro. In the present work, we applied the molecular dynamics (MD) simulations to systematically characterize the potential binding features of catalytic active site and allosteric binding sites in Mpro using a dataset of 163 3D structures of Mpro-inhibitor complexes, in which our results are consistent with the current studies. In addition, umbrella sampling (US) simulations were used to explore the dissociation processes of substrate pathway and allosteric pathway. All the information provided new insights into the protein features of Mpro and will facilitate its rational drug design for COVID-19.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Simulación de Dinámica Molecular , Humanos , SARS-CoV-2 , Ligandos , Inhibidores de Proteasas/química , Proteínas no Estructurales Virales/metabolismo , Proteasas 3C de Coronavirus , Simulación del Acoplamiento Molecular , Antivirales/farmacología , Antivirales/química
6.
Nano Lett ; 19(8): 4990-4996, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31322897

RESUMEN

Conventional ion-exchange polymeric membranes have limited selectivity due to their nonuniform and unstable structures. The rigid, regular, high porosity of metal organic framework (MOF) generally provides MOF membrane with exclusion/sieving effect but lack of electrostatic screening. Here we report for the first time a nonbiological highly selective MOF membrane with polyelectrolyte threaded in the nanochannel of metal organic framework (polyelectrolyte∼MOF) and its selective transport of alkali metal cations. Poly(sodium vinyl sulfonated-co-acrylic acid)∼MIL-53(Al) is prepared on anodic aluminum oxide substrate via steps of MOF MIL-53(Al) growth followed by in situ polymerization. The poly(VS-co-AA)∼MIL-53(Al) membrane demonstrates highly specific selectivity in transport of alkali metal cations. Rate of ion transport correlates inversely with the hydrated diameter of the ion reaching a low limiting rate near 0.7 nm hydrated diameter. Charge exclusion is demonstrated with blockage of anion transport under a concentration gradient. The highly uniform porous nanostructure of MOF and ionic function of polyelectrolyte offers the MOF membrane with synergistic selectivity based on exclusion forces of the framework and Coulomb forces from fixed charges of polyelectrolytes in nanochannels.

7.
J Chem Phys ; 150(4): 044111, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30709281

RESUMEN

Free energy calculations for chemical reactions with a steep energy barrier require well defined reaction coordinates (RCs). However, when multiple parallel channels exist along selected RC, the application of conventional enhanced samplings is difficult to generate correct sampling within limited simulation time and thus cannot give correct prediction about the favorable pathways, the relative stability of multiple products or intermediates. Here, we implement the selective integrated tempering sampling (SITS) method with quantum mechanical and molecular mechanical (QM/MM) potential to investigate the chemical reactions in solution. The combined SITS-QM/MM scheme is used to identify possible reaction paths, intermediate and product states, and the free energy profiles for the different reaction paths. Two double proton transfer reactions were studied to validate the implemented method and simulation protocol, from which the independent and correlated proton transfer processes are identified in two representative systems, respectively. This protocol can be generalized to various kinds of chemical reactions for both academic studies and industry applications, such as in exploration and optimization of potential reactions in DNA encoded compound library and halogen or deuterium substitution of the hit discovery and lead optimization stages of drug design via providing a better understanding of the reaction mechanism along the designed chemical reaction pathways.

8.
J Am Chem Soc ; 140(46): 15859-15867, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30412395

RESUMEN

Dynamic combinatorial library (DCL) has emerged as an efficient tool for ligand discovery and become an important discovery modality in biomedical research. However, the applications of DCLs have been significantly hampered by low library diversity and limited analytical methods capable of processing large libraries. Here, we report a strategy that has addressed this limitation and can select cooperatively binding small-molecule pairs from large-scale dynamic libraries. Our approach is based on DNA-mediated dynamic hybridization, DNA-encoding, and a photo-cross-linking-based decoding scheme. To demonstrate the generality and performance of this approach, a 10 000-member DNA-encoded dynamic library has been prepared and selected against six protein targets. Specific binders have been identified for each target, and we have validated the biological activities of selected ligands for the targets that are implicated in important cellular functions including protein deacetylation and sumoylation. Notably, a series of novel and selective sirtuin-3 inhibitors have been developed. Our study has circumvented a major obstacle in DCL and may provide a broadly applicable method for ligand discovery against biological targets.


Asunto(s)
ADN/química , Descubrimiento de Drogas , Bibliotecas de Moléculas Pequeñas/química , Ligandos , Conformación Molecular
9.
Langmuir ; 33(42): 11746-11753, 2017 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-28764331

RESUMEN

Canonical molecular dynamics simulations are performed to investigate the behavior of single-chain and multiple-chain poly(ethylene glycol) (PEG) contained within a cubic framework spanned by polyethylene (PE) chains. This simple model is the first of its kind to study the chemical physics of polymer-threaded organic frameworks, which are materials with potential applications in catalysis and separation processes. For a single-chain 9-mer, 14-mer, and 18-mer in a small framework, the PEG will interact strongly with the framework and assume a more linear geometry chain with an increased radius of gyration Rg compared to that of a large framework. The interaction between PEG and the framework decreases with increasing mesh size in both vacuum and water. In the limit of a framework with an infinitely large cavity (infinitely long linkers), PEG behavior approaches simulation results without a framework. The solvation of PEG is simulated by adding explicit TIP3P water molecules to a 6-chain PEG 14-mer aggregate confined in a framework. The 14-mer chains are readily solvated and leach out of a large 2.6 nm mesh framework. There are fewer water-PEG interactions in a small 1.0 nm mesh framework, as indicated by a smaller number of hydrogen bonds. The PEG aggregate, however, still partially dissolves but is retained within the 1.0 nm framework. The preliminary results illustrate the effectiveness of the simple model in studying polymer-threaded framework materials and in optimizing polymer or framework parameters for high performance.

10.
J Chem Phys ; 146(2): 024103, 2017 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-28088161

RESUMEN

Although energy barriers can be efficiently crossed in the reaction coordinate (RC) guided sampling, this type of method suffers from identification of the correct RCs or requirements of high dimensionality of the defined RCs for a given system. If only the approximate RCs with significant barriers are used in the simulations, hidden energy barriers with small to medium height would exist in other degrees of freedom (DOFs) relevant to the target process and consequently cause the problem of insufficient sampling. To address the sampling in this so-called hidden barrier situation, here we propose an effective approach to combine temperature accelerated molecular dynamics (TAMD), an efficient RC-guided sampling method, with the integrated tempering sampling (ITS), a generalized ensemble sampling method. In this combined ITS-TAMD method, the sampling along the major RCs with high energy barriers is guided by TAMD and the sampling of the rest of the DOFs with lower but not negligible barriers is enhanced by ITS. The performance of ITS-TAMD to three systems in the processes with hidden barriers has been examined. In comparison to the standalone TAMD or ITS approach, the present hybrid method shows three main improvements. (1) Sampling efficiency can be improved at least five times even if in the presence of hidden energy barriers. (2) The canonical distribution can be more accurately recovered, from which the thermodynamic properties along other collective variables can be computed correctly. (3) The robustness of the selection of major RCs suggests that the dimensionality of necessary RCs can be reduced. Our work shows more potential applications of the ITS-TAMD method as the efficient and powerful tool for the investigation of a broad range of interesting cases.


Asunto(s)
Conceptos Matemáticos , Proteínas/química , Termodinámica , Dipéptidos/química , Transferencia de Energía , Isomerismo , Simulación de Dinámica Molecular , Conformación Proteica , Temperatura
11.
Comput Struct Biotechnol J ; 23: 1666-1679, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38680871

RESUMEN

Accurately predicting molecular properties is a challenging but essential task in drug discovery. Recently, many mono-modal deep learning methods have been successfully applied to molecular property prediction. However, mono-modal learning is inherently limited as it relies solely on a single modality of molecular representation, which restricts a comprehensive understanding of drug molecules. To overcome the limitations, we propose a multimodal fused deep learning (MMFDL) model to leverage information from different molecular representations. Specifically, we construct a triple-modal learning model by employing Transformer-Encoder, Bidirectional Gated Recurrent Unit (BiGRU), and graph convolutional network (GCN) to process three modalities of information from chemical language and molecular graph: SMILES-encoded vectors, ECFP fingerprints, and molecular graphs, respectively. We evaluate the proposed triple-modal model using five fusion approaches on six molecule datasets, including Delaney, Llinas2020, Lipophilicity, SAMPL, BACE, and pKa from DataWarrior. The results show that the MMFDL model achieves the highest Pearson coefficients, and stable distribution of Pearson coefficients in the random splitting test, outperforming mono-modal models in accuracy and reliability. Furthermore, we validate the generalization ability of our model in the prediction of binding constants for protein-ligand complex molecules, and assess the resilience capability against noise. Through analysis of feature distributions in chemical space and the assigned contribution of each modal model, we demonstrate that the MMFDL model shows the ability to acquire complementary information by using proper models and suitable fusion approaches. By leveraging diverse sources of bioinformatics information, multimodal deep learning models hold the potential for successful drug discovery.

12.
Chem Biol Drug Des ; 103(1): e14427, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38230776

RESUMEN

Fragment-based drug design is an emerging technology in pharmaceutical research and development. One of the key aspects of this technology is the identification and quantitative characterization of molecular fragments. This study presents a strategy for identifying important molecular fragments based on molecular fingerprints and decision tree algorithms and verifies its feasibility in predicting protein-ligand binding affinity. Specifically, the three-dimensional (3D) structures of protein-ligand complexes are encoded using extended-connectivity fingerprints (ECFP), and three decision tree models, namely Random Forest, XGBoost, and LightGBM, are used to quantitatively characterize the feature importance, thereby extracting important molecular fragments with high reliability. Few-shot learning reveals that the extracted molecular fragments contribute significantly and consistently to the binding affinity even with a small sample size. Despite the absence of location and distance information for molecular fragments in ECFP, 3D visualization, in combination with the reverse ECFP process, shows that the majority of the extracted fragments are located at the binding interface of the protein and the ligand. This alignment with the distance constraints critical for binding affinity further supports the reliability of the strategy for identifying important molecular fragments.


Asunto(s)
Proteínas , Ligandos , Reproducibilidad de los Resultados , Proteínas/química , Unión Proteica , Árboles de Decisión
13.
Curr Med Imaging ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38333978

RESUMEN

BACKGROUND: Cancer is a major disease that threatens human life and health. Raman spectroscopy can provide an effective detection method. OBJECTIVE: The study aimed to introduce the application of Raman spectroscopy to tumor detection. We have introduced the current mainstream Raman spectroscopy technology and related application research. METHODS: This article has first introduced the grim situation of malignant tumors in the world. The advantages of tumor diagnosis based on Raman spectroscopy have also been analyzed. Secondly, various Raman spectroscopy techniques applied in the medical field are introduced. Several studies on the application of Raman spectroscopy to tumors in different parts of the human body are discussed. Then the advantages of combining deep learning with Raman spectroscopy in the diagnosis of tumors are discussed. Finally, the related problems of tumor diagnosis methods based on Raman spectroscopy are pointed out. This may provide useful clues for future work. CONCLUSION: Raman spectroscopy can be an effective method for diagnosing tumors. Moreover, Raman spectroscopy diagnosis combined with deep learning can provide more convenient and accurate detection results.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38321907

RESUMEN

Traditional molecular de novo generation methods, such as evolutionary algorithms, generate new molecules mainly by linking existing atomic building blocks. The challenging issues in these methods include difficulty in synthesis, failure to achieve desired properties, and structural optimization requirements. Advances in deep learning offer new ideas for rational and robust de novo drug design. Deep learning, a branch of machine learning, is more efficient than traditional methods for processing problems, such as speech, image, and translation. This study provides a comprehensive overview of the current state of research in de novo drug design based on deep learning and identifies key areas for further development. Deep learning-based de novo drug design is pivotal in four key dimensions. Molecular databases form the basis for model training, while effective molecular representations impact model performance. Common DL models (GANs, RNNs, VAEs, CNNs, DMs) generate drug molecules with desired properties. The evaluation metrics guide research directions by determining the quality and applicability of generated molecules. This abstract highlights the foundational aspects of DL-based de novo drug design, offering a concise overview of its multifaceted contributions. Consequently, deep learning in de novo molecule generation has attracted more attention from academics and industry. As a result, many deep learning-based de novo molecule generation types have been actively proposed.

15.
Chem Biol Drug Des ; 101(1): 52-68, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35852446

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs), a special class of persistent organic pollutants (POPs) with two or more aromatic rings, have received extensive attention owing to their carcinogenic, mutagenic, and teratogenic effects. Quantitative structure-property relationship (QSPR) is powerful chemometric method to correlate structural descriptors of PAHs with their physicochemical properties. In this manuscript, a QSPR study of PAHs was performed to predict their boiling point (bp), octanol-water partition coefficient (LogKow ), and retention time index (RI). In addition to traditional molecular descriptors, structural fingerprints play an important role in the correlation of the above properties. Three regression methods, partial least squares (PLS), multiple linear regression (MLR), and genetic function approximation (GFA), were used to establish QSPR models for each property of PAHs. The correlation coefficient (R2 test ) and root mean square error (RMSE) of best model were 0.980 and 24.39% (PLS), 0.979 and 35.80% (GFA), 0.926 and 22.90% (MLR) for bp, LogKow, and RI, respectively. The model proposed here can be used to estimate physicochemical properties and inform toxicity prediction of environmental chemicals.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Hidrocarburos Policíclicos Aromáticos/química , Agua/química , Relación Estructura-Actividad Cuantitativa , Temperatura de Transición , Octanoles , Aprendizaje Automático
16.
Microbiol Spectr ; 11(1): e0266322, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475726

RESUMEN

The capsid protein (CA), an essential component of human immunodeficiency virus type 1 (HIV-1), represents an appealing target for antivirals. Small molecules targeting the CAI-binding cavity in the C-terminal domain of HIV-1 CA (CA CTD) confer potent antiviral activities. In this study, we report that a small molecule, protoporphyrin IX (PPIX), targets the HIV-1 CA by binding to this pocket. PPIX was identified via in vitro drug screening, using a homogeneous and time-resolved fluorescence-based assay. CA multimerization and a biolayer interferometry (BLI) assay showed that PPIX promoted CA multimerization and bound directly to CA. The binding model of PPIX to CA CTD revealed that PPIX forms hydrogen bonds with the L211and E212 residues in the CA CTD. Moreover, the BLI assay demonstrated that this compound preferentially binds to the CA hexamer versus the monomer. The superposition of the CAI CTD-PPIX complex and the hexameric CA structure suggests that PPIX binds to the interface formed by the NTD and the CTD between adjacent protomers in the CA hexamer via the T72 and E212 residues, serving as a glue to enhance the multimerization of CA. Taken together, our studies demonstrate that PPIX, a hexamer-targeted CA assembly enhancer, should be a new chemical probe for the discovery of modulators of the HIV-1 capsid assembly. IMPORTANCE CA and its assembled viral core play essential roles in distinct steps during HIV-1 replication, including reverse transcription, integration, nuclear entry, virus assembly, and maturation through CA-CA or CA-host factor interactions. These functions of CA are fundamental for HIV-1 pathogenesis, making it an appealing target for antiviral therapy. In the present study, we identified protoporphyrin IX (PPIX) as a candidate CA modulator that can promote CA assembly and prefers binding the CA hexamer versus the monomer. PPIX, like a glue, bound at the interfaces between CA subunits to accelerate CA multimerization. Therefore, PPIX could be used as a new lead for a CA modulator, and it holds potential research applications.


Asunto(s)
Cápside , VIH-1 , Humanos , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , VIH-1/metabolismo , Antivirales
17.
Chem Biol Drug Des ; 101(2): 380-394, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36102275

RESUMEN

Given the difficult of experimental determination, quantitative structure-property relationship (QSPR) and deep learning (DL) provide an important tool to predict physicochemical property of chemical compounds. In this paper, partial least squares (PLS), genetic function approximation (GFA), and deep neural network (DNN) were used to predict the Lee retention index (Lee-RI) of PAHs in SE-52 and DB-5 stationary phases. Four molecular descriptors, molecular weight (MW), quantitative estimate of drug-likeness (QED), atomic charge weighted negative surface area (Jurs_PNSA_3), and relative negative charge (Jurs_RNCG) were selected to construct regression models based on genetic algorithm. For SE-52, PLS model showed best prediction power, followed by DNN and GFA. The relative error (RE), root mean square error (RMSE), and regression coefficient (R2 ) of best PLS regression model are 1.228%, 5.407, and 0.980. For DB-5, DNN model showed best prediction power, followed by GFA and PLS. The RE, RMSE and R2 of best DNN regression model for DB-5-1 and DB-5-2 are 1.058%, 4.325%, 0.976%, 0.821%, 3.795%, and 0.970%, respectively. The three regression models not only show good predictive ability, but also highlight the stability and ductility of the models.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Redes Neurales de la Computación , Relación Estructura-Actividad Cuantitativa , Análisis de los Mínimos Cuadrados , Aprendizaje Automático
18.
Technol Health Care ; 31(S1): 487-495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37066944

RESUMEN

BACKGROUND: Protein-ligand binding affinity is of significant importance in structure-based drug design. Recently, the development of machine learning techniques has provided an efficient and accurate way to predict binding affinity. However, the prediction performance largely depends on how molecules are represented. OBJECTIVE: Different molecular descriptors are designed to capture different features. The study aims to identify the optimal circular fingerprints for predicting protein-ligand binding affinity with matched neural network architectures. METHODS: Extended-connectivity fingerprints (ECFP) and protein-ligand extended connectivity fingerprints (PLEC) encode circular atomic and bonding connectivity environments with the preference for intra- and inter-molecular features, respectively. Densely-connected neural networks are employed to map the circular fingerprints of protein-ligand complexes to binding affinitiesRESULTS:The performance of neural networks is sensitive to the parameters used for ECFP and PLEC fingerprints. The R2_score of the evaluated ECFP and PLEC fingerprints reaches 0.52 and 0.49, higher than that of the improperly set ECFP and PLEC fingerprints with R2_score of 0.45 and 0.38, respectively. Additionally, compared to the predictions from the standalone fingerprints, the ECFP+PLEC conjoint ones slightly improve the prediction accuracy with R2_score of approximately 0.55. CONCLUSION: Both intra- and inter-molecular structural features encoded in the circular fingerprints contribute to the protein-ligand binding affinity. Optimizing the parameters of ECFP and PLEC can enhance performance. The conjoint fingerprint scheme can be generally extended to other molecular descriptors for enhanced feature engineering and improved predictive performance.


Asunto(s)
Redes Neurales de la Computación , Unión Proteica , Humanos , Diseño de Fármacos , Ligandos , Proteínas/metabolismo , Reproducibilidad de los Resultados
19.
J Chem Theory Comput ; 18(3): 2002-2015, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35133833

RESUMEN

RNA molecules fold as they are transcribed. Cotranscriptional folding of RNA plays a critical role in RNA functions in vivo. Present computational strategies focus on simulations where large structural changes may not be completely sampled. Here, we describe an alternative approach to predicting cotranscriptional RNA folding by zooming in and out of the RNA folding energy landscape. By classifying the RNA structural ensemble into "partitions" based on long, stable helices, we zoom out of the landscape and predict the overall slow folding kinetics from the interpartition kinetic network, and for each interpartition transition, we zoom in on the landscape to simulate the kinetics. Applications of the model to the 117-nucleotide E. coli SRP RNA and the 59-nucleotide HIV-1 TAR RNA show agreements with the experimental data and new structural and kinetic insights into biologically significant conformational switches and pathways for these important systems. This approach, by zooming in/out of an RNA folding landscape at different resolutions, might allow us to treat large RNAs in vivo with transcriptional pause, transcription speed, and other in vivo effects.


Asunto(s)
Escherichia coli , Pliegue del ARN , Escherichia coli/metabolismo , Cinética , Conformación de Ácido Nucleico , ARN/química , Termodinámica , Transcripción Genética
20.
Curr Med Imaging ; 18(5): 496-508, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34473619

RESUMEN

BACKGROUND: The new coronavirus disease 2019 (COVID-19) is spreading rapidly around the world. Artificial Intelligence (AI) assisted identification and detection of diseases is an effective method of medical diagnosis. OBJECTIVES: To present recent advances in AI-assisted diagnosis of COVID-19, we introduce major aspects of AI in the process of diagnosing COVID-19. METHODS: In this paper, we firstly cover the latest collection and processing methods of datasets of COVID-19. The processing methods mainly include building public datasets, transfer learning, unsupervised learning and weakly supervised learning, semi-supervised learning methods and so on. Secondly, we introduce the algorithm application and evaluation metrics of AI in medical imaging segmentation and automatic screening. Then, we introduce the quantification and severity assessment of infection in COVID-19 patients based on image segmentation and automatic screening. Finally, we analyze and point out the current AI-assisted diagnosis of COVID-19 problems, which may provide useful clues for future work. CONCLUSION: AI is critical for COVID-19 diagnosis. Combining chest imaging with AI can not only save time and effort, but also provide more accurate and efficient medical diagnosis results.


Asunto(s)
COVID-19 , Inteligencia Artificial , COVID-19/diagnóstico por imagen , Prueba de COVID-19 , Diagnóstico por Imagen , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA