Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Bioorg Med Chem Lett ; 27(9): 2003-2009, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28347667

RESUMEN

As an epigenetic reader, BRD4 regulates the transcription of important downstream genes that are essential for the survival of tumor cells. Small molecular inhibitors targeting the first bromodomain of BRD4 (BRD4-BD1) have showed promising potentials in the therapies of BRD4-related cancers. Through AlphaScreen-based high-throughput screening assay, a novel small molecular inhibitor was identified, and named DCBD-005, which inhibited the binding between BRD4-BD1 and acetylated lysines with an IC50 value of 0.81±0.03µM. The compound DCBD-005 effectively inhibited the viability, caused cell cycle arrest, and induced apoptosis in human leukemia MV4-11 cells. Moreover, the crystal structure of compound DCBD-005 with the BRD4-BD1 was determined at 1.72Å resolution, which revealed the binding mechanism of the leading compound, and also provided solid basis for further structure-based optimization. These results indicated that this novel BRD4-BD1 inhibitor DCBD-005 is promising to be developed into a drug candidate in the treatment of BRD4-related diseases.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Leucemia/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Proteínas de Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cristalografía por Rayos X , Ensayos Analíticos de Alto Rendimiento , Humanos , Leucemia/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo
2.
Org Biomol Chem ; 15(44): 9352-9361, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29087414

RESUMEN

The BET family of bromodomain-containing proteins (BRDs) is believed to be a promising drug target for therapeutic intervention in a number of diseases including cancer, inflammation and cardiovascular diseases. Hence, there is a great demand for novel chemotypes of BET inhibitors. The drug repurposing strategy offers great benefits to find inhibitors with known safety and pharmacokinetic profiles, thus increasing medicinal chemists' interest in recent years. Using the drug repurposing strategy, a BRD4-specific score based virtual screening campaign on an in-house drug library was conducted followed by the ALPHA screen assay test. Nitroxoline, an FDA-approved antibiotic, was identified to effectively disrupt the interaction between the first bromodomain of BRD4 (bromodomain-containing protein 4) and acetylated H4 peptide with IC50 of 0.98 µM. Nitroxoline inhibited all BET family members with good selectivity against non-BET bromodomain-containing proteins, thus it is defined as a selective BET inhibitor. Based on the crystal structure of the nitroxoline-BRD4_BD1 complex, the mechanism of action as well as BET specificity of nitroxoline were determined. Since the anticancer activity of nitroxoline against MLL leukemia, one of the BET related diseases, has not been studied before, we tested whether nitroxoline might serve as a potential repurposing drug candidate for MLL leukemia. Nitroxoline effectively inhibited the proliferation of MLL leukemia cells by inducing cell cycle arrest and apoptosis. The profound efficacy is, at least in part, due to the inhibition of BET and downregulation of target gene transcription. Our discovery of nitroxoline as a BET inhibitor suggests potential application of nitroxoline and its derivatives for clinical translation in BET family related diseases.


Asunto(s)
Diseño de Fármacos , Nitroquinolinas/química , Nitroquinolinas/farmacología , Proteínas Nucleares/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Sitios de Unión , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Dominios Proteicos
3.
J Chem Inf Model ; 57(7): 1677-1690, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28636361

RESUMEN

Bromodomain-containing protein 4 (BRD4) is implicated in the pathogenesis of a number of different cancers, inflammatory diseases and heart failure. Much effort has been dedicated toward discovering novel scaffold BRD4 inhibitors (BRD4is) with different selectivity profiles and potential antiresistance properties. Structure-based drug design (SBDD) and virtual screening (VS) are the most frequently used approaches. Here, we demonstrate a novel, structure-based VS approach that uses machine-learning algorithms trained on the priori structure and activity knowledge to predict the likelihood that a compound is a BRD4i based on its binding pattern with BRD4. In addition to positive experimental data, such as X-ray structures of BRD4-ligand complexes and BRD4 inhibitory potencies, negative data such as false positives (FPs) identified from our earlier ligand screening results were incorporated into our knowledge base. We used the resulting data to train a machine-learning model named BRD4LGR to predict the BRD4i-likeness of a compound. BRD4LGR achieved a 20-30% higher AUC-ROC than that of Glide using the same test set. When conducting in vitro experiments against a library of previously untested, commercially available organic compounds, the second round of VS using BRD4LGR generated 15 new BRD4is. Moreover, inverting the machine-learning model provided easy access to structure-activity relationship (SAR) interpretation for hit-to-lead optimization.


Asunto(s)
Descubrimiento de Drogas/métodos , Aprendizaje Automático , Terapia Molecular Dirigida , Proteínas Nucleares/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Proteínas de Ciclo Celular , Línea Celular , Evaluación Preclínica de Medicamentos , Humanos , Simulación del Acoplamiento Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformación Proteica , Relación Estructura-Actividad , Factores de Transcripción/química , Factores de Transcripción/metabolismo
4.
J Chem Inf Model ; 55(12): 2623-32, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26562720

RESUMEN

Protein arginine methyltransferases (PRMTs) catalyze the posttranslational methylation of arginine, which is important in a range of biological processes, including epigenetic regulation, signal transduction, and cancer progression. Although previous studies of PRMT1 mutants suggest that the dimerization arm and the N-terminal region of PRMT1 are important for activity, the contributions of these regions to the structural architecture of the protein and its catalytic methylation activity remain elusive. Molecular dynamics (MD) simulations performed in this study showed that both the dimerization arm and the N-terminal region undergo conformational changes upon dimerization. Because a correlation was found between the two regions despite their physical distance, an allosteric pathway mechanism was proposed based on a network topological analysis. The mutation of residues along the allosteric pathways markedly reduced the methylation activity of PRMT1, which may be attributable to the destruction of dimer formation and accordingly reduced S-adenosyl-L-methionine (SAM) binding. This study provides the first demonstration of the use of a combination of MD simulations, network topological analysis, and biochemical assays for the exploration of allosteric regulation upon PRMT1 dimerization. These findings illuminate the results of mechanistic studies of PRMT1, which have revealed that dimer formation facilitates SAM binding and catalytic methylation, and provided direction for further allosteric studies of the PRMT family.


Asunto(s)
Modelos Moleculares , Simulación de Dinámica Molecular , Proteína-Arginina N-Metiltransferasas/química , S-Adenosilmetionina/metabolismo , Regulación Alostérica , Bioensayo , Secuencia Conservada , Dimerización , Electroforesis en Gel Bidimensional , Fluorescencia , Metilación , Estructura Secundaria de Proteína , S-Adenosilmetionina/química
5.
Bioorg Med Chem Lett ; 24(9): 2090-3, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24709560

RESUMEN

Menin functions as an oncogenic cofactor of mixed lineage leukaemia (MLL) fusion proteins in leukaemogenesis. The menin-MLL interface is a potential therapeutic target in acute leukaemia cases. In this study, approximately 900 clinical compounds were evaluated and ranked using pharmacophore-based virtual screening, the top 29 hits were further evaluated by biochemical analysis to discover the inhibitors that target the menin-MLL interface. Two aminoglycoside antibiotics, neomycin and tobramycin, were identified as menin-MLL inhibitors with binding affinities of 18.8 and 59.9 µM, respectively. The results of thermal shift assay validated the direct interactions between the two antibiotics and menin. The results of isothermal titration calorimetry showed that the equilibrium dissociation constant between menin and neomycin was approximately 15.6 µM. We also predicted the binding modes of inhibitors at the menin-MLL interface through molecular docking analysis. The results indicated that neomycin and tobramycin competitively occupy the binding site of MLL. This study has shed light on the development of powerful probes and new therapies for MLL-mediated leukaemogenesis.


Asunto(s)
Antibacterianos/farmacología , Proteína de la Leucemia Mieloide-Linfoide/antagonistas & inhibidores , Neomicina/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Tobramicina/farmacología , Antibacterianos/química , Humanos , Leucemia/tratamiento farmacológico , Modelos Moleculares , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Neomicina/química , Unión Proteica/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas/metabolismo , Tobramicina/química
6.
Org Biomol Chem ; 12(47): 9665-73, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25348815

RESUMEN

Protein arginine methylation is a common post-translational modification which is crucial for a variety of biological processes. Dysregulation of protein arginine methyltransferases (PRMTs) activity has been implicated in cancer and other serious diseases. Thus, small molecule inhibitors against PRMT have great potential for therapeutic development. Herein, through the combination of virtual screening and bioassays, six small molecular compounds were identified as PRMT1 inhibitors. Amongst them, the binding affinity of compounds DCLX069 and DCLX078 with PRMT1 was further validated by T1ρ and saturation transfer difference (STD) NMR experiments. Most important of all, both compounds effectively blocked cell proliferation in breast cancer, liver cancer and acute myeloid leukemia cell lines. The binding mode analysis from molecular docking simulations theoretically indicated that both inhibitors occupied the SAM binding pocket to exert the inhibitory effect. Taken together, our compounds enriched the structural scaffolds as PRMT1 inhibitors and afforded clues for further optimization.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/metabolismo
7.
J Colloid Interface Sci ; 597: 383-392, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33894546

RESUMEN

HYPOTHESIS: Responsive surfactant systems based on dynamic covalent bond exhibit an unsatisfactory foamability and foam stability, despite their documented functionality in emulsions. As such we anticipate that the foaming performance should be improved by introducing Pickering effect, which is possible when the responsiveness of the dynamic covenant bonds controls not only the hydrophobicity of polymers but also their aggregation behavior (to form nanoparticles). EXPERIMENTS: Here we created surface active nanoparticles made from self-aggregated polymers consisting of PAH (polyallylamine hydrochloride)-BA (benzaldehyde). The covalent imine bonds between originally hydrophilic PAH and hydrophobic BA are dynamic in that their formation and breakage is a function of solution pH, confirmed by 1H NMR and dynamic interfacial tension measurement. FINDINGS: At pH 7.4, a stable foam is achieved in the PAH-BA (amino to aldehyde ratio at 1:0.2) solution; while at pH 2.5, it defoams due to breakage of dynamic bonds corresponding to the measured diminishing surface activity. The reversibility of foaming-defoaming has been demonstrated by alternatively changing pH for multiple cycles, with the foaming performance persistent. The foam stability can be improved by more hydrophobic compounds e.g. at a lower amino to aldehyde ratio or using PAH-cinnamaldehyde (CA). The reversible and responsive foaming demonstrated in a Pickering system provides a new method to create novel foaming systems with properties desirable to many applications.

8.
Theranostics ; 11(11): 5387-5403, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859753

RESUMEN

Background and Objective: Epigenetic alterations are common events in clear cell renal cell carcinoma (ccRCC), and protein arginine methyltransferase 1 (PRMT1) is an important epigenetic regulator in cancers. However, its role in ccRCC remains unclear. Methods: We investigated PRMT1 expression level and its correlations to clinicopathological factors and prognosis in ccRCC patients based on ccRCC tissue microarrays (TMAs). Genetic knockdown and pharmacological inhibition using a novel PRMT1 inhibitor DCPT1061 were performed to investigate the functional role of PRMT1 in ccRCC proliferation. Besides, we confirmed the antitumor effect of PRMT1 inhibitor DCPT1061 in ccRCC cell-derived tumor xenograft (CDX) models as well as patient-derived tumor xenograft (PDX) models. Results: We found PRMT1 expression was remarkably upregulated in tumor tissues and associated with poor pathologic characters and outcomes of ccRCC patients. Furthermore, genetic knockdown and pharmacological inhibition of PRMT1 by a novel potent inhibitor DCPT1061 dramatically induced G1 cell cycle arrest and suppressed ccRCC cell growth. Mechanistically, RNA sequencing and further validation identified Lipocalin2 (LCN2), a secreted glycoprotein implicated in tumorigenesis, as a crucial regulator of ccRCC growth and functional downstream effector of PRMT1. Epigenetic silencing of LCN2 autocrine secretion by PRMT1 deficiency decreased downstream p-AKT, leading to reduced p-RB and cell growth arrest through the neutrophil gelatinase associated lipocalin receptor (NGALR). Moreover, PRMT1 inhibition by DCPT1061 not only inhibited tumor growth but also sensitized ccRCC to sunitinib treatment in vivo by attenuating sunitinib-induced upregulation of LCN2-AKT-RB signaling. Conclusion: Taken together, our study revealed a PRMT1-dependent epigenetic mechanism in the control of ccRCC tumor growth and drug resistance, indicating PRMT1 may serve as a promising target for therapeutic intervention in ccRCC patients.


Asunto(s)
Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/genética , Animales , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Carcinoma de Células Renales/tratamiento farmacológico , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Epigénesis Genética/genética , Femenino , Fase G1/efectos de los fármacos , Fase G1/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/genética , Células HEK293 , Humanos , Neoplasias Renales/tratamiento farmacológico , Lipocalina 2/genética , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ratones SCID , Neutrófilos/efectos de los fármacos , Pronóstico , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Sunitinib/farmacología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
9.
RSC Adv ; 9(9): 4917-4924, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-35514635

RESUMEN

The general control nonrepressed protein 5 (GCN5) is an important target for drug design and drug discovery largely owing to its pathogenic role in malignancies. Chemical probes that target GCN5 have been developed in recent decades, but their potencies are still unsatisfactory. In this study, through an in-house developed AlphaScreen-based high throughput screening platform, radioactive acetylation assays and 2D-similarity based analogue searching, we discovered DC_HG24-01 as the novel hGCN5 inhibitor with the IC50 value of 3.1 ± 0.2 µM. Further docking studies suggested that DC_HG24-01 could occupy the binding pocket of acetyl-CoA cofactor, which laid the foundation for the development of more potent hGCN5 inhibitors in the future. At the cellular level, DC_HG24-01 could retard cell proliferation and block the acetylation of H3K14 leading to cell apoptosis and cell cycle arrest at the G1 phase in MV4-11 cell lines. Taken together, the discovery of DC_HG24-01 may serve as a good starting point to accelerate the development of more potent hGCN5 inhibitors through further structural decoration and provide new insight into the pharmacological treatment of leukemia.

10.
Oncogenesis ; 7(11): 83, 2018 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-30385738

RESUMEN

Small molecular inhibitors targeting BRD4 family proteins are emerging as promising therapies in many types of human malignancies. However, whether BRD4, as well as other BET family members, may serve as therapeutic targets in renal cell carcinoma (RCC) remains unknown. In this study, we found that both BRD2 and BRD4 were over-expressed in RCC tissues, knock-down both of which achieved potent anti-proliferative effects in RCC cells. A novel category of BET inhibitors, originated from an approved drug Nitroxoline, were synthesized and evaluated with biochemical and cellular assays, as well as the method of crystallography. The complex crystal structures of several compounds in this category with the first bromodomain of BRD4 (BRD4-BD1) were solved, revealing the binding mechanism and facilitating further structural optimizations. Among them, compound BDF-1253 showed an approximately four-fold improvement in BRD4 inhibition compared with the prototype Nitroxoline and had good selectivity for BET proteins against other bromodomain proteins or epi-enzymes in biochemical assays. Compound BDF-1253 efficiently suppressed the expression of BET downstream genes, impaired RCC cells viability via inducing cell cycle arrest and apoptosis, and decreased tumor growth in RCC xenografts. In summary, these results suggest that inhibition of BET family members has great therapeutic potentials in the treatment of RCC, and the novel series of BET inhibitors reported here are promising to become RCC drug candidates.

11.
Chem Biol Drug Des ; 90(6): 1260-1270, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28636189

RESUMEN

Protein arginine methylation, a post-translational modification critical for a variety of biological processes, is catalyzed by protein arginine N-methyltransferases (PRMTs). In particular, PRMT1 is responsible for over 85% of the arginine methylation in mammalian cells. Dysregulation of PRMT1 is involved in diverse pathological diseases including cancers. However, most current PRMT1 inhibitors are lack of specificity, efficacy, and bioavailability. Herein, a series of alkyl bis(oxy)dibenzimidamide derivatives were identified as selective PRMT1 inhibitors. Among them, the most potent compound corresponds to hexamidine (IC50  = 5.9 ± 1.7 µm), which is an antimicrobial agent. The binding between hexamidine and PRMT1 was further validated by thermal shift assays and nuclear magnetic resonance (NMR) experiments. Molecular docking and NMR assays indicated that hexamidine occupied the substrate binding pocket. Furthermore, hexamidine effectively blocked cell proliferation in cancer cell lines related to PRMT1 overexpression. Taken together, this study has provided a druggable scaffold targeting PRMT1 as well as a new way to repurpose old drugs which is a complementary tool for the discovery of new lead compounds.


Asunto(s)
Amidas/química , Inhibidores Enzimáticos/química , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Amidas/metabolismo , Amidas/toxicidad , Benzamidinas/química , Benzamidinas/metabolismo , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/toxicidad , Transferencia Resonante de Energía de Fluorescencia , Humanos , Espectroscopía de Resonancia Magnética , Metilación , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
12.
J Med Chem ; 60(21): 8888-8905, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29019697

RESUMEN

Protein Arginine Methyltransferases (PRMTs) are crucial players in diverse biological processes, and dysregulation of PRMTs has been linked to various human diseases, especially cancer. Therefore, small molecules targeting PRMTs have profound impact for both academic functional studies and clinical disease treatment. Here, we report the discovery of N1-(2-((2-chlorophenyl)thio)benzyl)-N1-methylethane-1,2-diamine (28d, DCPR049_12), a highly potent inhibitor of type I PRMTs that has good selectivity against a panel of other methyltransferases. Compound 28d effectively inhibits cell proliferation in several leukemia cell lines and reduces the cellular asymmetric arginine dimethylation levels. Serving as an effective inhibitor, 28d demonstrates the mechanism of cell killing in both cell cycle arrest and apoptotic effect as well as downregulation of the pivotal mixed lineage leukemia (MLL) fusion target genes such as HOXA9 and MEIS1, which reflects the critical roles of type I PRMTs in MLL leukemia. These studies present 28d as a valuable inhibitor to investigate the role of type I PRMTs in cancer and other diseases.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Leucemia/tratamiento farmacológico , Leucemia/patología , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Arginina/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Diaminas/farmacología , Diaminas/uso terapéutico , Humanos , Proteínas Represoras/antagonistas & inhibidores
13.
Medchemcomm ; 8(6): 1322-1331, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30108844

RESUMEN

As a member of the bromodomain and extra terminal domain (BET) protein family, BRD4 is closely related to cancers and other diseases. Small-molecule BRD4 inhibitors have already demonstrated promising potential for the therapy of BRD4-related cancers. In this study, we report the discovery and evaluation of a novel category of BRD4 inhibitors, which share a trimethoxy ring and target the first bromodomain of the human BRD4 protein. The IC50 value of the most potent compound, DC-BD-03, is 2.01 µM. In addition, a high-resolution crystal structure of the compound DC-BD-29 with the first bromodomain of BRD4 was determined, which revealed the binding mode and facilitated further structure-based optimization. These compounds exhibited anti-proliferation activity, caused cell cycle arrest, and induced apoptosis in human leukemia MV4-11 cells. Thus, the results presented in this study indicated the potential of this series of compounds as drug candidates for the therapy of BRD4-related cancers.

14.
Biomed Res Int ; 2016: 7086390, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27872854

RESUMEN

Overexpression of coactivator associated arginine methyltransferase 1 (CARM1), a protein arginine N-methyltransferase (PRMT) family enzyme, is associated with various diseases including cancers. Consequently, the development of small-molecule inhibitors targeting PRMTs has significant value for both research and therapeutic purposes. In this study, together with structure-based virtual screening with biochemical assays, two compounds DC_C11 and DC_C66 were identified as novel inhibitors of CARM1. Cellular studies revealed that the two inhibitors are cell membrane permeable and effectively blocked proliferation of cancer cells including HELA, K562, and MCF7. We further predicted the binding mode of these inhibitors through molecular docking analysis, which indicated that the inhibitors competitively occupied the binding site of the substrate and destroyed the protein-protein interactions between CARM1 and its substrates. Overall, this study has shed light on the development of small-molecule CARM1 inhibitors with novel scaffolds.


Asunto(s)
Bioensayo/métodos , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/farmacología , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/química , Humanos , Proteína-Arginina N-Metiltransferasas/metabolismo , Termodinámica
15.
J Med Chem ; 58(20): 8166-81, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26390175

RESUMEN

Histone methyltransferases are involved in various biological functions, and these methylation regulating enzymes' abnormal expression or activity has been noted in several human cancers. Within this context, SET domain-containing (lysine methyltransferase) 7 (SET7, also called KMT7, SETD7, SET9) is of increasing significance due to its diverse roles in biological functions and diseases, such as diabetes, cancers, alopecia areata, atherosclerotic vascular disease, HIV, and HCV. In this study, DC-S100, which was discovered by pharmacophore- and docking-based virtual screening, was identified as the hit compound of SET7 inhibitor. Structure-activity relationship (SAR) analysis was performed on analogs of DC-S100 and according to the putative binding mode of DC-S100, structure modifications were made to improve its activity. Of note, compounds DC-S238 and DC-S239, with IC50 values of 4.88 and 4.59 µM, respectively, displayed selectivity for DNMT1, DOT1L, EZH2, NSD1, SETD8, and G9a. Taken together, DC-S238 and DC-S239 can serve as leads for further investigation as SET7 inhibitors and the chemical toolkits for functional biology studies of SET7.


Asunto(s)
Anilidas/síntesis química , Anilidas/farmacología , Benzamidas/síntesis química , Benzamidas/farmacología , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Tiofenos/síntesis química , Tiofenos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Simulación por Computador , Cristalografía por Rayos X , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Ensayos Analíticos de Alto Rendimiento , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA