Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37177522

RESUMEN

In order to accurately detect the temperature of molten aluminum and overcome the adverse influence of high temperature and corrosiveness on the sensing results, a temperature detection system based on a multi-node sapphire fiber sensor was proposed and developed. Through the structural parameter design of the fiber sensor, the scheme of utilizing the 0.7 mm diameter fiber and 0.5 mm groove was formulated. Simulation and analysis were carried out to determine the ultrasonic response distribution of the signal passing through the whole fiber sensor. The results indicate that the system is capable of distinguishing test signals from various positions and temperatures. Following the completion of the static calibration, the temperature of the molten aluminum was observed in real-time, and the data of the temperature measurements conducted at the two groove locations were compared. According to the obtained results, the test accuracy was greater than 1 degree Celsius and the temperature test stability was good, laying a solid foundation for the potential development of temperature measurement devices.

2.
Glob Chang Biol ; 26(2): 697-708, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31782204

RESUMEN

Mountain glaciers are retreating at an unprecedented rate due to global warming. Glacier retreat is widely believed to be driven by the physiochemical characteristics of glacier surfaces; however, the current knowledge of such biological drivers remains limited. An estimated 130 Tg of organic carbon (OC) is stored in mountain glaciers globally. As a result of global warming, the accelerated microbial decomposition of OC may further accelerate the melting process of mountain glaciers by heat production with the release of greenhouse gases, such as carbon dioxide (CO2 ) and methane. Here, using short-term aerobic incubation data from the forefield of Urumqi Glacier No. 1, we assessed the potential climate feedback mediated by soil microbiomes at temperatures of 5°C (control), 6.2°C (RCP 2.6), 11°C (RCP 8.5), and 15°C (extreme temperature). We observed enhanced CO2 -C release and heat production under warming conditions, which led to an increase in near-surface (2 m) atmospheric temperatures, ranging from 0.9°C to 3.4°C. Warming significantly changed the structures of the RNA-derived (active) and DNA-derived (total) soil microbiomes, and active microbes were more sensitive to increased temperatures than total microbes. Considering the positive effects of temperature and deglaciation age on the CO2 -C release rate, the alterations in the active microbial community structure had a negative impact on the increased CO2 -C release rate. Our results revealed that glacial melting could potentially be significantly accelerated by heat production from increased microbial decomposition of OC. This risk might be true for other high-altitude glaciers under emerging warming, thus improving the predictions of the effects of potential feedback on global warming.


Asunto(s)
Gases de Efecto Invernadero , Microbiota , Calentamiento Global , Cubierta de Hielo , Suelo
3.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(12): 3354-7, 2014 Dec.
Artículo en Zh | MEDLINE | ID: mdl-25881438

RESUMEN

In the gas concentration detection process using the characteristic spectrum absorption method, in order to improve the detection accuracy of the gas concentration, it often has to use the high-quality narrowband modulated laser and modulate wavelength to align with the characteristic absorption peaks of measured gas. But by this way, the cost of the laser and system requirements will be greatly increased. To use the existing portable, low-cost semiconductor laser conditions, at the same time it can obtain higher precision, conversion window differential absorption optical structure and the algorithm of differential characteristic absorption ratio was designed. Selection reason of position of the wavelength characteristic was analyzed, and steps to implement the processing algorithm were given. Systematically utilizing the combination method of conversion window and absorption gas chamber, by the method for calculating the ratio of the light intensity response, the light intensity from non-characteristic absorption peak position was divided out. So it achieved a similar detecting effect was achieved that used a narrow-band laser aligned to the feature absorption peak position. Experiments adopted MW-IR-1650 infrared laser, type SSM17-2 stepper motor control module, C30659 infrared detectors, and other devices. In the experiments, different concentrations of methane gas were tested, and experimental results show that the relative error of measurement was less than 2.0% within the range from 200 to 5000 ppm. In summary, it's proved that the system has high accuracy and stability.

4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(3): 752-5, 2013 Mar.
Artículo en Zh | MEDLINE | ID: mdl-23705447

RESUMEN

The resonance Rayleigh scattering spectral detection system was designed based on the 2, 9, 16, 23-tetracarboxylate-phthalocyanine zinc and protein system. In the system, excitation light source is 405 nm wide band gap semiconductor lasers, and monochromator is 475 nm narrow-band band-pass filter, and the detector is low-noise and high-gain photoelectric amplifier based on blue-ray enhanced photodiode. Experiment shows that, the solution's strong absorption wavelength is near 420 nm. Under the action of incentive light, resonance Rayleigh scattering is generated at the resonant wavelength, and the scattering intensity is proportional to the protein content. The system uses 2, 9, 16, 23-tetracarboxylate as the spectrum probe to determine the concentration of serum proteins by resonance Rayleigh scattering method. Its linear detection range is 10 - 50 mg.mL-1, and its detection limit is 0. 001 mg.mL-1. The newly developed device for detecting concentration of the serum protein has the advantages of small size, low cost, low power consumption, and being easy to use.


Asunto(s)
Proteínas Sanguíneas/análisis , Complejos de Coordinación/química , Indoles/química , Dispersión de Radiación , Análisis Espectral/métodos , Complejos de Coordinación/síntesis química , Isoindoles
5.
Huan Jing Ke Xue ; 44(1): 512-519, 2023 Jan 08.
Artículo en Zh | MEDLINE | ID: mdl-36635839

RESUMEN

Soil microorganisms dominate the biogeochemical cycles of elements in glacier forelands, which continue to expand due to the climate warming. We analyzed the soil microbial functional characteristics among three types of glacier forelands on the Tibetan Plateau: Yulong Glacier (Y), a temperate glacier; Tianshan Urumqi Glacier No.1 (T), a sub-continental glacier; and Laohugou Glacier No.12 (L), a continental glacier. Here, soil microbial functional genes were quantified using quantitative microbial element cycling technology (QMEC). We found that, in the three glacier forelands, the abundances of soil microbial functional genes related to hemicellulose degradation and reductive acetyl-CoA pathway were highest compared with other carbon-related functional genes. The main nitrogen cycling genes were involved in ammonification. The functional genes of the phosphorus cycle and sulfur cycle were related to organic phosphate mineralization and sulfur oxidation. Furthermore, the soils of the temperate glacier foreland with better hydrothermal conditions had the most complex microbial functional gene structure and the highest functional potentials, followed by those of the soils of continental glacier foreland with the driest environment. These significant differences in soil microbial functional genes among the three types of glacier forelands verified the impacts of geographic difference on microbial functional characteristics, as well as providing a basis for the study of soil microbial functions and biogeochemical cycles in glacier forelands.


Asunto(s)
Cubierta de Hielo , Microbiología del Suelo , Tibet , Cubierta de Hielo/química , Suelo/química , Azufre/metabolismo
6.
Sensors (Basel) ; 12(7): 8663-74, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23012510

RESUMEN

A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and -2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

7.
Microorganisms ; 10(9)2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36144446

RESUMEN

Sarcandra glabra in-forest planting, an anthropogenic activity that may introduce a variety of disturbances into the forest, is being popularly promoted in southern China, while its consequential influences on soil nutrients, as well as the arbuscular mycorrhiza fungal (AMF) community of key forest keystone plants, are still unelucidated, which hampers the assessment of ecological safety and the improvement of agronomic measurements. In this research, topsoil from a 3-year-old Sarcandra glabra planted forest and a nearby control forest were sampled, and the annual variation in the soil nutrients and AMF community of the keystone tree Cunninghamia lanceolata were investigated. Our result showed that the total amount of soil organic carbon of the Sarcandra glabra cultivation group was significantly higher than that of the control group (p < 0.05), which indicated that Sarcandra glabra cultivation significantly enhanced the topsoil carbon storage. Yet, there were only insignificant differences in the Shannon index and Chao index of the AMF community between the two groups (p > 0.05). PCoA analysis found that the compositional differences between two groups were also insignificant. This indicated that Sarcandra glabra cultivation had no significant influence on the diversity and composition of the Cunninghamia lanceolata AMF community. However, we found that the differences in the total amounts of nitrogen and total phosphorus between the two groups were relatively lower in April and September, which indicated the higher nutrient demands and consumption of Sarcandra glabra in these two periods and suggested that a sufficient fertilizer application in these two stages would reduce the potential competition for nutrients between Sarcandra glabra and Cunninghamia lanceolata in order to ensure Sarcandra glabra production and forest health. Lastly, our results reported a total extra income ranging from of CNY 127,700 hm−2 (7 years of cultivation) to CNY 215,300 hm−2 (10 years cultivation) provided by Sarcandra glabra in-forest planting, which indicated its powerful potential for mitigating poverty. Our research systematically investigated the annual variation in the soil nutrient content and keystone tree AMF community caused by Sarcandra glabra cultivation and offers constructive guidance for Sarcandra glabra cultivation and fertilization management and ecological safety assessment.

8.
Front Plant Sci ; 13: 848691, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401610

RESUMEN

Alpine ecosystem stability and biodiversity of the Tibetan plateau are facing threat from dry valley vegetation uplift expansion, a process which is highly connected to variations in the soil microbial community and soil nutrients. However, the variation of microbial community properties and their relationship to soil nutrients have scarcely been explored in Tibetan dry valleys, which is a gap that hampers understanding the dry valley ecosystem's response to vegetation change. In this study, we sampled grasslands (G), a grass-shrub transition area (T), and shrublands (S) along an uplift expansion gradient and investigated the link between microbial community properties and soil nutrients. The results showed that shrub degradation by grass expansion in Tibetan dry valley was accompanied by increasing relative phosphorus (P) limitation, which was the main driver for bacterial and fungal composition variation as it offered highest total effect on PC1 (0.38 and 0.63, respectively). Total phosphorus (TP) was in the center module of bacterial and fungal network under shrub soil and even acted as key nodes in fungal networks. During the replacement by grass, TP was gradually marginalized from both bacterial and fungal center network module and finally disappeared in networks, with ammonia and nitrate gradually appearing in the bacterial network. However, TC and total nitrogen (TN) were always present in the center modules of both fungal and bacterial network. These support that a TP variation-induced compositional and network functional shift in the microbial community was a potential reason for vegetation uplift expansion in Tibetan dry valley. This study highlighted the effect of TP on microbial community properties during dry valley vegetation uplift expansion and offered basic information on Tibetan alpine dry valley ecosystem's response to climate change.

9.
ISME Commun ; 2(1): 68, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37938688

RESUMEN

Closely related with microbial activities, soil developments along the glacier forelands are generally considered a carbon sink; however, those of continental glacier forelands remain unclear. Continental glaciers are characterized by dry conditions and low temperature that limit microbial growth. We investigated the carbon characteristics along a chronosequence of the Laohugou Glacier No. 12 foreland, a typical continental glacier on the Tibetan Plateau, by analyzing soil bacterial community structure and microbial carbon-related functional potentials. We found an unexpected carbon loss in which soil organic carbon decreased from 22.21 g kg-1 to 10.77 g kg-1 after receding 50 years. Structural equation modeling verified the important positive impacts from bacterial community. Lower carbon fixation efficiency along the chronosequence was supported by less autotrophic bacteria and carbon fixation genes relating to the reductive tricarboxylic acid cycle. Lower carbon availability and higher carbon requirements were identified by an increasing bacterial copy number and a shift of the dominant bacterial community from Proteobacteria and Bacteroidetes (r-strategists) to Actinobacteria and Acidobacteria (K-strategists). Our findings show that the carbon loss of continental glacier foreland was significantly affected by the changes of bacterial community, and can help to avoid overestimating the carbon sink characteristics of glacier forelands in climate models.

10.
Sci Total Environ ; 804: 150032, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34798716

RESUMEN

Mountainous alpine ecosystems are sensitive to global change, where soil nutrient content would potentially vary under current climate change background, and thus possibly influence the activity of nitrifiers and denitrifiers, as well as N2O emissions. However, within mountainous alpine ecosystems, the potential variation of soil nutrients under current global change and the consequence to N2O emission from nitrification and denitrification are still unclarified, hampering a comprehensive understanding of the feedback mechanisms between the nitrogen cycle and climate change. In order to fill this knowledge gap, we selected alpine grasslands at three different elevations and investigated the distribution and environmental drivers of nitrifiers and denitrifiers. The results showed that the lowest elevation site tended to have higher total phosphorus (TP) accumulation within the topsoil. The abundance of functional groups, emission of CO2 and N2O, and the N2O/CO2 ratio showed a decreasing trend along elevation. TP was the greatest influence on denitrifier composition (nosZ/narG and nirS/nirK ratios) and considerably influenced nitrifier composition (AOA/AOB ratio), and was significantly correlated to the N2O/CO2 ratio. In microcosms of soils from the highest elevation site, TP addition decreased the ratios of nosZ/narG, nirS/nirK, and AOA/AOB, and increased N2O/CO2 ratio and N2O emission, thus contributing to positive climate change feedback. This study indicates the potential for change within the nitrifier and denitrifier communities under current climate change, and highlights the role TP plays in governing nitrification and denitrification in mountainous alpine ecosystems.


Asunto(s)
Fósforo , Suelo , Cambio Climático , Desnitrificación , Ecosistema , Retroalimentación , Pradera , Óxido Nitroso/análisis , Microbiología del Suelo
11.
Microorganisms ; 9(3)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803112

RESUMEN

The properties of rocks can be greatly affected by seepage hydrocarbons in petroleum-related mud volcanoes. Among them, the color of sedimentary rocks can reflect the changes of sedimentary environment and weathering history. However, little is known about the microbial communities and their biogeochemical significance in these environments. In this study, contrasting rock samples were collected from the Aiqigou mud volcano on the southern margin of the Junggar Basin in Northwest China as guided by rock colors indicative of redox conditions. The physicochemical properties and mineral composition are similar under the same redox conditions. For example, the content of chlorite, muscovite, quartz, and total carbon were higher, and the total iron was lower under reduced conditions compared with oxidized environments. High-throughput sequencing of 16S rRNA gene amplicons revealed that different functional microorganisms may exist under different redox conditions; microbes in oxidized conditions have higher diversity. Statistical analysis and incubation experiments indicated that the microbial community structure is closely related to the content of iron which may be an important factor for color stratification of continental sedimentary rocks in the Aiqigou mud volcano. The interactions between organics and iron-bearing minerals mediated by microorganisms have also been hypothesized.

12.
Ultrasonics ; 113: 106361, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33548757

RESUMEN

Solid rocket motor (SRM) temperature is an important physical parameter for which there is no reliable in situ measurement device, apart from a thermocouple, for such a high temperature environment apart. In this study, an ultrasonic temperature measurement system was designed with an iridium-rhodium-40% alloy waveguide. Laboratory experiments showed that the device obtained ultrasonic signals up to 1800 °C with a temperature fitting curve from room temperature to 1800 °C. The thermometer also operated stably under high temperature and produced a repeatable calibration curve, at 97% repeatability. An error band was obtained with 95% confidence. At temperatures above 1000 °C, sensitivity gradually increased to a maximum of 0.0035 µs/°C. A corresponding application structure was established for an SRM before subjecting the sensor to a temperature test experiment. The temperature-time curve obtained detected a peak temperature at 1744 °C.

13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(8): 2184-6, 2010 Aug.
Artículo en Zh | MEDLINE | ID: mdl-20939335

RESUMEN

Aimed at the measurement demand for development of better X-ray scintillation crystals, a photoelectrical detector for integrally test the multi-parameter spectral responsivity of scintillation crystals was developed. The conversion spectrum of the scintillation crystal excited by various X-ray energies under the critical focal length could be measured directly through the spectral output interface by one spectrometer, and the photovoltaic effect voltage of the PIN photodiode could be tested through the voltage output interface by one oscilloscope. Furthermore, the output power of fluorescence was calculated using an equivalent circuit. The measurement results show that the conversion efficiency of the scintillator declined along with the current increase of the X-ray tube while it has weak relation with the change in tube voltage. The experimental results show that the method presented in this paper is helpful for testing the scintillator properties.

14.
Environ Int ; 140: 105764, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371309

RESUMEN

Denitrifying anaerobic methane oxidation (DAMO) is a vital methane sink in wetlands. However, the interactions and niche partitioning of DAMO bacteria and archaea in freshwater wetland soils, in addition to the interactions among microorganisms that couple methane and nitrogen cycling is still unclear, despite that these factors may govern the fate of methane and nitrogen in wetlands. Here, we evaluated the vertical distribution of DAMO bacteria and archaea in soil layers along with the potential interactions among populations in the methane-coupled nitrogen cycling microbial community of Tibetan freshwater wetlands. A combination of molecular biology, stable isotope tracer technology, and microbial bioinformatics was used to evaluate these interrelated dynamics. The abundances and potential methane oxidation rates indicated that DAMO bacteria and archaea differentially occupy surface and subsurface soil layers, respectively. The inferred interactions between DAMO bacteria and nitrogen cycling microorganisms within their communities are complex, DAMO bacteria apparently achieve an advantage in the highly competitive environment of surface soils layers and occupy a specific niche in those environments. Conversely, the apparent relationships between DAMO archaea and nitrogen cycling microorganisms are relatively simple, wherein high levels of cooperation are inferred between DAMO archaea and nitrate-producing organisms in subsurface soils layers. These results suggest that the vertical distribution patterns of DAMO bacteria and archaea enable them to play significant roles in the methane oxidation activity of different soil layers and collectively form an effective methane filtration consortium.


Asunto(s)
Archaea , Methylococcaceae , Anaerobiosis , Archaea/genética , Metano , Oxidación-Reducción , Tibet , Humedales
15.
Microorganisms ; 8(5)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349397

RESUMEN

The biodiversity of fungi, which are extremely important in maintaining the ecosystem balance in alpine lakeside wetlands, has not been fully studied. In this study, we investigated the fungal communities of three lakeside wetlands from different altitudes in the Qinghai-Tibet Plateau and its edge. The results showed that the fungi of the alpine lakeside wetland had higher species diversity. Functional annotation of fungi by FUNGild software showed that saprophytic fungi were the most abundant type in all three wetlands. Further analysis of the microbial phylogenetic molecular ecological network (pMEN) showed that saprophytic fungi are important species in the three wetland fungal networks, while symbiotic fungi and pathotrophic fungi have different roles in the fungal networks in different wetlands. Community diversity was high in all three lakeside wetlands, but there were significant differences in the composition, function and network structure of the fungal communities. Contemporary environmental conditions (soil properties) and historical contingencies (geographic sampling location) jointly determine fungi community diversity in this study. These results expand our knowledge of fungal biodiversity in the alpine lakeside wetlands.

16.
Huan Jing Ke Xue ; 41(6): 2918-2923, 2020 Jun 08.
Artículo en Zh | MEDLINE | ID: mdl-32608809

RESUMEN

Glaciers are constantly retreating because of global warming. In this study, three soil samples along the forefield of Urumqi Glacier No. 1 were collected. The effects of warming on the microbial community in the glacier forefield were investigated through a 150-day laboratory experiment. In this experiment, two temperature treatments were performed at 5℃and 15℃. The results showed that with increasing deglaciation age, the concentrations of carbon and nitrogen increased and the abundance and alpha diversity of microbial communities increased in the original samples. The 150-day laboratory experiment indicated that warming insignificantly changed the copy number of archaea and bacteria. Furthermore, it changed the microbial community composition, and the changes varied in different sampling sites. Based on the analysis of abundant OTUs changing significantly with warming, the sampling sites with shorter deglaciation age had stronger response with warming, representing an increase in the abundance of genus Thiobacillus. Furthermore, these results revealed that warming caused different effects on microbes along glacier forefield and thus, it could provide important characteristics of the microbial community with warming in alpine glacier regions.


Asunto(s)
Cubierta de Hielo , Microbiota , Bacterias , Suelo , Microbiología del Suelo
17.
Ultrasonics ; 89: 102-109, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29763793

RESUMEN

Iridium-rhodium is generally applied as a thermocouple material, with max operating temperature about 2150 °C. In this study, a ultrasonic temperature measurement system was designed by using Iridium-rhodium (60%Ir-40%Rh) alloy as an acoustic waveguide sensor material, and the system was preliminarily tested in a high-temperature oxidation environment. The result of ultrasonic temperature measurement shows that this system can indeed work stably in high-temperature oxidation environments. The relationship between temperature and delay time of ultrasonic thermometry up to 2200 °C was illustrated. Iridium-rhodium materials were also investigated in order to fully elucidate the proposed waveguide sensor's performance in a high-temperature oxidation environment. This system lays a foundation for further application of high-temperature measurement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA