RESUMEN
Breast cancer (BC) is the most commonly diagnosed tumor, remaining one of the leading causes of morbidity and mortality in females worldwide, with the highest rates in Western countries. Among metastatic BC (MBC), triple-negative breast cancer (TNBC) is characterized by the lack of expression of specific receptors, and differs from other subgroups of BC for its increased growth and fast spreading, with reduced treatment possibilities and a worse outcome. Actually, MBC patients are extremely prone to metastasis and consequent relapses, which affect distant target organs (e.g., brain, lung, bone and liver). Hence, the comprehension of biological mechanisms underlying the BC metastatization process is a key requirement to conceive/set up innovative medicinal strategies, with the goal to achieve long-lasting therapeutic efficacy, reducing adverse effects, and also ameliorating Quality of Life (QoL). Bioactive metabolites isolated from medicinal mushrooms (MMs) used as a supportive treatment, combined with conventional oncology, have recently gained wide interest. In fact, mounting evidence has revealed their peculiar promising immunomodulatory, anti-inflammatory and anticancer activities, even though these effects have to be further clarified. Among the group of most promising MMs are Lentinula edodes, Grifola frondosa, Ganoderma lucidum, Ophiocordyceps sinensis and Agaricus blazei, which are already employed in conventional cancer protocols in Asia and China. Recently, a growing number of studies have focused on the pharmacology and feasibility of MM-derived bioactive compounds as a novel valuable approach to propose an effective adjuvant therapy for MBC patients' management. In this review, we summarized the current state of knowledge on the abovementioned MM-derived bioactive compounds and their therapeutic potential in clinical settings.
RESUMEN
UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.
Asunto(s)
Agaricus , Proliferación Celular , Proteínas Filagrina , Células HaCaT , Rayos Ultravioleta , Agaricus/química , Humanos , Rayos Ultravioleta/efectos adversos , Proliferación Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/química , Polisacáridos/farmacología , Polisacáridos/química , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Citocinas/metabolismoRESUMEN
Agaricus blazei is a rare medicinal and edible fungus with a crispy taste and delicious flavor. Both fruiting body and mycelium are rich in polysaccharides, sterols, terpenoids, peptides, lipids, polyphenols, and other active ingredients, which have strong pharmacological activities such as anti-tumor, lipid-lowering, glucose-lowering, immunomodulation, optimization of intestinal flora, and anti-oxidation. Therefore, it is a kind of fungal resource with a great prospect of edible and medicinal development. Among the reported chemical components of A. blazei, blazeispirol is a series of sterol compounds unique to A. blazei, which has a spiral structure and is different from classical steroids. It is an important active ingredient found in the mycelium of A. blazei and has significant hepatoprotective activity. It can be used as a phylogenetic and chemotaxonomic marker of A. blazei strains and is considered an excellent lead compound for drug development. According to the skeleton structure characteristics, the 17 discovered blazeispirol compounds can be divided into two types: blazeispirane and problazeispirane. In order to further explore the resource of blazeispirol compounds of A. blazei, the discovery, isolation, structure, biological activity, and biosynthetic pathways of blazeispirol compounds of A. blazei were systematically reviewed. Besides, the metabolic regulation strategies related to the fermentation synthesis of blazeispirol A by A. blazei were discussed. This review could provide a reference for the efficient synthesis and development of blazeispirol compounds, the research and development of related drugs and functional foods, and the quality improvement of A. blazei and other medicinal and edible fungi resources and derivatives.
Asunto(s)
Agaricus , Neoplasias , Filogenia , Polisacáridos , Esteroides , Agaricus/química , Agaricus/metabolismoRESUMEN
This study explores the antifungal properties of Agaricus blazei Murrill, a valuable medicinal and edible fungus. Six compounds (1-6) were first isolated from A. blazei using various isolation techniques and identified using spectroscopic methods. These compounds include linoleic acid, 1,1'-oxybis(2,4-di-tert-butylbenzene), glycerol monolinoleate, volemolide (17R)-17-methylincisterol, (24s)-ergosta-7-en-3-ol, and dibutyl phthalate. This study also assesses the antifungal activities of these compounds against Trichophyton mentagrophology, Trichophyton rubrum, Candida albicans, and Cryptococcus neoformans. The results demonstrate varied sensitivities against these pathogenic fungi, with compound 2 showing significant inhibition against T. mentagrophology, compound 3 showing significant inhibition against T. rubrum, and compound 6 showing significant inhibition against C. albicans. This study underscores the medicinal potential of A. blazei as an antifungal agent and sheds light on its valuable research implications.
Asunto(s)
Agaricus , Antifúngicos , Antifúngicos/farmacología , Agaricus/química , Candida albicans , TrichophytonRESUMEN
Five compounds including a new compound (1) were isolated from mycelia of a mushroom-forming fungus Agaricus blazei. Compound 2 was isolated from nature for the first time. Their structures were determined by the interpretation of spectroscopic data. In the bioassay examining growth inhibitory activity against phytopathogenic bacteria Clavibacter michiganensis, Burkholderia glumae, and Peptobacterium carotovorum, all the compounds showed inhibition effects on C. michiganensis. Compounds 3 and 4 also showed weak inhibitory activity against growth of B. glumae.
Asunto(s)
Agaricus , Ácidos Grasos , Agaricus/química , Bacterias , Ácidos Grasos/análisis , Micelio/químicaRESUMEN
AIDS, caused by HIV-1, is one of the most dangerous infectious diseases in the world. Therefore, it is necessary to develop new drugs with more potent bioactivities, less toxicity and higher tolerability for controlling the viral load, particularly by using the raw materials that are widely available. Agaricus blazei Murill (AbM), known in China as jisongrong, is of great importance as a food source and as a health-promoting supplement for immunomodulation. The polysaccharides of AbM exhibit various biological activities, such as regulating cellular immunity and providing anti-oxidative, anti-infective, and anti-inflammatory effects. At present, to our knowledge, no report has explored the chemically sulfated and anti-HIV-1 activity of AbM polysaccharides. Herein, the sulfated AbM polysaccharides with different sulfur contents were prepared by the chlorosulfonic acid-pyridine method. The characteristics of sulfated derivatives were established by the determination of the sulfur content, the relative molecular weight, and the Fourier-transform infrared spectroscopy. The anti-HIV activities of the sulfated AbM polysaccharides were evaluated by CCK-8 and the single-cycle pseudovirus infection (TZM-bl) assay. The sulfated AbM polysaccharides had strong antiviral properties, and the half-maximal inhibitory concentrations approached that of the positive control, azidothymidine. Sulfated modification of AbM polysaccharides can increase their anti-HIV pharmacological activity, which makes them promising alternative candidates as bioactive macromolecules for biomedical applications in HIV/AIDS.
Asunto(s)
Agaricus/química , Fármacos Anti-VIH/farmacología , VIH/efectos de los fármacos , Polisacáridos/farmacología , Sulfatos/química , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Conformación de Carbohidratos , Pruebas de Sensibilidad Microbiana , Polisacáridos/síntesis química , Polisacáridos/químicaRESUMEN
Although medicinal mushroom extracts have been proposed as promising anti-cancer agents, their precise impacts on metastatic breast cancer are still to be clarified. For this purpose, the present study exploited the effect of a novel medicinal mushroom blend, namely Micotherapy U-care, in a 4T1 triple-negative mouse breast cancer model. Mice were orally administered with Micotherapy U-care, consisting of a mixture of Agaricus blazei, Ophiocordyceps sinensis, Ganoderma lucidum, Grifola frondosa, and Lentinula edodes. The syngeneic tumor-bearing mice were generated by injecting 4T1 cells in both supplemented and non-supplemented mice. After sacrifice 25 days later, specific endpoints and pathological outcomes of the murine pulmonary tissue were evaluated. (i) Histopathological and ultrastructural analysis and (ii) immunohistochemical assessment of TGF-ß1, IL-6 and NOS2, COX2, SOD1 as markers of inflammation and oxidative stress were performed. The QoL was comparatively evaluated. Micotherapy U-care supplementation, starting before 4T1 injection and lasting until the end of the experiment, dramatically reduced the pulmonary metastases density, also triggering a decrease of fibrotic response, and reducing IL-6, NOS, and COX2 expression. SOD1 and TGF-ß1 results were also discussed. These findings support the valuable potential of Micotherapy U-care as adjuvant therapy in the critical management of triple-negative breast cancer.
Asunto(s)
Agaricales/química , Proliferación Celular/efectos de los fármacos , Oncología Integrativa , Neoplasias de la Mama Triple Negativas/dietoterapia , Animales , Línea Celular Tumoral , Suplementos Dietéticos , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Plantas Medicinales/química , Neoplasias de la Mama Triple Negativas/patologíaRESUMEN
Neuroinflammation and oxidative damage are the two main malfactors that play an important role in the pathogenesis of experimental and clinical Parkinson's disease (PD). The current study was aimed to study the possible anti-oxidant and anti-inflammatory effects of the methanolic extract of Agaricus blazei (A. blazei) against rotenone-induced PD in mice. Male Albino mice were randomized and divided into the following groups: control, treated with rotenone (1â mg/kg/day), co-treated with rotenone and A. blazei (50, 100, and 200â mg/kg b.w.), and treated with A. blazei alone (200â mg/kg b.w.). After the end of the experimental period, behavioral studies, biochemical estimations, and protein expression patterns of inflammatory markers were studied. Rotenone treatment exhibited enhanced motor impairments, neurochemical deficits, oxidative stress, and inflammation, whereas oral administration of A. blazei extract attenuated the above-said indices. Even though further research is needed to prove its efficacy in clinical studies, the results of our study concluded that A. blazei extract offers a promising and new therapeutic lead for treatment of PD.
Asunto(s)
Agaricus/química , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Dopamina/metabolismo , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Animales , Catalasa/metabolismo , Dopamina/deficiencia , Glutatión/análisis , Glutatión Peroxidasa/metabolismo , Masculino , Ratones , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Rotenona/toxicidad , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/análisisRESUMEN
BACKGROUND: Pancreatic cancer is one of the most aggressive human malignancies. The development of a novel drug to treat pancreatic cancer is imperative, and it is thought that complementary and alternative medicine (CAM) could yield such a candidate. Agaricus blazei Murrill is a CAM that has been tested as an anticancer drug, but its efficacy against pancreatic cancer is poorly understood. To study the potential of A. blazei in the treatment of pancreatic cancer, we examined the effects of its hot water extract on the proliferation and global gene expression profile of human pancreatic cancer cells. METHODS: Three distinct human pancreatic cancer cell lines, MIAPaCa-2, PCI-35, and PK-8, and the immortalized human pancreatic duct-epithelial cell line, HPDE, were employed. The cells were incubated with the appropriate growth medium supplemented with the hot water extract of A. blazei at final concentrations of 0.005, 0.015%, or 0.045%, and cellular proliferation was assessed for five consecutive days using an MTT assay. Apoptosis was examined by using flow cytometry and the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Caspase-dependent apoptosis was assayed using immunoblotting. Global gene expression profiles were examined using a whole human genome 44 K microarray, and the microarray results were validated by using real-time reverse transcription PCR. RESULTS: The hot water extract of A. blazei significantly inhibited the proliferation of cultured pancreatic cancer cells through the induction of G0/G1 cell cycle arrest and caspase-dependent apoptosis; the effect was the smallest in HPDE cells. Furthermore, significant alterations in the global gene expression profiles of pancreatic cancer cells occurred following treatment with the hot water extract of A. blazei. Genes associated with kinetochore function, spindle formation, and centromere maintenance were particularly affected, as well as cyclins and cyclin-dependent kinases that are essential for cell cycle progression. In addition, proapoptotic genes were upregulated. CONCLUSIONS: The hot water extract of A. blazei may be useful for the treatment of pancreatic cancer and is a potential candidate for the isolation of novel, active compounds specific for mitotic spindle dysfunction.
Asunto(s)
Agaricus/química , Apoptosis/efectos de los fármacos , Productos Biológicos/farmacología , Neoplasias Pancreáticas/metabolismo , Antineoplásicos/farmacología , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Neoplasias Pancreáticas/genética , Transcriptoma/efectos de los fármacosRESUMEN
Gr-1(+) CD11b(+) myeloid-derived suppressor cells (MDSCs) accumulate in tumor-bearing animals and play a critical negative role during tumor immunotherapy. Strategies for inhibition of MDSCs are expected to improve cancer immunotherapy. Polysaccharide Agaricus blazei Murill (pAbM) has been found to have anti-cancer activity, but the underlying mechanism of this is poorly understood. Here, pAbM directly activated the purified MDSCs through inducing the expression of interleukin-6 (IL-6), IL-12, tumour necrosis factor and inducible nitric oxide synthase (iNOS), CD86, MHC II, and pSTAT1 of it, and only affected natural killer and T cells in the presence of Gr-1(+) CD11b(+) monocytic MDSCs. On further analysis, we demonstrated that pAbM could selectively block the Toll-like receptor 2 (TLR2) signal of Gr-1(+) CD11b(+) MDSCs and increased their M1-type macrophage characteristics, such as producing IL-12, lowering expression of Arginase 1 and increasing expression of iNOS. Extensive study showed that Gr-1(+) CD11b(+) MDSCs by pAbM treatment had less ability to convert the CD4(+) CD25(-) cells into CD4(+) CD25(+) phenotype. Moreover, result from selective depletion of specific cell populations in xenograft mice model suggested that the anti-tumour effect of pAbM was dependent on Gr-1(+ ) CD11b(+) monocytes, nether CD8(+) T cells nor CD4(+) T cells. In addition to, pAbM did not inhibit tumour growth in TLR2(-/-) mice. All together, these results suggested that pAbM, a natural product commonly used for cancer treatment, was a specific TLR2 agonist and had potent anti-tumour effects through the opposite of the suppressive function of Gr-1(+) CD11b(+) MDSCs.
Asunto(s)
Agaricus/inmunología , Polisacáridos Fúngicos/inmunología , Polisacáridos Fúngicos/farmacología , Células Mieloides/inmunología , Receptor Toll-Like 2/agonistas , Escape del Tumor/inmunología , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antígeno CD11b/metabolismo , Diferenciación Celular/efectos de los fármacos , Femenino , Polisacáridos Fúngicos/administración & dosificación , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/patología , Células Mieloides/efectos de los fármacos , Células Mieloides/patología , Receptores de Quimiocina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Receptor Toll-Like 2/deficiencia , Receptor Toll-Like 2/genética , Escape del Tumor/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunologíaRESUMEN
The development of effective prophylactic strategies to prevent leishmaniasis has become a high priority. No less important than the choice of an antigen, the association of an appropriate adjuvant is necessary to achieve a successful vaccination, as the majority of the tested antigens contain limited immunogenic properties, and need to be supplemented with immune response adjuvants in order to boost their immunogenicity. However, few effective adjuvants that can be used against leishmaniasis exist on the market today; therefore, it is possible to speculate that the research aiming to identify new adjuvants could be considered relevant. Recently, Agaricus blazei extracts have proved to be useful in enhancing the immune response to DNA vaccines against some diseases. This was based on the Th1 adjuvant activity of the polysaccharide-rich fractions from this mushroom. In this context, the present study evaluated purified fractions derived from Agaricus blazei as Th1 adjuvants through in vitro assays of their immune stimulation of spleen cells derived from naive BALB/c mice. Two of the tested six fractions (namely F2 and F4) were characterized as polysaccharide-rich fractions, and were able to induce high levels of IFN-γ, and low levels of IL-4 and IL-10 in the spleen cells. The efficacy of adjuvant action against L. infantum was evaluated in BALB/c mice, with these fractions being administered together with a recombinant antigen, LiHyp1, which was previously evaluated as a vaccine candidate, associated with saponin, against visceral leishmaniasis (VL). The associations between LiHyp1/F2 and LiHyp1/F4 were able to induce an in vivo Th1 response, which was primed by high levels of IFN-γ, IL-12, and GM-CSF, by low levels of IL-4 and IL-10; as well as by a predominance of IgG2a antibodies in the vaccinated animals. After infection, the immune profile was maintained, and the vaccines proved to be effective against L. infantum. The immune stimulatory effects in the BALB/c mice proved to be similar when comparing the F2 and F4 fractions with a known Th1 adjuvant (saponin), though animals vaccinated with saponin did present a slight to moderate inflammatory edema on their hind footpads. In conclusion, the F2 and F4 fractions appear to induce a Th1-type immune response and, in this context, they could be evaluated in association with other protective antigens against Leishmania, as well as in other disease models.
Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Agaricus/química , Antígenos de Protozoos/administración & dosificación , Leishmaniasis Visceral/prevención & control , Polisacáridos/administración & dosificación , Animales , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Interferón gamma/inmunología , Interleucina-10/inmunología , Interleucina-4/inmunología , Leishmania infantum/genética , Leishmania infantum/inmunología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Ratones , Ratones Endogámicos BALB C , Polisacáridos/inmunología , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Bazo/efectos de los fármacos , Bazo/inmunología , Células TH1/inmunologíaRESUMEN
Intercropping systems have garnered attention as a sustainable agricultural approach for efficient land use, increased ecological diversity in farmland, and enhanced crop yields. This study examined the effect of intercropping on the kiwifruit rhizosphere to gain a deeper understanding of the relationships between cover plants and kiwifruit in this sustainable agricultural system. Soil physicochemical properties and bacterial communities were analyzed using the Kiwifruit-Agaricus blazei intercropping System. Moreover, a combined analysis of 16S rRNA gene sequencing and metabolomic sequencing was used to identify differential microbes and metabolites in the rhizosphere. Intercropping led to an increase in soil physicochemical and enzyme activity, as well as re-shaping the bacterial community and increasing microbial diversity. Proteobacteria, Bacteroidota, Myxococcota, and Patescibacteria were the most abundant and diverse phyla in the intercropping system. Expression analysis further revealed that the bacterial genera BIrii41, Acidibacter, and Altererythrobacter were significantly upregulated in the intercropping system. Moreover, 358 differential metabolites (DMs) were identified between the monocropping and intercropping cultivation patterns, with fatty acyls, carboxylic acids and derivatives, and organooxygen compounds being significantly upregulated in the intercropping system. The KEGG metabolic pathways further revealed considerable enrichment of DMs in ABC transporters, histidine metabolism, and pyrimidine metabolism. This study identified a significant correlation between 95 bacterial genera and 79 soil metabolites, and an interactive network was constructed to explore the relationships between these differential microbes and metabolites in the rhizosphere. This study demonstrated that Kiwifruit-Agaricus blazei intercropping can be an effective, labor-saving, economic, and sustainable practice for reshaping bacterial communities and promoting the accumulation and metabolism of beneficial microorganisms in the rhizosphere.
Asunto(s)
Actinidia , Agaricus , Bacterias , Rizosfera , Microbiología del Suelo , Actinidia/microbiología , Actinidia/crecimiento & desarrollo , Agaricus/crecimiento & desarrollo , Agaricus/metabolismo , Agaricus/genética , Bacterias/genética , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Agricultura/métodos , Suelo/química , Microbiota , Nutrientes/metabolismo , Producción de Cultivos/métodosRESUMEN
Implant-associated infection (IAI) is a prevalent and potentially fatal complication of orthopaedic surgery. Boosting antibacterial immunity, particularly the macrophage-mediated response, presents a promising therapeutic approach for managing persistent infections. In this study, we successfully isolated and purified a homogeneous and neutral water-soluble polysaccharide, designated as AM-1, from the edible fungus Agaricus blazei Murrill. Structure analysis revealed that AM-1 (Mw = 3.87 kDa) was a low-molecular-weight glucan characterized by a primary chain of â4)-α-D-Glcp-(1 â and side chains that were linked at the O-6 and O-3 positions. In vivo assays showed that AM-1 effectively attenuated the progression of infection and mitigated infectious bone destruction in IAI mouse models. Mechanistically, AM-1 promotes intracellular autophagy-lysosomal biogenesis by inducing the nuclear translocation of transcription factor EB, finally enhancing the bactericidal capabilities and immune-modulatory functions of macrophages. These findings demonstrate that AM-1 significantly alleviates the progression of challenging IAIs as a presurgical immunoenhancer. Our research introduces a novel therapeutic strategy that employs natural polysaccharides to combat refractory infections.
Asunto(s)
Agaricus , Glucanos , Macrófagos , Animales , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Agaricus/química , Glucanos/química , Glucanos/farmacología , Células RAW 264.7 , Antibacterianos/farmacología , Antibacterianos/química , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Peso Molecular , Ratones Endogámicos C57BL , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-HéliceRESUMEN
OBJECTIVE: This study aimed to investigate the effects of dietary supplementation with Agaricus blazei polysaccharide (ABP) at varying concentrations on the performance, egg quality, blood biochemistry, intestinal morphology, and microflora of quail. METHODS: The study involved a total of 2,700 Korean quails, which were randomly divided into three groups. The measured variables encompassed productive performance, egg parameters, carcass parameters, serum metabolites, immune response parameters, antioxidative properties, and gut microbiome. RESULTS: The addition of ABP did not have a significant effect on average daily feed intake. However, it was found to increase the average daily egg weight and egg production rate, reduce the feed-egg ratio. There were no significant impacts on egg quality measures such as egg shape index, egg yolk index and color, egg yolk and protein content. However, ABP supplementation significantly increased the Hough unit (p<0.01) and decreased the rate of unqualified eggs (p<0.01). Regarding serum parameters, the inclusion led to an increase in total protein concentration (p<0.05) and a reduction in low-density lipoprotein cholesterol (p<0.05). There were no significant effects observed on immune indicators such as immunoglobulin A (IgA) and IgM. ABP supplementation increased the levels of serum antioxidant indicators, including glutathione peroxidase, total superoxide dismutase (p<0.05), and total antioxidant capacity colorimeter (p<0.05). Furthermore, ABP supplementation significantly elevated the intramuscular fatty acid content in quail meat. Additionally, ABP supplementation demonstrated a significant improvement in the diversity of gut microbiota and induced alterations in the composition of the gut microbiota. CONCLUSION: The findings of this study indicate that dietary supplementation of ABP enhanced production performance and antioxidant capacity while increasing the levels of polyunsaturated fatty acids in quail muscle.
RESUMEN
Intestinal ischemia-reperfusion (I/R) injury is a serious disease in medical settings, and gut dysbiosis is a major contributor to its development. Polysaccharides from Agaricus blazei Murill (ABM) showed a range of pharmacological activities, yet no studies assessed the potential of ABM polysaccharides for alleviating intestinal I/R injury. Here, we purified a major polysaccharide (ABP1) from an ABM fruit body and subsequently tested its potential to mitigate intestinal I/R injury in a mouse model of temporary superior mesenteric artery occlusion. The results reveal that ABP1 pretreatment enhances gut barrier function via upregulation of the expression of tight junction proteins such as ZO-1 and occludin. Additionally, ABP1 intervention reduces the recruitment of neutrophils and the polarization of M1 macrophages and limits inflammation by blocking the assembly of the NLRP3 inflammasome. Moreover, the role of ABP1 in regulating the gut microbiota was confirmed via antibiotic treatment. The omics data reveals that ABP1 reprograms gut microbiota compositions, characterized by a decrease of Proteobacteria and an increase of Lachnospiraceae and Lactobacillaceae, especially the SCFA-producing genera such as Ligilactobacillus and Blautia. Overall, this work highlights the therapeutic potential of ABP1 against intestinal I/R injury, which mainly exhibits its effects via regulating the gut microbiota and suppressing the overactivated inflammation response.
Asunto(s)
Agaricus , Microbioma Gastrointestinal , Daño por Reperfusión , Ratones , Animales , Polisacáridos/farmacología , Inflamación/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , IsquemiaRESUMEN
Objectives: Agaritine (AGT) is a hydrazine-containing compound derived from the mushroom Agaricus blazei Murill. We previously reported the antitumor effect of AGT on hematological tumor cell lines and suggested that AGT induces apoptosis in U937 cells via caspase activation. However, the antitumor mechanism of AGT has not been fully understood. Methods: Four hematological tumor cell lines (K562, HL60, THP-1, H929) were used in this study. The cells were incubated in the presence of 50 µM AGT for 24 h and analyzed for cell viability, annexin V positivity, caspase-3/7 activity, mitochondrial membrane depolarization, cell cycle, DNA fragmentation, and the expression of mitochondrial membrane-associated proteins (Bax and cytochrome c). Results: In HL60, K562, and H929 cells, AGT reduced cell viability and increased annexin V- and dead cell-positive rates; however, it did not affect THP-1 cells. In K562 and HL60 cells, caspase-3/7 activity, mitochondrial membrane depolarization, and expression of mitochondrial membrane proteins, Bax and cytochrome c, were all increased by AGT. Cell cycle analysis showed that only K562 exhibited an increase in the proportion of cells in G2/M phase after the addition of AGT. DNA fragmentation was also observed after the addition of AGT. Conclusions: These results indicate that AGT induces apoptosis in K562 and HL60 cells, like U937 reported previously, but showed no effect on THP-1 cells. It was suggested that AGT-induced apoptosis involves the expression of Bax and cytochrome c via mitochondrial membrane depolarization.
RESUMEN
Mushrooms and derivates are well known to the scientific community for having different health benefits and exhibit a wide range of pharmacological activities, including lipid-lowering, antihypertensive, antidiabetic, antimicrobic, antiallergic, anti-inflammatory, anticancer, immunomodulating, neuroprotective and osteoprotective actions. In Europe, medical mushrooms are mainly marketed in the form of food supplements as single components or combined with other nutraceuticals. In this context, the first peculiarity that distinguishes it is the safety established through the "history of consumption" that characterizes that mushroom. However, the cultivation of medicinal mushrooms on a large scale is performed mainly in China, where most of the production facilities do not have internationally recognized good manufacturing practices, despite that many European companies that sell myotherapies are supplied by Chinese manufacturers. This is particularly evident in Italy, where an arsenal of mushroom products is marketed in the form of powders and extracts not always of ascertained origin and sometimes of doubtful taxonomic identification, and thus not meeting the quality criteria required. The growing interest in mycotherapy involves a strong commitment from the scientific community to propose supplements of safe origin and genetic purity as well as to promote clinical trials to evaluate its real effects on humans. The purpose of this research is to analyze different mushroom-based dietary supplements used in medicine as monotherapy on the Italian market and to evaluate their composition and quality. The molecular identification of the sequences with those deposited in GenBank allowed for identifying 6 out of 19 samples, matching with those deposited belonging to the species indicated in the label, i.e., Lentinula edodes (samples 1, 4, 12 and 18) and Ganoderma lucidum (samples 5 and 10). Samples containing Ganoderma, labeled in the commercial product as G. lucidum, showed sequences that showed homology of 100% and 99% with G. resinaceum and G. sichuanense. An additional investigation was carried out in order to determine the active fungal ingredients, such as ergosterol, aflatoxins, heavy metals, nicotine and total glucan. The results obtained and shown in the manuscript highlight how the data were not only in line with what is expected with respect to what is indicated in the labels.
Asunto(s)
Agaricales , Reishi , Humanos , Suplementos Dietéticos , Italia , Europa (Continente)RESUMEN
SCOPE: Periodontitis is one of the most prevalent chronic inflammatory diseases with impaired autophagy. Agaricus blazei Murrill polysaccharide (ABMP) shows beneficial effects in various inflammatory diseases. However, whether ABMP is involved in autophagy regulation and periodontitis attenuation remains to be elucidated. METHODS AND RESULTS: This study firstly shows the dynamic changes in inflammatory and autophagy levels in silk ligature periodontitis model. Then the positive regulation effect of autophagy on inflammation and its vital role in ABMP inhibiting PDLCs inflammatory response are testified in LPS-treated PDLCs. Secondly, the Micro-CT, quantitative RT-PCR, Western Blot, TRAP, and immunofluorescence staining analysis are performed to assess the effects of ABMP on periodontitis and autophagy. The data show the augmented autophagy and alleviated gingival recession, inflammatory cell infiltration, alveolar bone resorption, and reduced osteoclasts in periodontitis by ABMP treatment. Further experiments using chemical inhibitors demonstrate the vital role of H2 S/NRF2 axis in ABMP-induced appropriate level of autophagy augmentation against periodontitis. CONCLUSIONS: Collectively, the findings not only reveal the unrecognized capacity and mechanism of ABMP as an effective and potential dietary intake against periodontitis, but also suggest the possibility for ABMP to be used in the treatment of other autophagy-related diseases.
Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Humanos , Factor 2 Relacionado con NF-E2 , Periodontitis/tratamiento farmacológico , Polisacáridos/farmacología , AutofagiaRESUMEN
Ulcerative colitis (UC) is a chronic noninfectious intestinal disease that severely affects patients' quality of life. Agaricus blazei Murrill polysaccharide (ABP) is an effective active ingredient extracted from Agaricus blazei Murrill (ABM). It has good efficacy in inhibiting tumor cell growth, lowering blood pressure, and improving atherosclerosis. However, its effect on colitis is unclear. The aim of this study was to analyze the protective effects and potential mechanisms of ABP against dextran sulfate sodium (DSS)-induced acute colitis in mice. The results showed that dietary supplementation with ABP significantly alleviated DSS-induced colitis symptoms, inflammatory responses, and oxidative stress. Meanwhile, ABP intervention was able to maintain the integrity of the intestinal mechanical barrier by promoting the expression of ZO-1 and Occludin tight junction proteins and facilitating mucus secretion. Moreover, 16S rRNA sequencing results suggested that ABP intervention was able to alleviate DSS-induced gut microbiota disruption, and nontargeted metabolomics results indicated that ABP was able to remodel metabolism. In conclusion, these results demonstrate that dietary supplementation with ABP alleviated DSS-induced acute colitis by maintaining intestinal barrier integrity and remodeling metabolism. These results improve our understanding of ABP function and provide a theoretical basis for the use of dietary supplementation with ABP for the prevention of ulcerative colitis.
Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades no Transmisibles , Humanos , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Calidad de Vida , ARN Ribosómico 16S , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Polisacáridos/farmacología , Sulfato de Dextran , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , ColonRESUMEN
OBJECTIVE: To investigate the mechanism of drug reversing resistance of Agaricus blazei extract FA-2-b-ß on T cell acute lymphoblastic leukemia (T-ALL) cell lines. METHODS: Cell proliferation was detected by CCK-8 assay; the apoptosis, cell cycle mitochondrial membrane potential, and intracellular rhodamine accumulation were detected by flow cytometry, and apoptosis-related gene and protein expression were detected by qPCR and Western blot; the membrane surface protein MDR1 was observed by immunofluorescence microscopy. RESULTS: Different concentrations of FA-2-b-ß significantly inhibited proliferation and induced apoptosis of CCRF-CEM and CEM/C1 (P<0.05), and CCRF-CEM cell cycle were arrested at S phase, and CEM/C1 cells were arrested at G0/G1 phase. Western blot and qPCR results show that FA-2-b-ß inhibited ABCB1ãABCG2ãCTNNBãMYC and BCL-2 expression, but upregulated Bax expression. In addition, FA-2-b-ß reversed the resistance characteristics of CEM/C1 drug-resistance cells, which decreased mitochondrial membrane potential, and significantly increased the intracellular rhodamine accumulation, and weakening of the expression of the membrane surface protein MDR1. With the Wnt/ß-catenin inhibitor (ICG001), the process was further intensified. CONCLUSION: Agaricus Blazei Extract FA-2-b-ß inhibits cell proliferation, promotes apoptosis, regulates the cell cycle, reduces mitochondrial energy supply, and down-regulate MDR1 expression to reverse the resistance of CEM/C1, which all suggest it is through regulating the Wnt signaling pathway in T-ALL.