Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Microbiol ; 21(1): 87, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-33752616

RESUMEN

BACKGROUND: Minqin is suffering from a serious desertification, whereas the knowledge about its bacterial community is limited. Herein, based on Nitraria tangutorum and Haloxylon ammodendron from Minqin, the bacterial community diversities in fixed sandy land, semi-fixed sandy land and shifting sandy land were investigated by combining with culture-dependent and culture-independent methods. RESULTS: Minqin stressed with high salinity and poor nutrition is an oligotrophic environment. Bacterial community in Minqin was shaped primarily by the presence of host plants, whereas the type of plant and sandy land had no marked effect on those, which displayed a better survival in the rhizospheres of N. tangutorum and H. ammodendron. The dominant groups at phyla level were Actinobacteria, Firmicutes, Proteobacteria, Bacteroidetes, Planctomycetes, Chloroflexi, Acidobacteria and Candidate_division_TM7. The abundance of Firmicutes with ability of desiccation-tolerance was significantly higher in harsh environment, whereas Bacteroidetes were mainly distributed in areas with high nutrient content. The abundances of Proteobacteria and Bacteroidetes were relatively high in the rhizospheres of N. tangutorum and H. ammodendron, which had more plant-growth promoting rhizobacteria. A large number of Actinobacteria were detected, of which the most abundant genus was Streptomyces. The physicochemical factors related to the diversity and distribution of the bacterial community were comprehensively analyzed, such as pH, electrical conductivity, soil organic matter, C/N and sand, and the results indicated that Minqin was more suitable for the growth of N. tangutorum, which should be one of most important sand-fixing plants in Minqin. CONCLUSIONS: The bacterial community diversities in different types of sandy lands of Minqin were comprehensively and systematically investigated by culture-dependent and culture-independent approaches, which has a great significance in maintaining/restoring biological diversity.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Arena/microbiología , Microbiología del Suelo , Técnicas Bacteriológicas , China , Clima Desértico , ARN Ribosómico 16S/genética
2.
Arch Microbiol ; 203(6): 3171-3182, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33825934

RESUMEN

The aim of this study was to investigate the lactic acid bacteria (LAB) and yeast community from home-made sauerkraut collected from Southwest China through culture-dependent and culture-independent technology. Forty-eight samples of home-made sauerkraut were collected from households at three different locations in Southwest China. The pH, total acidity and salt contents among these fermented vegetables were 3.69 ± 0.42, 0.86 ± 0.43 g/100 ml, and 3.86 ± 2.55 g/100 ml, respectively. The number of lactic acid bacteria (LAB) and yeasts were 7.25 ± 1.05 log10 colony-forming units (CFU)/ml and 3.74 ± 1.01 log CFU/ml, respectively. A total of 182 LAB and 81 yeast isolates were identified. The dominant isolates were Lactobacillus plantarum, L. brevis, Pediococcus ethanolidurans, Pichia membranifaciens, P. fermentans and Kazachstania bulderi. Denaturing gradient gel electrophoresis (DGGE) showed that L. plantarum, uncultured Lactobacillus sp, P. ethanolidurans, and K. exigua were the predominant microflora. Our studies demonstrated that the DGGE technique combined with a culture-dependent method is very effective for studying the LAB and yeast community in Chinese traditional fermentation vegetables. The results will give us an understanding of LAB and yeast community of Chinese sauerkraut and improve the knowledge of LAB and yeast community of Chinese sauerkraut.


Asunto(s)
Alimentos Fermentados , Microbiología de Alimentos , Lactobacillales , Levaduras , China , Fermentación , Alimentos Fermentados/microbiología , Lactobacillales/clasificación , Lactobacillales/genética , Pediococcus/genética , Pichia/genética , Saccharomycetales/genética , Verduras/microbiología , Levaduras/clasificación , Levaduras/genética
3.
Microb Ecol ; 75(4): 1035-1048, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29119316

RESUMEN

Microorganism communities that live inside insects can play critical roles in host development, nutrition, immunity, physiology, and behavior. Over the past decade, high-throughput sequencing reveals the extraordinary microbial diversity associated with various insect species and provides information independent of our ability to culture these microbes. However, their cultivation in the laboratory remains crucial for a deep understanding of their physiology and the roles they play in host insects. Aphids are insects that received specific attention because of their ability to form symbiotic associations with a wide range of endosymbionts that are considered as the core microbiome of these sap-feeding insects. But, if the functional diversity of obligate and facultative endosymbionts has been extensively studied in aphids, the diversity of gut symbionts and other associated microorganisms received limited consideration. Herein, we present a culture-dependent method that allowed us to successfully isolate microorganisms from several aphid species. The isolated microorganisms were assigned to 24 bacterial genera from the Actinobacteria, Firmicutes, and Proteobacteria phyla and three fungal genera from the Ascomycota and Basidiomycota phyla. In our study, we succeeded in isolating already described bacteria found associated to aphids (e.g., the facultative symbiont Serratia symbiotica), as well as microorganisms that have never been described in aphids before. By unraveling a microbial community that so far has been ignored, our study expands our current knowledge on the microbial diversity associated with aphids and illustrates how fast and simple culture-dependent approaches can be applied to insects in order to capture their diverse microbiota members.


Asunto(s)
Áfidos/microbiología , Bacterias/aislamiento & purificación , Biodiversidad , Técnicas de Cultivo/métodos , Hongos/aislamiento & purificación , Microbiota/fisiología , Filogenia , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , ADN/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hongos/crecimiento & desarrollo , Genes Bacterianos/genética , Genes Fúngicos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota/genética , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , Serratia/clasificación , Serratia/aislamiento & purificación , Serratia/fisiología , Simbiosis
4.
Can J Microbiol ; 63(3): 238-245, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28177800

RESUMEN

Members of the genus Bacillus and related spore-forming genera are ubiquitous. However, Bacillus-like species isolated from marine sediments have attracted less interest than their terrestrial relatives. Here, we investigated the diversity of Bacillus-like bacterial communities in the sediments of the Bamenwan mangrove wetland in Hainan, China, using culture-dependent and culture-independent methods, and present the first report on this subject. We also discovered some potential novel species from the sediment samples. Four families, Bacillaceae (58%), Paenibacillaceae (22%), Alicyclobacillaceae (15%), and Planococcaceae (5%), and 9 genera, Bacillus (42%), Paenibacillus (16%), Halobacillus (13%), Alicyclobacillus (11%), Rummeliibacillus (5%), Cohnella (5%), Tumebacillus (4%), Pontibacillus (3%), and Aneurinibacillus (2%), were identified by pyrosequencing. In contrast, only 4 genera, Bacillus (57%), Paenibacillus (23%), Halobacillus (14%), and Virgibacillus (6%), were detected by the culture-dependent method. In the 16S rDNA sequencing analysis, the isolates HB12036 and HB12037 were closest to Bacillus okuhidensis Kh10-101T and Paenibacillus xylanilyticus XIL14T with similarities of 94.8% and 95.9%, respectively, indicating that these were novel species. Bacillus sp. HB12035 and HB12040 exhibited antimicrobial activity against Staphylococcus aureus ATCC 25923, and Bacillus sp. HB12033 exhibited antimicrobial activity against Ustilago scitaminea Syd.


Asunto(s)
Bacillaceae/aislamiento & purificación , Biodiversidad , Sedimentos Geológicos/microbiología , Microbiología del Agua , Humedales , Animales , Bacillaceae/clasificación , Bacillaceae/fisiología , China , ADN Bacteriano , ADN Ribosómico/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Staphylococcus aureus
5.
J Appl Microbiol ; 118(2): 454-69, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25444561

RESUMEN

AIMS: In the brewing industry, microbial management is very important for stabilizing the quality of the product. We investigated the detailed microbial community of beer during fermentation and maturation, to manage beer microbiology in more detail. METHODS AND RESULTS: We brewed a beer (all-malt) and two beerlike beverages (half- and low-malt) in pilot-scale fermentation and investigated the microbial community of them using a next-generation sequencer (454 GS FLX titanium), quantitative PCR, flow cytometry and a culture-dependent method. From 28 to 88 genera of bacteria and from 9 to 38 genera of eukaryotic micro-organisms were detected in each sample. Almost all micro-organisms died out during the boiling process. However, bacteria belonging to the genera Acidovorax, Bacillus, Brevundimonas, Caulobacter, Chryseobacterium, Methylobacterium, Paenibacillus, Polaromonas, Pseudomonas, Ralstonia, Sphingomonas, Stenotrophomonas, Tepidimonas and Tissierella were detected at the early and middle stage of fermentation, even though their cell densities were low (below approx. 10(3) cells ml(-1) ) and they were not almost detected at the end of fermentation. CONCLUSIONS: We revealed that the microbial community of beer during fermentation and maturation is very diverse and several bacteria possibly survive during fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: In this study, we revealed the detailed microbial communities of beer using next-generation sequencing. Some of the micro-organisms detected in this study were found in beer brewing process for the first time. Additionally, the possibility of growth of several bacteria at the early and middle stage of fermentation was suggested.


Asunto(s)
Bacterias/clasificación , Cerveza/microbiología , Fermentación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Eucariontes/aislamiento & purificación , Microbiología de Alimentos
6.
Food Res Int ; 179: 114026, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342543

RESUMEN

This study was performed to unveil bacterial compositions and their contributions to the formation of γ-aminobutyric acid (GABA) and poly-γ-glutamic acid (γ-PGA) in Cheonggukjang. To predict possible key factors contributing to the content of the bioactive compounds in Cheonggukjang, commercial products were analyzed for various parameters. The content of GABA and γ-PGA showed a negative (R2 = 0.61 - 0.73) and positive correlation (R2 = 0.53 - 0.96) with antioxidative activity. Consistently, GABA content showed a moderate negative correlation with γ-PGA content (R2 = 0.58). Among the physicochemical and microbial parameters, only salinity showed a moderate negative correlation with γ-PGA content (R2 = 0.75), which might be due to the inhibition of bacterial growth. It was also suggested that multiple factors (including bacterial species) were involved in the formation of GABA and γ-PGA in Cheonggukjang. To reveal dominant bacterial species and further presume their contributions to the bioactive compound formation in Cheonggukjang, both culture-independent (metagenomic) and -dependent (culturomic) methods were used. Culture-independent method showed that Bacillus piscis was dominant (23.37 - 94.89 %), followed by B. hisashii (0.00 - 62.45 %) and B. coagulans (0.00 - 13.82 %). Considering the quantitative speciation data on the bioactive compound content in Cheonggukjang (and bacterial production capability) together, it was further elucidated that B. piscis contributed primarily to the bioactive compound formation. Unlike this, culture-dependent analysis revealed that B. licheniformis and B. subtilis were dominant (30.0 - 47.6 and 17.5 - 39.5 %, respectively). Based on the quantitative speciation data on the bacterial production capability of GABA and γ-PGA, B. subtilis was the primarily contributing bacterial species to the bioactive compound formation. Consequently, it was observed that the bacterial compositions and their contributions to the bioactive compound formation determined by the two methods differed considerably, i.e., B. piscis and B. subtilis were identified to be prominent bacterial contributors, respectively, depending on the method used.


Asunto(s)
Bacillus subtilis , Bacillus , Ácido Poliglutámico/análogos & derivados , Ácido Glutámico , Ácido gamma-Aminobutírico
7.
Sci Total Environ ; 860: 160515, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36442632

RESUMEN

Soil amendment with manure compost and biochar is widely adopted to improve soil fertility and promote plant growth, and their effects on soil microbial communities and resistome have been well documented. However, there is sparse information regarding their effects on vegetable endophytes, which represent a major source of human exposure to pathogens and antibiotic resistance genes (ARGs) when eaten raw. Here, we investigated the impacts of manure compost or biochar addition on the bacterial community compositions and ARGs in the soil-lettuce continuum including soil, seed, leaf, and root samples. A total of 137 ARGs and 31 mobile genetic elements (MGEs) were detected in all the samples after 60 days of cultivation. The relative abundance of ARGs and the diversity of bacteria communities presented a consistent decreasing trend from soil to root endophytes, then leaf endophytes. Manure compost addition increased the diversity and abundance of ARGs in soil, while significant changes in the ARG profiles and bacterial communities were not observed in leaf endophytes after manure compost or biochar addition, or both. Bipartite networks analysis suggested that seed microbiome was one of the major sources of plant endophytes and ARGs. Twenty potential human pathogens were isolated from lettuce, indicating potential exposure risk to pathogens via the consumption of raw lettuce. These results suggest limited impacts of manure compost and biochar addition on lettuce endophytes and highlight the contribution of seed microbiome to endophyte ARG profiles.


Asunto(s)
Endófitos , Genes Bacterianos , Humanos , Lactuca/genética , Estiércol/análisis , Microbiología del Suelo , Bacterias/genética , Suelo , Antibacterianos , Hojas de la Planta/química
8.
Int J Food Microbiol ; 401: 110275, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37295268

RESUMEN

Despite the large number of studies conducted on archaea associated with extreme environments, the archaeal community composition in food products is still poorly known. Here, we investigated a new insight into exploring the archaeal community in several food matrices, with a particular focus on determining whether living archaea were present. A total of 71 samples of milk, cheese and its derived brine, honey, hamburger, clam, and trout were analyzed by high-throughput 16S rRNA sequencing. Archaea were detected in all the samples, ranging from 0.62 % of microbial communities in trout to 37.71 % in brine. Methanogens dominated 47.28 % of the archaeal communities, except for brine, which was dominated by halophilic taxa affiliated with the genus Haloquadratum (52.45 %). Clams were found to be a food with high richness and diversity of archaea and were targeted for culturing living archaea under different incubation time and temperature conditions. A subset of 16 communities derived from culture-dependent and culture-independent communities were assessed. Among the homogenates and living archaeal communities, the predominant taxa were distributed in the genera Nitrosopumilus (47.61 %) and Halorussus (78.78 %), respectively. A comparison of the 28 total taxa obtained by culture-dependent and culture-independent methods enabled their categorization into different groups, including detectable (8 out of 28), cultivable (8 out of 28), and detectable-cultivable (12 out of 28) taxa. Furthermore, using the culture method, the majority (14 out of 20) of living taxa grew at lower temperatures of 22 and 4 °C during long-term incubation, and few taxa (2 out of 20) were found at 37 °C during the initial days of incubation. Our results demonstrated the distribution of archaea in all analyzed food matrices, which opens new perspectives to expand our knowledge on archaea in foods and their beneficial and detrimental effects.


Asunto(s)
Archaea , Microbiota , Archaea/genética , ARN Ribosómico 16S/genética , Sales (Química) , Microbiota/genética , Temperatura , Filogenia
9.
Sci Total Environ ; 889: 164332, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209744

RESUMEN

The reduction of Fe(III) coupled with the oxidation of organic matter, primarily stimulated by dissimilatory iron-reducing bacteria (DIRB) under anoxic conditions, is a critical biogeochemical process in lacustrine sediments. Many single strains have been recovered and investigated, however, the changes in the diversity of culturable DIRB communities with sedimentary depth have not been fully revealed. In this study, 41 DIRB strains affiliated to ten genera of phylum Firmicutes, Actinobacteria, and Proteobacteria were isolated from the sediments of Taihu Lake at three depths (0-2 cm, 9-12 cm, and 40-42 cm), referring to distinct nutrient conditions. Fermentative metabolisms were identified in nine genera (except genus Stenotrophomonas). The DIRB community diversity and the microbial iron reduction (MIR) patterns vary in vertical profiles. The community abundance varied with the TOC contents in vertical profiles. The DIRB communities, containing 17 strains of 8 genera, were most diverse in the surface sediments (0-2 cm), where organic matter was most abundant among the three depths. 11 DIRB strains of five genera were identified in the 9-12 cm sediments with the lowest content of organic matter, while 13 strains of seven genera were identified in deep sediments (40-42 cm). Among the isolated strains, phylum Firmicutes dominated the DIRB communities at three depths, while its relative abundance increased with depth. Fe2+ ion was recognized as the dominant microbial ferrihydrite-reducing product of DIRB from 0 to 12 cm sediments. Instead, lepidocrocite and magnetite were the main MIR products of DIRB retrieved from 40 to 42 cm. The results indicate that the MIR driven by fermentative DIRB is crucial in lacustrine sediments and that the distribution of nutrients and iron (minerals) likely influences the diversity of DIRB communities in the lacustrine sediments.


Asunto(s)
Compuestos Férricos , Lagos , Compuestos Férricos/metabolismo , Lagos/microbiología , Sedimentos Geológicos/química , Hierro/análisis , Bacterias/metabolismo , Oxidación-Reducción , ARN Ribosómico 16S
10.
Food Res Int ; 174(Pt 2): 113638, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37981360

RESUMEN

Elucidation of the relationship between fungal community development and dynamic changes in volatile components during fermentation is of great significance in controlling wine production. However, such studies on an industrial scale are rarely reported. In this study, fungal community succession during spontaneous fermentation (SPF) and inoculation fermentation (INF) of Merlot wine was monitored by a research strategy combining culture-dependent and culture-independent methods. The volatile compounds were monitored during SPF and INF by headspace solid-phase micro-extraction coupled with gas chromatography-mass spectrometry technology. The Spearman correlation coefficient was also used to investigate the interplay between fungal communities and volatile compounds. We found that fungal community diversity in SPF decreased as fermentation progressed but was significantly higher than that of INF. Starmerella and Kazachstania were the dominant non-Saccharomyces genera in Merlot wine during SPF. However, the presence of commercial yeasts and sulphur dioxide led to a sharp decrease or the disappearance of non-Saccharomyces genera during INF. Spearman correlation analysis revealed that all major volatiles were positively correlated with most functional microbiotas except P. fermentans, S. bacillaris, E. necator, and D. exigua in INF. In SPF, most non-Saccharomyces were negatively correlated with core volatiles, whereas K. humilis, M. laxa, P. kluyveri, and A. japonicus were positively correlated with the major volatiles, especially some higher alcohols (isopentol, heptanol) and terpenes (linalool, citronellol). S. cerevisiae was positively correlated with most of the main volatile substances except ethyl isovalerate and isoamyl acetate. These findings provide a reference for comprehending the diverse fermentation methods employed in the wine industry and improving the quality of Merlot wines.


Asunto(s)
Saccharomycetales , Vino , Fermentación , Saccharomyces cerevisiae , Cromatografía de Gases y Espectrometría de Masas
11.
Front Microbiol ; 14: 1282961, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38098672

RESUMEN

Listeria monocytogenes is the etiologic agent of listeriosis, a foodborne disease that poses a threat to public health globally. Chicken meat exhibits heightened susceptibility to L. monocytogenes contamination during butchery. The persistence of this pathogen in the slaughterhouse environment enables recurring contamination of meat products. This study aimed at identifying the sources and transmission routes of L. monocytogenes contamination within an abattoir where it was consistently detected for three consecutive years (2019-2021). Furthermore, the environmental factors aiding contamination along chicken processing lines were determined by surveying the microbiome within the facility. Samples collected in 2019 to 2021 were subjected to culture-dependent analysis to assess the prevalence, serotypes, and multi-locus sequence typing (MLST) of L. monocytogenes. Additionally, the specimens collected in 2021 underwent culture-independent analysis via real-time quantitative polymerase chain reaction (qPCR) and 16S rRNA gene amplicon sequencing to identify the contamination sources and characterize the entire microbial community within the slaughterhouse. L. monocytogenes was isolated only from the clean zone, where the final slaughtering stage occurs. Most strains isolated from the final carcasses showed the same genetic cluster as the isolate in the chilling water and were assigned to MLST profile ST3. Culture-independent qPCR confirmed L. monocytogenes contamination in all samples, excluding post-scalding carcasses, prewashed post-evisceration carcasses, and the bleeding areas. Consequently, qPCR enabled more comprehensive identification of L. monocytogenes contamination points than culture-dependent approaches. Moreover, 16S rRNA gene amplicon sequencing demonstrated that psychro-tolerant and spoilage-related bacteria with L. monocytogenes-like attributes exhibited enhanced viability in the clean zone and immersion-chilling water. Metagenomics-based source tracking analysis further revealed that the shackles and chilling waters represent predominant sources of cross-contamination between different slaughterhouse zones, whereas the grading and packaging workstations and chilling water in the clean zone were deemed crucial sources affecting final carcass contamination. Collectively, these findings demonstrate through culture-dependent and -independent methods that L. monocytogenes spreads along the slaughter line, contaminating the slaughterhouse. Moreover, by investigating changes in microbial community and bacterial flow along the slaughter line within the facility, the sources influencing carcass contamination can be effectively traced.

12.
Front Microbiol ; 13: 843389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572673

RESUMEN

In the tobacco phyllosphere, some of the microbes may have detrimental effects on plant health, while many may be neutral or even beneficial. Some cannot be cultivated, so culture-independent methods are needed to explore microbial diversity. In this study, both metagenetic analysis and traditional culture-dependent methods were used on asymptomatic healthy leaves and symptomatic diseased leaves of tobacco plants. In the culture-independent analysis, asymptomatic leaves had higher microbial diversity and richness than symptomatic leaves. Both asymptomatic and symptomatic leaves contained several potentially pathogenic bacterial and fungal genera. The putative bacterial pathogens, such as species of Pseudomonas, Pantoea, or Ralstonia, and putative fungal pathogens, such as species of Phoma, Cladosporium, Alternaria, Fusarium, Corynespora, and Epicoccum, had a higher relative abundance in symptomatic leaves than asymptomatic leaves. FUNGuild analysis indicated that the foliar fungal community also included endophytes, saprotrophs, epiphytes, parasites, and endosymbionts. PICRUSt analysis showed that the dominant functions of the bacterial community in a symptomatic leaf were cellular processes and environmental information processing. In the other five foliar samples, the dominant functions of the bacterial community were genetic information processing, metabolism, and organismal systems. In the traditional culture-dependent method, 47 fungal strains were isolated from 60 symptomatic tobacco leaf fragments bearing leaf spots. Among them, 21 strains of Colletotrichum (29%), Xylariaceae (14%), Corynespora (14%), Pestalotiopsis (10%), Alternaria (10%), Epicoccum (10%), Byssosphaeria (5%), Phoma (5%), and Diaporthe (5%) all fulfilled Koch's postulates and were found to cause disease on detached tobacco leaves in artificial inoculation tests. Symptoms on detached leaves caused by three strains of Corynespora cassiicola in artificial inoculation tests were similar to the original disease symptoms in the tobacco field. This study showed that the combined application of culture-dependent and independent methods could give comprehensive insights into microbial composition that each method alone did not reveal.

13.
Environ Sci Pollut Res Int ; 29(13): 19420-19431, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34718950

RESUMEN

In recent years, the impact of biological aerosols produced by sewage treatment plants on air quality and human health has become a hot spot of concern. Airborne fungi were characterized via KC-1000 large-flow air sampler and Anderson-type six-stage sampler, at free surface flowing reed constructed wetland located in Qingdao City, Shandong Province. The high-throughput sequencing technology and fungal culture-dependent method were selected to analyze the composition and dynamic changes of the fungal community attached to the atmospheric particulate matter in the free surface flow constructed wetland. The results showed that the aerosol concentration of fungi in the constructed wetlands varied from 587 to approximately 3382 CFU m-3, with a peak at the range of 1.10 to 2.10 µm particle size, and the particles (< 4.70 µm) that easily entered the lungs accounted for 57.03 ~ 96.03%. Significant seasonal differences in fungal richness and community diversity were found. The particle size distribution of fungi in atmospheric particles was not obvious. Fungal genera in the atmospheric particulate matter were mainly driven by humidity. However, other factors, i.e., temperature, NO2, SO2, and PM10 contents, also contributed.


Asunto(s)
Contaminantes Atmosféricos , Micobioma , Aerosoles/análisis , Microbiología del Aire , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Hongos , Humanos , Tamaño de la Partícula , Material Particulado/análisis , Estaciones del Año , Humedales
14.
Food Res Int ; 162(Pt A): 112007, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461302

RESUMEN

Salame Piemonte is a dry-fermented meat product typical of the Piedmont region in Italy, manufactured using commercial starter cultures. This study aimed to select autochthonous starter cultures (ASCs) that could be used for sausage fermentation in order to strengthen the link with the geographical area of production and improve the sensory properties of the final product. A culture-dependent approach was adopted during three different spontaneous sausage fermentation processes to isolate and characterise the main bacterial resources involved. Dominant lactic acid bacteria (LAB) in each batch were Pediococcus pentosaceus, Latilactobacillus sakei, and Latilactobacillus curvatus; Staphylococcus xylosus was the most dominant coagulase-negative staphylococci (CNS) in all the studied batches. LAB and presumptive CNS isolates were further evaluated for their physiological properties and biotechnological potential. Thereafter, 11 strains were selected and evaluated for safety. Five selected strains (two P. pentosaceus, two L. sakei, and one S. xylosus strain) were used for pilot-scale Salame Piemonte production with seven different strain combinations. Based on the liking test, three ASC combinations led to the highest liking score compared to industrial products. These three ASCs were then used for the second pilot-scale sausage production confirming the high liking score. In summary, the use of P. pentosaceus and S. xylosus ASC significantly improved product sensory properties compared with that obtained using commercial starter cultures.


Asunto(s)
Lactobacillales , Latilactobacillus sakei , Productos de la Carne , Pediococcus pentosaceus , Biotecnología
15.
3 Biotech ; 12(1): 14, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34966637

RESUMEN

Gut symbiotic bacteria provide protection and nutrition to the host insect. A high reproductive rate and dispersal ability of the rugose spiralling whitefly help this polyphagous species to develop and thrive on many horticultural crops. In this study, we isolated the cultivable gut bacteria associated with rugose spiralling whitefly and demonstrated their role in the host insect. We also studied the influence of antibiotics on the rugose spiralling whitefly oviposition. A total of 70 gut bacteria were isolated from the second nymphal stage of rugose spiralling whitefly reared on coconut, banana, and sapota using seven growth media. From the 70 isolates, chitinase, siderophore (51), protease (44), and Glutathione-S-Transferase producers (16) were recorded. The activities of chitinase, siderophore, protease, and Glutathione-S-Transferase in the gut bacterial isolates of rugose spiralling whitefly ranged from 0.07 to 3.96 µmol-1 min-1 mL-1, 10.01 to 76.93%, 2.10 to 83.40%, and 5.21 to 24.48 nmol-1 min-1 mL-1 µg-1 protein, respectively. The16S rRNA gene sequence analysis revealed that bacterial genera associated with the gut of rugose spiralling whitefly included Bacillus, Exiguobacterium, Acinetobacter, Lysinibacillus, Arthrobacter, and Pseudomonas. Based on the susceptibility of the gut bacteria to antibiotics, 11antibiotic treatments were administered to the host plant leaves infested with the nymphal stages. The antibiotics were evaluated for their effect on rugose spiralling whitefly oviposition. Among the antibiotic treatments, carbenicillin (100 µg mL-1) + ciprofloxacin (5 µg mL-1) significantly reduced the oviposition (13 eggs spiral-1) and egg hatchability (61.54%) of rugose spiralling whitefly. Disruption of chitinase, siderophore, protease, and detoxification enzyme producers and elimination of these symbionts through antibiotics altered the host insect physiology and indirectly affected whitefly oviposition. In conclusion, gut bacteria-based management strategies might be used as insecticides for the effective control of whiteflies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-021-03081-3.

16.
Foods ; 11(7)2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35406996

RESUMEN

Gajami-sikhae is a traditional Korean fermented fish food made by naturally fermenting flatfish (Glyptocephalus stelleri) with other ingredients. This study was the first to investigate the diversity and dynamics of lactic acid bacteria in gajami-sikhae fermented at different temperatures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). A total of 4824 isolates were isolated from the fermented gajami-sikhae. These findings indicated that Latilactobacillus, Lactiplantibacillus, Levilactobacillus, Weissella, and Leuconostoc were the dominant genera during fermentation, while the dominant species were Latilactobacillus sakei, Lactiplantibacillus plantarum, Levilactobacillus brevis, Weissella koreensis, and Leuconostoc mesenteroides. At all temperatures, L. sakei was dominant at the early stage of gajami-sikhae fermentation, and it maintained dominance until the later stage of fermentation at low temperatures (5 °C and 10 °C). However, L. plantarum and L. brevis replaced it at higher temperatures (15 °C and 20 °C). The relative abundance of L. plantarum and L. brevis reached 100% at the later fermentation stage at 20 °C. These results suggest that the optimal fermentation temperatures for gajami-sikhae are low rather than high temperatures. This study could allow for the selection of an adjunct culture to control gajami-sikhae fermentation.

17.
Sci Total Environ ; 764: 142908, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33139008

RESUMEN

To understand the characteristics and potential impacts of fungal aerosols in waste disposal treatments, we performed observations at a landfill and an incineration plants in Guangzhou, Southern China. Size-segregated airborne fungal concentrations were measured based on culture-dependent method, and fungal compositions in PM2.5 were obtained using high-throughput sequencing method. Concentrations of airborne fungi varied from 376 to 9318 CFU/m3 in the landfill plant and from 53 to 8491 CFU/m3 in the incineration plant, respectively. The temporal and spatial variations of fungal aerosols indicate that waste disposal operation, garbage transport, air mixing, and meteorological factors can significantly influence the variations of airborne fungi in the outdoor environment in both plants. Among the meteorological factors, light/moderate rain could significantly increase the airborne fungal concentrations while heavy rain could decrease the concentrations due to wet scavenge. We observed that culturable fungal aerosols predominantly resided in the size range of 2.1-3.3 µm. Different fungal community structures in PM2.5 were found between the landfill and the incineration plants, suggesting the influence of different waste sorts and treatment procedures. We further identified the pathogenic/allergenic fungal taxa (e.g., Alternaria, Epicoccum sp. and Stachybotrys sp.) in the two plants, implying the potential human health risks with long-term exposure for on-site workers and surrounding residents. The fungal genera producing microbial volatile organic compounds (MVOCs, e.g., Cladosporium, Fusarium sp., Penicillium sp. and Candida) were found in both plants. These MVOCs generation related fungal genera could contribute to the odor in the plants and, more importantly, affect the downwind area after aerosolization and transportation.


Asunto(s)
Microbiología del Aire , Incineración , Aerosoles/análisis , China , Monitoreo del Ambiente , Hongos , Humanos , Instalaciones de Eliminación de Residuos
18.
Foods ; 10(5)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066045

RESUMEN

Kimchi, a traditional Korean fermented vegetable, has received considerable attention for its health-promoting effects. This study analyzes the cultivable microbial community in kimchi fermented at different temperatures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to comprehensively understand the factors affecting the quality of kimchi. Of the 5204 strains isolated from kimchi, aligned with the in-house database, 4467 (85.8%) were correctly identified at the species level. The fermentation temperature affected the microbial community by varying the pH and acidity, which was mainly caused by temperature-dependent competition between the different lactic acid bacteria (LAB) species in kimchi. LAB, such as Levilactobacillus (Lb.) brevis and Lactiplantibacillus (Lpb.) plantarum associated with rancidity and tissue softening, proliferated faster at higher temperatures than at low temperature. In addition, LAB, such as Latilactobacillus (Lat.) sakei and Leuconostoc (Leu.) mesenteroides, which produce beneficial substances and flavor, were mainly distributed in kimchi fermented at 4 °C. This study shows as a novelty that MALDI-TOF MS is a robust and economically affordable method for investigating viable microbial communities in kimchi.

19.
Braz J Microbiol ; 51(1): 217-228, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31741310

RESUMEN

Xylanase and α-amylase enzymes participate in the degradation of organic matter, acting in hemicellulose and starch mineralization, respectively, and are in high demand for industrial use. Mangroves represent a promising source for bioprospecting enzymes due to their unique characteristics, such as fluctuations in oxic/anoxic conditions and salinity. In this context, the present work aimed to bioprospect xylanases from mangrove soil using cultivation-dependent and cultivation-independent methods. Through screening from a metagenomic library, three potentially xylanolytic clones were obtained and sequenced, and reads were assembled into contigs and annotated. The contig MgrBr135 was affiliated with the Planctomycetaceae family and was one of 30 ORFs selected for subcloning that demonstrated only amylase activity. Through the cultivation method, 38 bacterial isolates with xylanolytic activity were isolated. Isolate 11 showed an enzymatic index of 10.9 using the plate assay method. Isolate 39 achieved an enzyme activity of 0.43 U/mL using the colorimetric method with 3,5-dinitrosalicylic acid. Isolate 39 produced xylanase on culture medium with salinity ranging from 1.25 to 5%. Partial 16S rRNA gene sequencing identified isolates in the Bacillus and Paenibacillus genera. The results of this study highlight the importance of mangroves as an enzyme source and show that bacterial groups can be used for starch and hemicellulose degradation.


Asunto(s)
Bacterias/aislamiento & purificación , Endo-1,4-beta Xilanasas/genética , Microbiología del Suelo , Humedales , alfa-Amilasas/genética , Bacillus/genética , Bacillus/aislamiento & purificación , Bacillus/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Celulosa/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Genes Bacterianos/genética , Metagenómica , Paenibacillus/genética , Paenibacillus/aislamiento & purificación , Paenibacillus/metabolismo , Planctomycetales/clasificación , Planctomycetales/genética , Planctomycetales/aislamiento & purificación , Planctomycetales/metabolismo , ARN Ribosómico 16S , Almidón/metabolismo , alfa-Amilasas/metabolismo
20.
Int J Food Microbiol ; 317: 108463, 2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-31809966

RESUMEN

Paocai is a widely consumed Chinese traditional fermented vegetable product. To understand the effect of temperature on paocai fermentation flora, the bacterial community structure of paocai fermented at 10 °C, 15 °C, 25 °C and 35 °C was analyzed by culture-dependent and culture-independent methods. The results showed that increasing the fermentation temperature in a certain range is beneficial for rapid paocai acid production and shortening of the maturity period. Illumina Miseq sequencing was performed on 56 samples at different fermentation process temperatures using a culture-independent method. A total of 1,964,231 high-quality reads of 16S rRNA V3-V4 regions were obtained, and they were divided into 405 operational taxonomic units (OTUs) and identified as 213 bacterial genera. The bacterial diversity decreased with the progression of fermentation, and some spoiled samples had an increased diversity. The culture-independent method found that at 10 °C, Lactococcus appeared at the start of fermentation, Leuconostoc and Weissella appeared in the middle of fermentation, and Lactobacillus and Leuconostoc dominated fermentation in the late stage. At 15 °C, Lactococcus started fermentation, Leuconostoc appeared in the middle stage, and Lactobacillus was dominant in the late stage. At 25 °C, Lactococcus started fermentation, Weissella and Lactobacillus appeared in the middle stage, and Lactobacillus dominated fermentation in the late stage. Finally, at 35 °C, Lactococcus, Weissella, and Lactobacillus started fermentation, Weissella and Lactobacillus appeared in the middle stage, and Lactobacillus dominated fermentation in the late stage. A total of 647 strains of bacteria were isolated by culture-dependent methods and were divided into 12 genera and 19 species by randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) and 16S ribosomal RNA gene (rDNA) sequencing technology. More types of bacteria were isolated in the early stage of fermentation. At 10 °C, Lactococcus lactis began fermentation, and Lactobacillus brevis and Leuconostoc mesenteroides dominated acid production in the middle and late stages of paocai fermentation. At 15 °C, L. lactis initiates fermentation, while Lactobacillus plantarum dominates the acid fermentation of paocai. At 25 °C and 35 °C, there were a large number of Enterobacteriaceae bacteria in the start-up fermentation stage, and L. plantarum was dominant after 1-2 days of fermentation. Redundancy analysis (RDA) found that the lower the temperature, the more bacterial species that are produced, and the higher the temperature and the longer the time, the more obvious are the effects of L. plantarum on paocai. The results of dominant bacteria studied by culture-dependent and culture-independent methods are similar. The results indicate that most of the dominant microorganisms in the paocai fermentation system are culturable. This discovery can provide data and physical support for modernization and regulation of different types of paocai production.


Asunto(s)
Fermentación/fisiología , Alimentos Fermentados/microbiología , Lactobacillus plantarum/metabolismo , Lactococcus/metabolismo , Leuconostoc/metabolismo , Weissella/metabolismo , Frío , Técnicas de Cultivo , ADN Bacteriano/genética , ADN Ribosómico/genética , Microbiología de Alimentos/métodos , Calor , Lactobacillus plantarum/genética , Lactococcus/genética , Leuconostoc/genética , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Técnica del ADN Polimorfo Amplificado Aleatorio , Weissella/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA