Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.715
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(31): e2321929121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39047035

RESUMEN

Colorectal cancer and Crohn's disease patients develop pyogenic liver abscesses due to failures of immune cells to fight off bacterial infections. Here, we show that mice lacking iron regulatory protein 2 (Irp2), globally (Irp2-/-) or myeloid cell lineage (Lysozyme 2 promoter-driven, LysM)-specifically (Irp2ΔLysM), are highly susceptible to liver abscesses when the intestinal tissue was injured with dextran sodium sulfate treatment. Further studies demonstrated that Irp2 is required for lysosomal acidification and biogenesis, both of which are crucial for bacterial clearance. In Irp2-deficient liver tissue or macrophages, the nuclear location of transcription factor EB (Tfeb) was remarkably reduced, leading to the downregulation of Tfeb target genes that encode critical components for lysosomal biogenesis. Tfeb mislocalization was reversed by hypoxia-inducible factor 2 inhibitor PT2385 and, independently, through inhibition of lactic acid production. These experimental findings were confirmed clinically in patients with Crohn's disease and through bioinformatic searches in databases from Crohn's disease or ulcerative colitis biopsies showing loss of IRP2 and transcription factor EB (TFEB)-dependent lysosomal gene expression. Overall, our study highlights a mechanism whereby Irp2 supports nuclear translocation of Tfeb and lysosomal function, preserving macrophage antimicrobial activity and protecting the liver against invading bacteria during intestinal inflammation.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Enfermedad de Crohn , Proteína 2 Reguladora de Hierro , Lisosomas , Macrófagos , Animales , Lisosomas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Ratones , Humanos , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/metabolismo , Proteína 2 Reguladora de Hierro/metabolismo , Proteína 2 Reguladora de Hierro/genética , Ratones Noqueados , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/inmunología , Hígado/patología
2.
Cell Mol Life Sci ; 81(1): 24, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38212432

RESUMEN

The accumulation of metabolites in the intervertebral disc is considered an important cause of intervertebral disc degeneration (IVDD). Lactic acid, which is a metabolite that is produced by cellular anaerobic glycolysis, has been proven to be closely associated with IVDD. However, little is known about the role of lactic acid in nucleus pulposus cells (NPCs) senescence and oxidative stress. The aim of this study was to investigate the effect of lactic acid on NPCs senescence and oxidative stress as well as the underlying mechanism. A puncture-induced disc degeneration (PIDD) model was established in rats. Metabolomics analysis revealed that lactic acid levels were significantly increased in degenerated intervertebral discs. Elimination of excessive lactic acid using a lactate oxidase (LOx)-overexpressing lentivirus alleviated the progression of IVDD. In vitro experiments showed that high concentrations of lactic acid could induce senescence and oxidative stress in NPCs. High-throughput RNA sequencing results and bioinformatic analysis demonstrated that the induction of NPCs senescence and oxidative stress by lactic acid may be related to the PI3K/Akt signaling pathway. Further study verified that high concentrations of lactic acid could induce NPCs senescence and oxidative stress by interacting with Akt and regulating its downstream Akt/p21/p27/cyclin D1 and Akt/Nrf2/HO-1 pathways. Utilizing molecular docking, site-directed mutation and microscale thermophoresis assays, we found that lactic acid could regulate Akt kinase activity by binding to the Lys39 and Leu52 residues in the PH domain of Akt. These results highlight the involvement of lactic acid in NPCs senescence and oxidative stress, and lactic acid may become a novel potential therapeutic target for the treatment of IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Ratas , Animales , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Simulación del Acoplamiento Molecular , Fosfatidilinositol 3-Quinasas/metabolismo , Disco Intervertebral/metabolismo , Senescencia Celular
3.
Nano Lett ; 24(15): 4691-4701, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38588212

RESUMEN

Tumor cells exhibit heightened glucose (Glu) consumption and increased lactic acid (LA) production, resulting in the formation of an immunosuppressive tumor microenvironment (TME) that facilitates malignant proliferation and metastasis. In this study, we meticulously engineer an antitumor nanoplatform, denoted as ZLGCR, by incorporating glucose oxidase, LA oxidase, and CpG oligodeoxynucleotide into zeolitic imidazolate framework-8 that is camouflaged with a red blood cell membrane. Significantly, ZLGCR-mediated consumption of Glu and LA not only amplifies the effectiveness of metabolic therapy but also reverses the immunosuppressive TME, thereby enhancing the therapeutic outcomes of CpG-mediated antitumor immunotherapy. It is particularly important that the synergistic effect of metabolic therapy and immunotherapy is further augmented when combined with immune checkpoint blockade therapy. Consequently, this engineered antitumor nanoplatform will achieve a cooperative tumor-suppressive outcome through the modulation of metabolism and immune responses within the TME.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Inmunoterapia , Radioinmunoterapia , Glucosa , Glucosa Oxidasa , Inmunosupresores , Ácido Láctico , Neoplasias/terapia , Línea Celular Tumoral
4.
Eur J Immunol ; 53(6): e2250258, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36788428

RESUMEN

Glucose limitation and increased lactic acid levels are consequences of the elevated glycolytic activity of tumor cells, and constitute a metabolic barrier for the function of tumor infiltrating effector immune cells. The immune-suppressive functions of regulatory T cells (Tregs) are unobstructed in lactic-acid rich environments. However, the impact of lactic acid on the induction of Tregs remains unknown. We observed increased TGFß-mediated induction of Forkhead box P3+ (FoxP3+ ) cells in the presence of extracellular lactic acid, in a glycolysis-independent, acidity-dependent manner. These CD4+ FoxP3+ cells expressed Treg-associated markers, including increased expression of CD39, and were capable of exerting suppressive functions. Corroborating these results in vivo, we observed that neutralizing the tumor pH by systemic administration of sodium bicarbonate (NaBi) decreased Treg abundance. We conclude that acidity augments Treg induction and propose that therapeutic targeting of acidity in the tumor microenvironment (TME) might reduce Treg-mediated immune suppression within tumors.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Terapia de Inmunosupresión , Factores de Transcripción/metabolismo , Factores de Transcripción Forkhead/metabolismo , Microambiente Tumoral
5.
Eur J Immunol ; 53(6): e2350511, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37097063

RESUMEN

The metabolic milieu is emerging as a major contributing factor in the maintenance of the immunosuppressive microenvironment within tumors. In particular, the presence of lactic acid produced by highly glycolytic cancer cells is known to suppress antitumor immune cell subsets while promoting immunosuppressive cell populations, such as regulatory T cells (Tregs). Unlike conventional T cells, Tregs have a unique, potent ability to take up lactic acid to fuel both mitochondrial metabolism and gluconeogenesis, thus supporting suppressive function and proliferation. In this issue of the European Journal of Immunology [Eur. J. Immunol. 2023.53:2250258], Rao et al. uncover a novel mechanism by which lactic acid can support Treg accumulation within tumors in mice. This study shows that lactic acid, through a pH-dependent mechanism rather than lactate itself, promotes TGFß-induced differentiation of Tregs from conventional CD4+ T cells. These findings build on the already multifaceted role of lactic acid in maintaining an immunosuppressive tumor microenvironment.


Asunto(s)
Neoplasias , Linfocitos T Reguladores , Animales , Ratones , Diferenciación Celular , Inmunosupresores , Ácido Láctico/metabolismo , Microambiente Tumoral
6.
Mol Genet Genomics ; 299(1): 24, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38438804

RESUMEN

The search for probiotics and exploration of their functions are crucial for livestock farming. Recently, porcine-derived lactic acid bacteria (LAB) have shown great potential as probiotics. However, research on the evaluation of porcine-derived LAB as potential probiotics through genomics-based analysis is relatively limited. The present study analyzed four porcine-derived LAB strains (Lactobacillus johnsonii L16, Latilactobacillus curvatus ZHA1, Ligilactobacillus salivarius ZSA5 and Ligilactobacillus animalis ZSB1) using genomic techniques and combined with in vitro tests to evaluate their potential as probiotics. The genome sizes of the four strains ranged from 1,897,301 bp to 2,318,470 bp with the GC contents from 33.03 to 41.97%. Pan-genomic analysis and collinearity analysis indicated differences among the genomes of four strains. Carbohydrate active enzymes analysis revealed that L. johnsonii L16 encoded more carbohydrate active enzymes than other strains. KEGG pathway analysis and in vitro tests confirmed that L. johnsonii L16 could utilize a wide range of carbohydrates and had good utilization capacity for each carbohydrate. The four strains had genes related to acid tolerance and were tolerant to low pH, with L. johnsonii L16 showing the greatest tolerance. The four strains contained genes related to bile salt tolerance and were able to tolerate 0.1% bile salt. Four strains had antioxidant related genes and exhibited antioxidant activity in in vitro tests. They contained the genes linked with organic acid biosynthesis and exhibited antibacterial activity against enterotoxigenic Escherichia coli K88 (ETEC K88) and Salmonella 6,7:c:1,5, wherein, L. johnsonii L16 and L. salivarius ZSA5 had gene clusters encoding bacteriocin. Results suggest that genome analysis combined with in vitro tests is an effective approach for evaluating different strains as probiotics. The findings of this study indicate that L. johnsonii L16 has the potential as a probiotic strain among the four strains and provide theoretical basis for the development of probiotics in swine production.


Asunto(s)
Lactobacillales , Porcinos , Animales , Lactobacillales/genética , Genómica , Agricultura , Antibacterianos , Antioxidantes , Escherichia coli , Carbohidratos
7.
Mol Genet Genomics ; 299(1): 31, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38472540

RESUMEN

Lactic acid bacteria (LAB) can be used as a probiotic or starter culture in dairy, meat, and vegetable fermentation. Therefore, their isolation and identification are essential. Recent advances in omics technologies and high-throughput sequencing have made the identification and characterization of bacteria. This study firstly aimed to demonstrate the sensitivity of the Vitek MS (MALDI-TOF) system in the identification of lactic acid bacteria and, secondly, to characterize bacteria using various bioinformatics approaches. Probiotic potency-related genes and secondary metabolite biosynthesis gene clusters were examined. The Vitek MS (MALDI-TOF) system was able to identify all of the bacteria at the genus level. According to whole genome sequencing, the bacteria were confirmed to be Lentilactobacillus buchneri, Levilactobacillus brevis, Lactiplantibacillus plantarum, Levilactobacillus namurensis. Bacteria had most of the probiotic potency-related genes, and different toxin-antitoxin systems such as PemIK/MazEF, Hig A/B, YdcE/YdcD, YefM/YoeB. Also, some of the secondary metabolite biosynthesis gene clusters, some toxic metabolite-related genes, and antibiotic resistance-related genes were detected. In addition, Lentilactobacillus buchneri Egmn17 had a type II-A CRISPR/Cas system. Lactiplantibacillus plantarum Gmze16 had a bacteriocin, plantaricin E/F.


Asunto(s)
Lactobacillales , Lactobacillus , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Bacterias , Secuenciación Completa del Genoma , Genómica
8.
Small ; : e2402317, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988143

RESUMEN

Here, the poly (l-lactic acid) (PLLA) membrane with multi-structured networks (MSN) is successfully prepared by electrospinning technology for the first time. It is composed of micron-sized ribbon-structured fibers and ultrafine nanofibers with a diameter of tens of nanometers, and they are connected to form the new network structure. Thanks to the special fiber morphology and structure, the interception and electrostatic adsorption ability for against atmospheric particulate matter (PM) are significantly enhanced, and the resistance to airflow is reduced due to the "slip effect" caused by ultrafine nanofibers. The PLLA MSN membrane shows excellent filtration performance with ultra-high filtration efficiency (>99.9% for PM2.5 and >99.5% for PM0.3) and ultra-low pressure drop (≈20 Pa). It has demonstrated filtration performance that even exceeds current non-biodegradable polymer materials, laying the foundation for future applications of biodegradable PLLA in the field of air filtration. In addition, this new structure also provides a new idea for optimizing the performance of other polymer materials.

9.
Small ; : e2404741, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031679

RESUMEN

Catalytic therapy has shown great potential for clinical application. However, conventional catalytic therapies rely on reactive oxygen species (ROS) as "therapeutic drugs," which have limitations in effectively inhibiting tumor recurrence and metastasis. Here, a biomimetic heterojunction catalyst is developed that can actively target orthotopic rectal cancer after oral administration. The heterojunction catalyst is composed of quatrefoil star-shaped BiVO4 (BVO) and ZnIn2S4 (ZIS) nanosheets through an in situ direct growth technique. Poly-norepinephrine and macrophage membrane coatings afford the biomimetic heterojunction catalyst (BVO/ZIS@M), which has high rectal cancer targeting and retention abilities. The coupled optical fiber intervention technology activates the multicenter coordination of five catalytic reactions of heterojunction catalysts, including two reduction reactions (O2→·O2 - and CO2→CO) and three oxidation reactions (H2O→·OH, GSH→GSSG, and LA→PA). These catalytic reactions not only induce immunogenic death in tumor cells through the efficient generation of ROS/CO and the consumption of GSH but also specifically lead to the use of lactic acid (LA) as an electron donor to improve catalytic activity and disrupt the LA-mediated immunosuppressive microenvironment, mediating synergistic catalysis and immunotherapy for orthotopic rectal cancer. Therefore, this optical fiber intervention triggered the combination of heterojunction catalytic therapy and immunotherapy, which exhibits prominent antitumor effects.

10.
Yeast ; 41(4): 192-206, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38081785

RESUMEN

While flocculation has demonstrated its efficacy in enhancing yeast robustness and ethanol production, its potential application for lactic acid fermentation remains largely unexplored. Our study examined the differences between flocculating and nonflocculating Saccharomyces cerevisiae strains in terms of their metabolic dynamics when incorporating an exogenous lactic acid pathway, across varying cell densities and in the presence of lignocellulose-derived byproducts. Comparative gene expression profiles revealed that cultivating a nonflocculant strain at higher cell density yielded a substantial upregulation of genes associated with glycolysis, energy metabolism, and other key pathways, resulting in elevated levels of fermentation products. Meanwhile, the flocculating strain displayed an inherent ability to sustain high glycolytic activity regardless of the cell density. Moreover, our investigation revealed a significant reduction in glycolytic activity under chemical stress, potentially attributable to diminished ATP supply during the energy investment phase. Conversely, the formation of flocs in the flocculating strain conferred protection against toxic chemicals present in the medium, fostering more stable lactic acid production levels. Additionally, the distinct flocculation traits observed between the two examined strains may be attributed to variations in the nucleotide sequences of the flocculin genes and their regulators. This study uncovers the potential of flocculation for enhanced lactic acid production in yeast, offering insights into metabolic mechanisms and potential gene targets for strain improvement.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fermentación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Láctico/metabolismo , Glucólisis , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Floculación
11.
Metab Eng ; 83: 150-159, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38621518

RESUMEN

Microbial CO2 fixation into lactic acid (LA) is an important approach for low-carbon biomanufacturing. Engineering microbes to utilize CO2 and sugar as co-substrates can create efficient pathways through input of moderate reducing power to drive CO2 fixation into product. However, to achieve complete conservation of organic carbon, how to engineer the CO2-fixing modules compatible with native central metabolism and merge the processes for improving bioproduction of LA is a big challenge. In this study, we designed and constructed a solar formic acid/pentose (SFAP) pathway in Escherichia coli, which enabled CO2 fixation merging into sugar catabolism to produce LA. In the SFAP pathway, adequate reducing equivalents from formate oxidation drive glucose metabolism shifting from glycolysis to the pentose phosphate pathway. The Rubisco-based CO2 fixation and sequential reduction of C3 intermediates are conducted to produce LA stoichiometrically. CO2 fixation theoretically can bring a 20% increase of LA production compared with sole glucose feedstock. This SFAP pathway in the integration of photoelectrochemical cell and an engineered Escherichia coli opens an efficient way for fixing CO2 into value-added bioproducts.


Asunto(s)
Escherichia coli , Formiatos , Ácido Láctico , Ingeniería Metabólica , Escherichia coli/metabolismo , Escherichia coli/genética , Formiatos/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biosíntesis , Dióxido de Carbono/metabolismo
12.
Metab Eng ; 84: 23-33, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788894

RESUMEN

Metabolic engineering for high productivity and increased robustness is needed to enable sustainable biomanufacturing of lactic acid from lignocellulosic biomass. Lactic acid is an important commodity chemical used for instance as a monomer for production of polylactic acid, a biodegradable polymer. Here, rational and model-based optimization was used to engineer a diploid, xylose fermenting Saccharomyces cerevisiae strain to produce L-lactic acid. The metabolic flux was steered towards lactic acid through the introduction of multiple lactate dehydrogenase encoding genes while deleting ERF2, GPD1, and CYB2. A production of 93 g/L of lactic acid with a yield of 0.84 g/g was achieved using xylose as the carbon source. To increase xylose utilization and reduce acetic acid synthesis, PHO13 and ALD6 were also deleted from the strain. Finally, CDC19 encoding a pyruvate kinase was overexpressed, resulting in a yield of 0.75 g lactic acid/g sugars consumed, when the substrate used was a synthetic lignocellulosic hydrolysate medium, containing hexoses, pentoses and inhibitors such as acetate and furfural. Notably, modeling also provided leads for understanding the influence of oxygen in lactic acid production. High lactic acid production from xylose, at oxygen-limitation could be explained by a reduced flux through the oxidative phosphorylation pathway. On the contrast, higher oxygen levels were beneficial for lactic acid production with the synthetic hydrolysate medium, likely as higher ATP concentrations are needed for tolerating the inhibitors therein. The work highlights the potential of S. cerevisiae for industrial production of lactic acid from lignocellulosic biomass.


Asunto(s)
Ácido Láctico , Lignina , Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biosíntesis , Lignina/metabolismo , Biomasa , Xilosa/metabolismo , Xilosa/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Metab Eng ; 85: 133-144, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067842

RESUMEN

A bio-based production of chemical building blocks from renewable, sustainable and non-food substrates is one key element to fight climate crisis. Lactic acid, one such chemical building block is currently produced from first generation feedstocks such as glucose and sucrose, both requiring land and water resources. In this study we aimed for lactic acid production from methanol by utilizing Komagataella phaffii as a production platform. Methanol, a single carbon source has potential as a sustainable substrate as technology allows (electro)chemical hydrogenation of CO2 for methanol production. Here we show that expression of the Lactiplantibacillus plantarum derived lactate dehydrogenase leads to L-lactic acid production in Komagataella phaffii, however, production resulted in low titers and cells subsequently consumed lactic acid again. Gene expression analysis of the methanol-utilizing genes AOX1, FDH1 and DAS2 showed that the presence of lactic acid downregulates transcription of the aforementioned genes, thereby repressing the methanol-utilizing pathway. For activation of the methanol-utilizing pathway in the presence of lactic acid, we constructed strains deficient in transcriptional repressors Nrg1, Mig1-1, and Mig1-2 as well as strains with overrepresentation of transcriptional activators Mxr1 and Mit1. While loss of transcriptional repressors had no significant impact on lactic acid production, overexpression of both transcriptional activators, MXR1 and MIT1, increased lactic acid titers from 4 g L-1 to 17 g L-1 in bioreactor cultivations.

14.
Appl Environ Microbiol ; 90(3): e0144523, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38411084

RESUMEN

Galacto-N-biose (GNB) is an important core structure of glycan of mucin glycoproteins in the gastrointestinal (GI) mucosa. Because certain beneficial bacteria inhabiting the GI tract, such as bifidobacteria and lactic acid bacteria, harbor highly specialized GNB metabolic capabilities, GNB is considered a promising prebiotic for nourishing and manipulating beneficial bacteria in the GI tract. However, the precise interactions between GNB and beneficial bacteria and their accompanying health-promoting effects remain elusive. First, we evaluated the proliferative tendency of beneficial bacteria and their production of beneficial metabolites using gut bacterial strains. By comparing the use of GNB, glucose, and inulin as carbon sources, we found that GNB enhanced acetate production in Lacticaseibacillus casei, Lacticaseibacillus rhamnosus, Lactobacillus gasseri, and Lactobacillus johnsonii. The ability of GNB to promote acetate production was also confirmed by RNA-seq analysis, which indicated the upregulation of gene clusters that catalyze the deacetylation of N-acetylgalactosamine-6P and biosynthesize acetyl-CoA from pyruvate, both of which result in acetate production. To explore the in vivo effect of GNB in promoting acetate production, antibiotic-treated BALB/cA mice were administered with GNB with L. rhamnosus, resulting in a fecal acetate content that was 2.7-fold higher than that in mice administered with only L. rhamnosus. Moreover, 2 days after the last administration, a 3.7-fold higher amount of L. rhamnosus was detected in feces administered with GNB with L. rhamnosus than in feces administered with only L. rhamnosus. These findings strongly suggest the prebiotic potential of GNB in enhancing L. rhamnosus colonization and converting L. rhamnosus into higher acetate producers in the GI tract. IMPORTANCE: Specific members of lactic acid bacteria, which are commonly used as probiotics, possess therapeutic properties that are vital for human health enhancement by producing immunomodulatory metabolites such as exopolysaccharides, short-chain fatty acids, and bacteriocins. The long residence time of probiotic lactic acid bacteria in the GI tract prolongs their beneficial health effects. Moreover, the colonization property is also desirable for the application of probiotics in mucosal vaccination to provoke a local immune response. In this study, we found that GNB could enhance the beneficial properties of intestinal lactic acid bacteria that inhabit the human GI tract, stimulating acetate production and promoting intestinal colonization. Our findings provide a rationale for the addition of GNB to lactic acid bacteria-based functional foods. This has also led to the development of therapeutics supported by more rational prebiotic and probiotic selection, leading to an improved healthy lifestyle for humans.


Asunto(s)
Lactobacillales , Probióticos , Humanos , Animales , Ratones , Prebióticos , Lactobacillales/genética , Disacaridasas , Probióticos/metabolismo , Acetatos , Bacterias
15.
Appl Environ Microbiol ; 90(3): e0227623, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38319095

RESUMEN

Consumer demand for plant cheeses is increasing, but challenges of improving both flavor and quality remain. This study investigated the microbiological and physicochemical impact of seed germination and fermentation with Bacillus velezensis and Bacillus amyloliquefaciens on the ripening of plant cheese analogs. Chlorine treatment or addition of Lactiplantibacillus plantarum and Lactococcus lactis controlled microbial growth during seed germination. Lp. plantarum and Lc. lactis also served as starter cultures for the acidification of soy and lupine milk and were subsequently present in the unripened plant cheese as dominant microbes. Acidification also inhibited the growth and metabolic activity of bacilli but Bacillus spores remained viable throughout ripening. During plant cheese ripening, Lc. lactis was inactivated before Lp. plantarum and the presence of bacilli during seed germination delayed Lc. lactis inactivation. Metagenomic sequencing of full-length 16S rRNA gene amplicons confirmed that the relative abundance of the inoculated strains in each ripened cheese sample exceeded 99%. Oligosaccharides including raffinose, stachyose, and verbascose were rapidly depleted in the initial stage of ripening. Both germination and the presence of bacilli during seed germination had impact on polysaccharide hydrolysis during ripening. Bacilli but not seed germination enhanced proteolysis of plant cheese during ripening. In conclusion, the use of germination with lactic acid bacteria in combination with Bacillus spp. exhibited the potential to improve the quality of ripened plant cheeses with a positive effect on the reduction of hygienic risks. IMPORTANCE: The development of novel plant-based fermented food products for which no traditional templates exist requires the development of starter cultures. Although the principles of microbial flavor formation in plant-based analogs partially overlap with dairy fermentations, the composition of the raw materials and thus likely the selective pressure on the activity of starter cultures differs. Experiments that are described in this study explored the use of seed germination, the use of lactic acid bacteria, and the use of bacilli to reduce hygienic risks, to acidify plant milk, and to generate taste-active compounds through proteolysis and fermentative conversion of carbohydrates. The characterization of fermentation microbiota by culture-dependent and culture-independent methods also confirmed that the starter cultures used were able to control microbial communities throughout 90 d of ripening. Taken together, the results provide novel tools for the development of plant-based analogs of fermented dairy products.


Asunto(s)
Bacillus , Queso , Lactobacillales , Lactococcus lactis , Animales , Germinación , Queso/microbiología , ARN Ribosómico 16S/genética , Semillas , Lactobacillales/genética , Bacillus/genética , Microbiología de Alimentos , Lactococcus lactis/genética , Leche/microbiología
16.
Appl Environ Microbiol ; 90(2): e0165523, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38231565

RESUMEN

Ten Gouda cheese wheels with an age of 31 weeks from six different batch productions were affected by a crack defect and displayed an unpleasant off-flavor. To unravel the causes of these defects, the concentrations of free amino acids, other organic acids, volatile organic compounds, and biogenic amines were quantified in zones around the cracks and in zones without cracks, and compared with those of similar Gouda cheeses without crack defect. The Gouda cheeses with cracks had a significantly different metabolome. The production of the non-proteinogenic amino acid γ-aminobutyric acid (GABA) could be unraveled as the key mechanism leading to crack formation, although the production of the biogenic amines cadaverine and putrescine contributed as well. High-throughput amplicon sequencing of the full-length 16S rRNA gene based on whole-community DNA revealed the presence of Loigolactobacillus rennini and Tetragenococcus halophilus as most abundant non-starter lactic acid bacteria in the zones with cracks. Shotgun metagenomic sequencing allowed to obtain a metagenome-assembled genome of both Loil. rennini and T. halophilus. However, only Loil. rennini contained genes necessary for the production of GABA, cadaverine, and putrescine. Metagenetics further revealed the brine and the rennet used during cheese manufacturing as the most plausible inoculation sources of both Loil. rennini and T. halophilus.IMPORTANCECrack defects in Gouda cheeses are still poorly understood, although they can lead to major economic losses in cheese companies. In this study, the bacterial cause of a crack defect in Gouda cheeses was identified, and the pathways involved in the crack formation were unraveled. Moreover, possible contamination sources were identified. The brine bath might be a major source of bacteria with the potential to deteriorate cheese quality, which suggests that cheese producers should regularly investigate the quality and microbial composition of their brines. This study illustrated how a multiphasic approach can understand and mitigate problems in a cheese company.


Asunto(s)
Carboxiliasas , Queso , Lactobacillales , Lactobacillus , Sales (Química) , Lactobacillales/genética , Queso/microbiología , ARN Ribosómico 16S/genética , Cadaverina , Putrescina , Bacterias/genética , Ácido gamma-Aminobutírico , Ácido Láctico , Microbiología de Alimentos
17.
Appl Environ Microbiol ; 90(4): e0186923, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38446583

RESUMEN

The production of gueuze beers through refermentation and maturation of blends of lambic beer in bottles is a way for lambic brewers to cope with the variability among different lambic beer batches. The resulting gueuze beers are more carbonated than lambic beers and are supposed to possess a unique flavor profile that varies over time. To map this refermentation and maturation process for gueuze production, a blend of lambic beers was made and bottled, whereby one of them was produced with the old wheat landrace Zeeuwse Witte. Through the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and high-throughput sequencing of bacterial and fungal amplicons, in combination with metabolite target analysis, new insights into gueuze production were obtained. During the initial stages of refermentation, the conditions in the bottles were similar to those encountered during the maturation phase of lambic beer productions in wooden barrels, which was also reflected microbiologically (presence of Brettanomyces species, Pediococcus damnosus, and Acetobacter lambici) and biochemically (ethanol, higher alcohols, lactic acid, acetic acid, volatile phenolic compounds, and ethyl esters). However, after a few weeks of maturation, a switch from a favorable environment to one with nutrient and dissolved oxygen depletion resulted in several changes. Concerning the microbiology, a sequential prevalence of three lactic acid bacterial species occurred, namely, P. damnosus, Lentilactobacillus buchneri, and Lactobacillus acetotolerans, while the diversity of the yeasts decreased. Concerning the metabolites produced, mainly those of the Brettanomyces yeasts determined the metabolic profiles encountered during later stages of the gueuze production.IMPORTANCEGueuze beers are the result of a refermentation and maturation process of a blend of lambic beers carried out in bottles. These gueuze beers are known to have a long shelf life, and their quality typically varies over time. However, knowledge about gueuze production in bottles is scarce. The present study provided more insights into the varying microbial and metabolite composition of gueuze beers during the first 2 years of this refermentation and maturation process. This will allow gueuze producers to gain more information about the influence of the refermentation and maturation time on their beers. These insights can also be used by gueuze producers to better inform their customers about the quality of young and old gueuze beers.


Asunto(s)
Cerveza , Brettanomyces , Cerveza/microbiología , Fermentación , Etanol/análisis , Ácido Láctico
18.
Appl Environ Microbiol ; 90(3): e0193623, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376234

RESUMEN

In the context of sustainable diet, the development of soy-based yogurt fermented with lactic acid bacteria is an attractive alternative to dairy yogurts. To decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during soy juice (SJ) fermentation, the whole genome of the strain CIRM-BIA865 (Ld865) was sequenced and annotated. Then Ld865 was used to ferment SJ. Samples were analyzed throughout fermentation for their cell number, carbohydrate, organic acid, free amino acid, and volatile compound contents. Despite acidification, the number of Ld865 cells did not rise, and microscopic observations revealed the elongation of cells from 3.6 µm (inoculation) to 36.9 µm (end of fermentation). This elongation was observed in SJ but not in laboratory-rich medium MRS. Using transcriptomic analysis, we showed that the biosynthesis genes of peptidoglycan and membrane lipids were stably expressed, in line with the cell elongation observed, whereas no genes implicated in cell division were upregulated. Among the main sugars available in SJ (sucrose, raffinose, and stachyose), Ld865 only used sucrose. The transcriptomic analysis showed that Ld865 implemented the two transport systems that it contains to import sucrose: a PTS system and an ABC transporter. To fulfill its nitrogen needs, Ld865 probably first consumed the free amino acids of the SJ and then implemented different oligopeptide transporters and proteolytic/peptidase enzymes. In conclusion, this study showed that Ld865 enables fast acidification of SJ, despite the absence of cell division, leads to a product rich in free amino acids, and also leads to the production of aromatic compounds of interest. IMPORTANCE: To reduce the environmental and health concerns related to food, an alternative diet is recommended, containing 50% of plant-based proteins. Soy juice, which is protein rich, is a relevant alternative to animal milk, for the production of yogurt-like products. However, soy "beany" and "green" off-flavors limit the consumption of such products. The lactic acid bacteria (LAB) used for fermentation can help to improve the organoleptic properties of soy products. But metabolic data concerning LAB adapted to soy juice are lacking. The aim of this study was, thus, to decipher the metabolism of Lactobacillus delbrueckii subsp. delbrueckii during fermentation of a soy juice, based on a multidisciplinary approach. This result will contribute to give tracks for a relevant selection of starter. Indeed, the improvement of the organoleptic properties of these types of products could help to promote plant-based proteins in our diet.


Asunto(s)
Lactobacillales , Lactobacillus delbrueckii , Animales , Fermentación , Lactobacillus/metabolismo , Lactobacillales/metabolismo , Aminoácidos/metabolismo , Glycine max , Sacarosa/metabolismo , Lactobacillus delbrueckii/genética , Yogur/microbiología
19.
BMC Microbiol ; 24(1): 163, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745280

RESUMEN

Spontaneous fermentation of cereals like millet involves a diverse population of microbes from various sources, including raw materials, processing equipment, fermenting receptacles, and the environment. Here, we present data on the predominant microbial species and their succession at each stage of the Hausa koko production process from five regions of Ghana. The isolates were enumerated using selective media, purified, and phenotypically characterised. The LAB isolates were further characterised by 16S rRNA Sanger sequencing, typed using (GTG)5 repetitive-PCR, and whole genome sequencing, while 28S rRNA Sanger sequencing was performed for yeast identification. The pH of the millet grains ranged from mean values of 6.02-6.53 to 3.51-3.99 in the final product, depending on the processors. The mean LAB and yeast counts increased during fermentation then fell to final counts of log 2.77-3.95 CFU/g for LAB and log 2.10-2.98 CFU/g for yeast in Hausa koko samples. At the various processing stages, the counts of LAB and yeast revealed significant variations (p < 0.0001). The species of LAB identified in this study were Limosilactobacillus pontis, Pediococcus acidilactici, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Pediococcus pentosaceus, Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, Schleiferilactobacillus harbinensis, and Weissella confusa. The yeasts were Saccharomyces cf. cerevisiae/paradoxus, Saccharomyces cerevisiae, Pichia kudriavzevii, Clavispora lusitaniae and Candida tropicalis. The identification and sequencing of these novel isolates and how they change during the fermentation process will pave the way for future controlled fermentation, safer starter cultures, and identifying optimal stages for starter culture addition or nutritional interventions. These LAB and yeast species are linked to many indigenous African fermented foods, potentially acting as probiotics in some cases. This result serves as the basis for further studies into the technological and probiotic potential of these Hausa koko microorganisms.


Asunto(s)
Fermentación , Alimentos Fermentados , Microbiología de Alimentos , Mijos , Levaduras , Ghana , Levaduras/clasificación , Levaduras/aislamiento & purificación , Levaduras/genética , Levaduras/metabolismo , Alimentos Fermentados/microbiología , Mijos/microbiología , Lactobacillales/clasificación , Lactobacillales/aislamiento & purificación , Lactobacillales/genética , Lactobacillales/metabolismo , ARN Ribosómico 16S/genética , Filogenia , Concentración de Iones de Hidrógeno , Grano Comestible/microbiología
20.
BMC Microbiol ; 24(1): 197, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849732

RESUMEN

BACKGROUND: Emerging evidence emphasized the role of oral microbiome in oral lichen planus (OLP). To date, no dominant pathogenic bacteria have been identified consistently. It is noteworthy that a decreased abundance of Streptococcus, a member of lactic acid bacteria (LAB) in OLP patients has been commonly reported, indicating its possible effect on OLP. This study aims to investigate the composition of LAB genera in OLP patients by high-throughput sequencing, and to explore the possible relationship between them. METHODS: We collected saliva samples from patients with OLP (n = 21) and healthy controls (n = 22) and performed 16 S rRNA gene high-throughput sequencing. In addition, the abundance of LAB genera was comprehensively analyzed and compared between OLP and HC group. To verify the expression of Lactococcus lactis, real time PCR was conducted in buccal mucosa swab from another 14 patients with OLP and 10 HC. Furthermore, the correlation was conducted between clinical severity of OLP and LAB. RESULTS: OLP and HC groups showed similar community richness and diversity. The members of LAB, Lactococcus and Lactococcus lactis significantly decreased in saliva of OLP cases and negatively associated with OLP severity. In addition, Lactococcus and Lactococcus lactis showed negative relationship with Fusobacterium and Aggregatibacter, which were considered as potential pathogens of OLP. Similarly, compared with healthy controls, the amount of Lactococcus lactis in mucosa lesion of OLP patients was significantly decreased. CONCLUSIONS: A lower amount of Lactococcus at genus level, Lactococcus lactis at species level was observed in OLP cases and associated with disease severity. Further studies to verify the relationship between LAB and OLP, as well as to explore the precise mechanism is needed.


Asunto(s)
Lactobacillales , Liquen Plano Oral , Microbiota , ARN Ribosómico 16S , Saliva , Humanos , Saliva/microbiología , Femenino , Masculino , Liquen Plano Oral/microbiología , Persona de Mediana Edad , Lactobacillales/genética , Lactobacillales/aislamiento & purificación , Lactobacillales/clasificación , ARN Ribosómico 16S/genética , Adulto , Secuenciación de Nucleótidos de Alto Rendimiento , Anciano , Mucosa Bucal/microbiología , Estudios de Casos y Controles , ADN Bacteriano/genética , Lactococcus lactis/genética , Lactococcus lactis/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA