Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(19): 5791-5798, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38695400

RESUMEN

The second-order nonlinear transport illuminates a frequency-doubling response emerging in quantum materials with a broken inversion symmetry. The two principal driving mechanisms, the Berry curvature dipole and the skew scattering, reflect various information including ground-state symmetries, band dispersions, and topology of electronic wave functions. However, effective manipulation of them in a single system has been lacking, hindering the pursuit of strong responses. Here, we report on the effective manipulation of the two mechanisms in a single graphene moiré superlattice, AB-BA stacked twisted double bilayer graphene. Most saliently, by virtue of the high tunability of moiré band structures and scattering rates, a record-high second-order transverse conductivity ∼ 510 µm S V-1 is observed, which is orders of magnitude higher than any reported values in the literature. Our findings establish the potential of electrically tunable graphene moiré systems for nonlinear transport manipulations and applications.

2.
Nano Lett ; 20(1): 709-714, 2020 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-31838853

RESUMEN

Magnetic topological insulator, a platform for realizing quantum anomalous Hall effect, axion state, and other novel quantum transport phenomena, has attracted a lot of interest. Recently, it is proposed that MnBi2Te4 is an intrinsic magnetic topological insulator, which may overcome the disadvantages in the magnetic doped topological insulator, such as disorder. Here we report on the gate-reserved anomalous Hall effect (AHE) in the MnBi2Te4 thin film. By tuning the Fermi level using the top/bottom gate, the AHE loop gradually decreases to zero and the sign is reversed. The positive AHE exhibits distinct coercive fields compared with the negative AHE. It reaches a maximum inside the gap of the Dirac cone, and its amplitude exhibits a linear scaling with the longitudinal conductance. The positive AHE is attributed to the competition of the intrinsic Berry curvature and the extrinsic skew scattering. Its gate-controlled switching contributes a scheme for the topological spin field-effect transistors.

3.
Adv Sci (Weinh) ; 10(28): e2302956, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37530205

RESUMEN

Their high tunability of electronic and magnetic properties makes transition-metal oxides (TMOs) highly intriguing for fundamental studies and promising for a wide range of applications. TMOs with strong ferrimagnetism provide new platforms for tailoring the anomalous Hall effect (AHE) beyond conventional concepts based on ferromagnets, and particularly TMOs with perpendicular magnetic anisotropy (PMA) are of prime importance for today's spintronics. This study reports on transport phenomena and magnetic characteristics of the ferrimagnetic TMO NiCo2 O4 (NCO) exhibiting PMA. The entire electrical and magnetic properties of NCO films are strongly correlated with their conductivities governed by the cation valence states. The AHE exhibits an unusual sign reversal resulting from a competition between intrinsic and extrinsic mechanisms depending on the conductivity, which can be tuned by the synthesis conditions independent of the film thickness. Importantly, skew-scattering is identified as an AHE contribution for the first time in the low-conductivity regime. Application wise, the robust PMA without thickness limitation constitutes a major advantage compared to conventional PMA materials utilized in today's spintronics. The great potential for applications is exemplified by two proposed novel device designs consisting only of NCO films that open a new route for future spintronics, such as ferrimagnetic high-density memories.

4.
Adv Mater ; 34(47): e2206685, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36120849

RESUMEN

In transition-metal-oxide heterostructures, the anomalous Hall effect (AHE) is a powerful tool for detecting the magnetic state and revealing intriguing interfacial magnetic orderings. However, achieving a larger AHE at room temperature in oxide heterostructures is still challenging due to the dilemma of mutually strong spin-orbit coupling and magnetic exchange interactions. Here, Ru-doping-enhanced AHE in La2/3 Sr1/3 Mn1-x Rux O3 epitaxial films is exploited. As the B-site Ru doping level increases up to 20%, the anomalous Hall resistivity at room temperature can be enhanced from nΩ cm to µΩ cm scale. Ru doping leads to strong competition between the ferromagnetic double-exchange interaction and the antiferromagnetic superexchange interaction. The resultant spin frustration and spin-glass state facilitate a strong skew-scattering process, thus significantly enhancing the extrinsic AHE. The findings can pave a feasible approach for boosting the controllability and reliability of oxide-based spintronic devices.

5.
Adv Mater ; 33(9): e2006281, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33506577

RESUMEN

The efficient conversion of spin to charge transport and vice versa is of major relevance for the detection and generation of spin currents in spin-based electronics. Interfaces of heterostructures are known to have a marked impact on this process. Here, terahertz (THz) emission spectroscopy is used to study ultrafast spin-to-charge-current conversion (S2C) in about 50 prototypical F|N bilayers consisting of a ferromagnetic layer F (e.g., Ni81 Fe19 , Co, or Fe) and a nonmagnetic layer N with strong (Pt) or weak (Cu and Al) spin-orbit coupling. Varying the structure of the F/N interface leads to a drastic change in the amplitude and even inversion of the polarity of the THz charge current. Remarkably, when N is a material with small spin Hall angle, a dominant interface contribution to the ultrafast charge current is found. Its magnitude amounts to as much as about 20% of that found in the F|Pt reference sample. Symmetry arguments and first-principles calculations strongly suggest that the interfacial S2C arises from skew scattering of spin-polarized electrons at interface imperfections. The results highlight the potential of skew scattering for interfacial S2C and propose a promising route to enhanced S2C by tailored interfaces at all frequencies from DC to terahertz.

6.
ACS Nano ; 15(6): 9759-9763, 2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-33881844

RESUMEN

van der Waals crystals exhibit excellent material performance when exfoliated to few-atomic-layer thickness. In contrast, the van der Waals thin films more than 10 nm thick are believed to show bulk properties, in which outstanding material performance is rarely found. Here we report the largest anomalous Hall conductivity observed so far in a 170 nm van der Waals ferromagnetic 1T-CrTe2 flake, which reaches 67,000 Ω-1 cm-1. Such a colossal anomalous Hall conductivity in 1T-CrTe2 is dominated by the extrinsic skew scattering process rather than the intrinsic Berry phase effect, as evidenced by the linear relation between the anomalous Hall conductivity and the longitudinal conductivity. Defying the dilemma of mutually exclusive large anomalous Hall angle and high electric conductivity for most ferromagnets, 1T-CrTe2 achieves both in a thin film sample. Considering the shared physics of the anomalous Hall effect and the spin Hall effect, our finding offers a guideline for searching large spin Hall materials of high conductivity which may overcome the bottleneck of overheating in spintronics devices.

7.
ACS Appl Mater Interfaces ; 13(13): 15950-15957, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33769782

RESUMEN

Spin-orbit torques (SOTs) from transition metal dichalcogenide systems (TMDs) in conjunction with ferromagnetic materials are recently found to be attractive in spintronics for their versatile features. However, most of the previously studied crystalline TMDs are prepared by mechanical exfoliation, which limits their potentials for industrial applications. Here, we show that amorphous WTe2 heterostructures deposited by magnetron sputtering possess a sizable damping-like SOT efficiency of ξDLWTe2 ≈ 0.20 and low damping constant of α = 0.009 ± 0.001. Only an extremely low critical switching current density of Jc≈ 7.05 × 109 A/m2 is required to achieve SOT-driven magnetization switching. The SOT efficiency is further proved to depend on the W and Te relative compositions in the co-sputtered W100-xTex samples, from which a sign change of ξDLWTe2 is observed. In addition, the electronic transport in amorphous WTe2 is found to be semiconducting and is governed by a hopping mechanism. With the above advantages and rich tunability, amorphous and semiconducting WTe2 serves as a unique SOT source for future spintronics applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA