Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(43): e2303989120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37856546

RESUMEN

The Periodic Law of Chemistry is one of the great discoveries in cultural history. Elements behaving chemically similar are empirically merged in groups G of a Periodic Table, each element with G valence electrons per neutral atom, and with upper limit G for the oxidation and valence numbers. Here, we report that among the usually mono- or di-valent s-block elements (G = 1 or 2), the heaviest members (87Fr, 88Ra, 119E, and 120E) with atomic numbers Z = 87, 88, 119, 120 form unusual 5- or 6-valent compounds at ambient conditions. Together with well-reported basic changes of valence at the end of the 6d-series, in the whole 7p-series, and for 5g6f-elements, it indicates that at the bottom of common Periodic Tables, the classic Periodic Law is not as straightforward as commonly expected. Specifically, we predict the feasible experimental synthesis of polyvalent [RaL-n] (n = 4, 6) compounds.

2.
Chemistry ; 23(41): 9790-9803, 2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28338246

RESUMEN

Surprisingly general effects of trans ligands L on the ligand NMR shifts in third-row transition-metal complexes have been found by quasi-relativistic computations, encompassing 5d10 , 5d8 , and to some extent even 5d6 situations. Closer analysis, with emphasis on 1 H shieldings in a series of linear HAuI Lq complexes, reveals a dominance of spin-orbit (SO) effects, which can change sign from appreciably shielding for weak trans ligands to appreciably deshielding for ligands with strong trans influence. This may be traced back to increasing destabilization of a σ-type MO at scalar relativistic level, which translates into very different σ-/π-mixing if SO coupling is included. For the strongest trans ligands, the σ-MO may move above the highest occupied π-type MOs, thereby dramatically reducing strongly shielding contributions from predominantly π-type spinors. The effects of SO-mixing are in turn related to angular momentum admixture from atomic spinors at the metal center. These SO-induced trends hold for other nuclei and may also be used to qualitatively predict shifts in unknown complexes.

3.
Materials (Basel) ; 15(19)2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36234041

RESUMEN

2D copper-based semiconductors generally possess low lattice thermal conductivity due to their strong anharmonic scattering and quantum confinement effect, making them promising candidate materials in the field of high-performance thermoelectric devices. In this work, we proposed four 2D copper-based materials, namely CuSbS2, CuSbSe2, CuBiS2, and CuBiSe2. Based on the framework of density functional theory and Boltzmann transport equation, we revealed that the monolayers possess high stability and narrow band gaps of 0.57~1.10 eV. Moreover, the high carrier mobilities (102~103 cm2·V-1·s-1) of these monolayers lead to high conductivities (106~107 Ω-1·m-1) and high-power factors (18.04~47.34 mW/mK2). Besides, as the strong phonon-phonon anharmonic scattering, the monolayers also show ultra-low lattice thermal conductivities of 0.23~3.30 W/mK at 300 K. As results show, all the monolayers for both p-type and n-type simultaneously show high thermoelectric figure of merit (ZT) of about 0.91~1.53 at room temperature.

4.
J Phys Condens Matter ; 34(24)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35344939

RESUMEN

The Ca2MnReO6double perovskite is a spin-orbit-assisted Mott insulator with exotic magnetic properties, including a largely non-collinear Mn2+spin arrangement and nearly orthogonal coupling between such spins and the much smaller Re 5dmagnetic moments. Here, the electron-doped compound Ca1-xYxMnReO6(x= 0.1, 0.2 and 0.3) is reported and a detailed investigation is conducted forx= 0.3. Neutron and x-ray powder diffraction confirm that nearly full chemical order is maintained at the Mn and Re sites under the Y substitution at the Ca site. X-ray absorption measurements and an analysis of the Mn-O/Re-O bond distances show that the Mn oxidation state remains stable at +2 whereas Re is reduced upon doping. The electron doping increases the magnetic ordering temperature fromTc= 121 to 150 K and also enhances significantly the ferromagnetic component of the Mn spins at the expense of the antiferromagnetic component at the base temperature (T= 3 K). The lattice parameter anomalies atTcobserved in the parent compound are suppressed by the electron doping. The possible reasons for the enhanced magnetism and the suppressed magnetoelastic coupling in Ca1.7Y0.3MnReO6are discussed.

5.
ChemistryOpen ; 6(1): 15-17, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28168144

RESUMEN

Two-component relativistic time-dependent density functional theory calculations with spin-orbit coupling predict yellow and orange-red absorption for BiPh5 and BiMe5, respectively, providing an excellent explanation for their respective violet and blue-violet colors. According to the calculations, the visible absorption is clearly attributable to a single transition from a ligand-based HOMO to a low-energy LUMO with a significant contribution from a relativistically stabilized Bi 6s orbital. Surprisingly, scalar releativistic calculations completely fail to reproduce the observed visible absorption and place it at the violet/near-UV borderline instead.

6.
Sci Adv ; 1(2): e1500087, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26601157

RESUMEN

The "quantum walk" has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multipath interferometric schemes in real space. We report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA