Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.911
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Immunol ; 39: 583-609, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637019

RESUMEN

Understanding tumor immune microenvironments is critical for identifying immune modifiers of cancer progression and developing cancer immunotherapies. Recent applications of single-cell RNA sequencing (scRNA-seq) in dissecting tumor microenvironments have brought important insights into the biology of tumor-infiltrating immune cells, including their heterogeneity, dynamics, and potential roles in both disease progression and response to immune checkpoint inhibitors and other immunotherapies. This review focuses on the advances in knowledge of tumor immune microenvironments acquired from scRNA-seq studies across multiple types of human tumors, with a particular emphasis on the study of phenotypic plasticity and lineage dynamics of immune cells in the tumor environment. We also discuss several imminent questions emerging from scRNA-seq observations and their potential solutions on the horizon.


Asunto(s)
Neoplasias , Análisis de la Célula Individual , Animales , Humanos , Inmunoterapia , Neoplasias/terapia , Análisis de Secuencia de ARN , Microambiente Tumoral
2.
Annu Rev Immunol ; 38: 727-757, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32075461

RESUMEN

Immune cells are characterized by diversity, specificity, plasticity, and adaptability-properties that enable them to contribute to homeostasis and respond specifically and dynamically to the many threats encountered by the body. Single-cell technologies, including the assessment of transcriptomics, genomics, and proteomics at the level of individual cells, are ideally suited to studying these properties of immune cells. In this review we discuss the benefits of adopting single-cell approaches in studying underappreciated qualities of immune cells and highlight examples where these technologies have been critical to advancing our understanding of the immune system in health and disease.


Asunto(s)
Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inmunidad , Análisis de la Célula Individual , Animales , Biomarcadores , Susceptibilidad a Enfermedades , Homeostasis , Humanos , Sistema Inmunológico/citología , Imagen Molecular , Análisis de la Célula Individual/métodos
3.
Cell ; 187(11): 2633-2651, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788687

RESUMEN

Cell states were traditionally defined by how they looked, where they were located, and what functions they performed. In this post-genomic era, the field is largely focused on a molecular view of cell state. Moving forward, we anticipate that the observables used to define cell states will evolve again as single-cell imaging and analytics are advancing at a breakneck pace via the collection of large-scale, systematic cell image datasets and the application of quantitative image-based data science methods. This is, therefore, a key moment in the arc of cell biological research to develop approaches that integrate the spatiotemporal observables of the physical structure and organization of the cell with molecular observables toward the concept of a holistic cell state. In this perspective, we propose a conceptual framework for holistic cell states and state transitions that is data-driven, practical, and useful to enable integrative analyses and modeling across many data types.


Asunto(s)
Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Animales
4.
Cell ; 187(10): 2343-2358, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729109

RESUMEN

As the number of single-cell datasets continues to grow rapidly, workflows that map new data to well-curated reference atlases offer enormous promise for the biological community. In this perspective, we discuss key computational challenges and opportunities for single-cell reference-mapping algorithms. We discuss how mapping algorithms will enable the integration of diverse datasets across disease states, molecular modalities, genetic perturbations, and diverse species and will eventually replace manual and laborious unsupervised clustering pipelines.


Asunto(s)
Algoritmos , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Biología Computacional/métodos , Análisis de Datos , Animales , Análisis por Conglomerados
5.
Cell ; 187(1): 149-165.e23, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38134933

RESUMEN

Deciphering the cell-state transitions underlying immune adaptation across time is fundamental for advancing biology. Empirical in vivo genomic technologies that capture cellular dynamics are currently lacking. We present Zman-seq, a single-cell technology recording transcriptomic dynamics across time by introducing time stamps into circulating immune cells, tracking them in tissues for days. Applying Zman-seq resolved cell-state and molecular trajectories of the dysfunctional immune microenvironment in glioblastoma. Within 24 hours of tumor infiltration, cytotoxic natural killer cells transitioned to a dysfunctional program regulated by TGFB1 signaling. Infiltrating monocytes differentiated into immunosuppressive macrophages, characterized by the upregulation of suppressive myeloid checkpoints Trem2, Il18bp, and Arg1, over 36 to 48 hours. Treatment with an antagonistic anti-TREM2 antibody reshaped the tumor microenvironment by redirecting the monocyte trajectory toward pro-inflammatory macrophages. Zman-seq is a broadly applicable technology, enabling empirical measurements of differentiation trajectories, which can enhance the development of more efficacious immunotherapies.


Asunto(s)
Glioblastoma , Humanos , Perfilación de la Expresión Génica , Glioblastoma/patología , Inmunoterapia , Células Asesinas Naturales , Macrófagos , Microambiente Tumoral , Análisis de la Célula Individual
6.
Cell ; 187(13): 3236-3248.e21, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772369

RESUMEN

Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.


Asunto(s)
Redes Reguladoras de Genes , Análisis de la Célula Individual , Animales , Ratones , Análisis de la Célula Individual/métodos , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Neuronas/metabolismo , Neuronas/citología , Femenino , Dependovirus/genética , Humanos , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Sistemas CRISPR-Cas/genética , Vectores Genéticos/metabolismo , Ratones Endogámicos C57BL , Transcriptoma/genética
7.
Cell ; 187(4): 981-998.e25, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38325365

RESUMEN

The female reproductive tract (FRT) undergoes extensive remodeling during reproductive cycling. This recurrent remodeling and how it shapes organ-specific aging remains poorly explored. Using single-cell and spatial transcriptomics, we systematically characterized morphological and gene expression changes occurring in ovary, oviduct, uterus, cervix, and vagina at each phase of the mouse estrous cycle, during decidualization, and into aging. These analyses reveal that fibroblasts play central-and highly organ-specific-roles in FRT remodeling by orchestrating extracellular matrix (ECM) reorganization and inflammation. Our results suggest a model wherein recurrent FRT remodeling over reproductive lifespan drives the gradual, age-related development of fibrosis and chronic inflammation. This hypothesis was directly tested using chemical ablation of cycling, which reduced fibrotic accumulation during aging. Our atlas provides extensive detail into how estrus, pregnancy, and aging shape the organs of the female reproductive tract and reveals the unexpected cost of the recurrent remodeling required for reproduction.


Asunto(s)
Envejecimiento , Genitales Femeninos , Animales , Femenino , Ratones , Embarazo , Genitales Femeninos/citología , Genitales Femeninos/metabolismo , Inflamación/metabolismo , Útero/citología , Vagina/citología , Análisis de la Célula Individual
8.
Cell ; 187(12): 2907-2918, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848676

RESUMEN

Cancer is a disease that stems from a fundamental liability inherent to multicellular life forms in which an individual cell is capable of reneging on the interests of the collective organism. Although cancer is commonly described as an evolutionary process, a less appreciated aspect of tumorigenesis may be the constraints imposed by the organism's developmental programs. Recent work from single-cell transcriptomic analyses across a range of cancer types has revealed the recurrence, plasticity, and co-option of distinct cellular states among cancer cell populations. Here, we note that across diverse cancer types, the observed cell states are proximate within the developmental hierarchy of the cell of origin. We thus posit a model by which cancer cell states are directly constrained by the organism's "developmental map." According to this model, a population of cancer cells traverses the developmental map, thereby generating a heterogeneous set of states whose interactions underpin emergent tumor behavior.


Asunto(s)
Modelos Biológicos , Neoplasias , Animales , Humanos , Carcinogénesis/patología , Carcinogénesis/genética , Neoplasias/patología , Neoplasias/genética , Neoplasias/metabolismo , Análisis de la Célula Individual , Transcriptoma/genética , Células Madre Neoplásicas/patología
9.
Cell ; 187(2): 446-463.e16, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242087

RESUMEN

Treatment failure for the lethal brain tumor glioblastoma (GBM) is attributed to intratumoral heterogeneity and tumor evolution. We utilized 3D neuronavigation during surgical resection to acquire samples representing the whole tumor mapped by 3D spatial coordinates. Integrative tissue and single-cell analysis revealed sources of genomic, epigenomic, and microenvironmental intratumoral heterogeneity and their spatial patterning. By distinguishing tumor-wide molecular features from those with regional specificity, we inferred GBM evolutionary trajectories from neurodevelopmental lineage origins and initiating events such as chromothripsis to emergence of genetic subclones and spatially restricted activation of differential tumor and microenvironmental programs in the core, periphery, and contrast-enhancing regions. Our work depicts GBM evolution and heterogeneity from a 3D whole-tumor perspective, highlights potential therapeutic targets that might circumvent heterogeneity-related failures, and establishes an interactive platform enabling 360° visualization and analysis of 3D spatial patterns for user-selected genes, programs, and other features across whole GBM tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Modelos Biológicos , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Epigenómica , Genómica , Glioblastoma/genética , Glioblastoma/patología , Análisis de la Célula Individual , Microambiente Tumoral , Heterogeneidad Genética
10.
Cell ; 187(12): 3056-3071.e17, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848678

RESUMEN

The currently accepted intestinal epithelial cell organization model proposes that Lgr5+ crypt-base columnar (CBC) cells represent the sole intestinal stem cell (ISC) compartment. However, previous studies have indicated that Lgr5+ cells are dispensable for intestinal regeneration, leading to two major hypotheses: one favoring the presence of a quiescent reserve ISC and the other calling for differentiated cell plasticity. To investigate these possibilities, we studied crypt epithelial cells in an unbiased fashion via high-resolution single-cell profiling. These studies, combined with in vivo lineage tracing, show that Lgr5 is not a specific ISC marker and that stemness potential exists beyond the crypt base and resides in the isthmus region, where undifferentiated cells participate in intestinal homeostasis and regeneration following irradiation (IR) injury. Our results provide an alternative model of intestinal epithelial cell organization, suggesting that stemness potential is not restricted to CBC cells, and neither de-differentiation nor reserve ISC are drivers of intestinal regeneration.


Asunto(s)
Homeostasis , Mucosa Intestinal , Receptores Acoplados a Proteínas G , Regeneración , Células Madre , Animales , Células Madre/metabolismo , Células Madre/citología , Ratones , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Intestinos/citología , Diferenciación Celular , Ratones Endogámicos C57BL , Células Epiteliales/metabolismo , Análisis de la Célula Individual , Masculino
11.
Cell ; 187(12): 3120-3140.e29, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38714197

RESUMEN

Non-hematopoietic cells are essential contributors to hematopoiesis. However, heterogeneity and spatial organization of these cells in human bone marrow remain largely uncharacterized. We used single-cell RNA sequencing (scRNA-seq) to profile 29,325 non-hematopoietic cells and discovered nine transcriptionally distinct subtypes. We simultaneously profiled 53,417 hematopoietic cells and predicted their interactions with non-hematopoietic subsets. We employed co-detection by indexing (CODEX) to spatially profile over 1.2 million cells. We integrated scRNA-seq and CODEX data to link predicted cellular signaling with spatial proximity. Our analysis revealed a hyperoxygenated arterio-endosteal neighborhood for early myelopoiesis, and an adipocytic localization for early hematopoietic stem and progenitor cells (HSPCs). We used our CODEX atlas to annotate new images and uncovered mesenchymal stromal cell (MSC) expansion and spatial neighborhoods co-enriched for leukemic blasts and MSCs in acute myeloid leukemia (AML) patient samples. This spatially resolved, multiomic atlas of human bone marrow provides a reference for investigation of cellular interactions that drive hematopoiesis.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Células Madre Mesenquimatosas , Proteómica , Análisis de la Célula Individual , Transcriptoma , Humanos , Análisis de la Célula Individual/métodos , Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Proteómica/métodos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Hematopoyesis , Nicho de Células Madre , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología
12.
Annu Rev Immunol ; 34: 65-92, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-26666651

RESUMEN

T cell responses display two key characteristics. First, a small population of epitope-specific naive T cells expands by several orders of magnitude. Second, the T cells within this proliferating population take on diverse functional and phenotypic properties that determine their ability to exert effector functions and contribute to T cell memory. Recent technological advances in lineage tracing allow us for the first time to study these processes in vivo at single-cell resolution. Here, we summarize resulting data demonstrating that although epitope-specific T cell responses are reproducibly similar at the population level, expansion potential and diversification patterns of the offspring derived from individual T cells are highly variable during both primary and recall immune responses. In spite of this stochastic response variation, individual memory T cells can serve as adult stem cells that provide robust regeneration of an epitope-specific tissue through population averaging. We discuss the relevance of these findings for T cell memory formation and clinical immunotherapy.


Asunto(s)
Células Madre Adultas/inmunología , Diferenciación Celular , Inmunoterapia/métodos , Análisis de la Célula Individual/métodos , Linfocitos T/inmunología , Animales , Biodiversidad , Linaje de la Célula , Proliferación Celular , Diversidad Cultural , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/metabolismo , Humanos , Memoria Inmunológica , Activación de Linfocitos
13.
Cell ; 186(4): 877-891.e14, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36708705

RESUMEN

We introduce BacDrop, a highly scalable technology for bacterial single-cell RNA sequencing that has overcome many challenges hindering the development of scRNA-seq in bacteria. BacDrop can be applied to thousands to millions of cells from both gram-negative and gram-positive species. It features universal ribosomal RNA depletion and combinatorial barcodes that enable multiplexing and massively parallel sequencing. We applied BacDrop to study Klebsiella pneumoniae clinical isolates and to elucidate their heterogeneous responses to antibiotic stress. In an unperturbed population presumed to be homogeneous, we found within-population heterogeneity largely driven by the expression of mobile genetic elements that promote the evolution of antibiotic resistance. Under antibiotic perturbation, BacDrop revealed transcriptionally distinct subpopulations associated with different phenotypic outcomes including antibiotic persistence. BacDrop thus can capture cellular states that cannot be detected by bulk RNA-seq, which will unlock new microbiological insights into bacterial responses to perturbations and larger bacterial communities such as the microbiome.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de Expresión Génica de una Sola Célula , Análisis de Secuencia de ARN , RNA-Seq , Bacterias/genética , Análisis de la Célula Individual
14.
Cell ; 186(26): 5876-5891.e20, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38134877

RESUMEN

Harmonizing cell types across the single-cell community and assembling them into a common framework is central to building a standardized Human Cell Atlas. Here, we present CellHint, a predictive clustering tree-based tool to resolve cell-type differences in annotation resolution and technical biases across datasets. CellHint accurately quantifies cell-cell transcriptomic similarities and places cell types into a relationship graph that hierarchically defines shared and unique cell subtypes. Application to multiple immune datasets recapitulates expert-curated annotations. CellHint also reveals underexplored relationships between healthy and diseased lung cell states in eight diseases. Furthermore, we present a workflow for fast cross-dataset integration guided by harmonized cell types and cell hierarchy, which uncovers underappreciated cell types in adult human hippocampus. Finally, we apply CellHint to 12 tissues from 38 datasets, providing a deeply curated cross-tissue database with ∼3.7 million cells and various machine learning models for automatic cell annotation across human tissues.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Humanos , Bases de Datos Factuales , Análisis de la Célula Individual
15.
Cell ; 186(25): 5440-5456.e26, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065078

RESUMEN

Today's genomics workflows typically require alignment to a reference sequence, which limits discovery. We introduce a unifying paradigm, SPLASH (Statistically Primary aLignment Agnostic Sequence Homing), which directly analyzes raw sequencing data, using a statistical test to detect a signature of regulation: sample-specific sequence variation. SPLASH detects many types of variation and can be efficiently run at scale. We show that SPLASH identifies complex mutation patterns in SARS-CoV-2, discovers regulated RNA isoforms at the single-cell level, detects the vast sequence diversity of adaptive immune receptors, and uncovers biology in non-model organisms undocumented in their reference genomes: geographic and seasonal variation and diatom association in eelgrass, an oceanic plant impacted by climate change, and tissue-specific transcripts in octopus. SPLASH is a unifying approach to genomic analysis that enables expansive discovery without metadata or references.


Asunto(s)
Algoritmos , Genómica , Genoma , Análisis de Secuencia de ARN , Humanos , Antígenos HLA/genética , Análisis de la Célula Individual
16.
Cell ; 186(6): 1103-1114, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36931241

RESUMEN

Single-cell biology is facing a crisis of sorts. Vast numbers of single-cell molecular profiles are being generated, clustered and annotated. However, this is overwhelmingly ad hoc, and we continue to lack a principled, unified, and well-moored system for defining, naming, and organizing cell types. In this perspective, we argue against an atlas or periodic table-like discretization as the right metaphor for a reference taxonomy of cell types. In its place, we advocate for a data-driven, tree-based nomenclature that is rooted in a "consensus ontogeny" spanning the life cycle of a given species. We explore how such a reference cell tree, inclusive of both lineage histories and molecular states, could be constructed, represented, and segmented in practice. Analogous to the taxonomic classification of species, a consensus ontogeny would provide a universal, stable, and extendable framework for precise scientific communication, both contemporaneously and across the ages.


Asunto(s)
Citología , Comunicación , Estadios del Ciclo de Vida , Filogenia , Análisis de la Célula Individual
17.
Cell ; 186(25): 5606-5619.e24, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065081

RESUMEN

Patient-derived organoids (PDOs) can model personalized therapy responses; however, current screening technologies cannot reveal drug response mechanisms or how tumor microenvironment cells alter therapeutic performance. To address this, we developed a highly multiplexed mass cytometry platform to measure post-translational modification (PTM) signaling, DNA damage, cell-cycle activity, and apoptosis in >2,500 colorectal cancer (CRC) PDOs and cancer-associated fibroblasts (CAFs) in response to clinical therapies at single-cell resolution. To compare patient- and microenvironment-specific drug responses in thousands of single-cell datasets, we developed "Trellis"-a highly scalable, tree-based treatment effect analysis method. Trellis single-cell screening revealed that on-target cell-cycle blockage and DNA-damage drug effects are common, even in chemorefractory PDOs. However, drug-induced apoptosis is rarer, patient-specific, and aligns with cancer cell PTM signaling. We find that CAFs can regulate PDO plasticity-shifting proliferative colonic stem cells (proCSCs) to slow-cycling revival colonic stem cells (revCSCs) to protect cancer cells from chemotherapy.


Asunto(s)
Fibroblastos Asociados al Cáncer , Humanos , Apoptosis , Organoides , Transducción de Señal , Análisis de la Célula Individual , Evaluación Preclínica de Medicamentos , Algoritmos , Células Madre
18.
Cell ; 186(11): 2456-2474.e24, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37137305

RESUMEN

Systematic evaluation of the impact of genetic variants is critical for the study and treatment of human physiology and disease. While specific mutations can be introduced by genome engineering, we still lack scalable approaches that are applicable to the important setting of primary cells, such as blood and immune cells. Here, we describe the development of massively parallel base-editing screens in human hematopoietic stem and progenitor cells. Such approaches enable functional screens for variant effects across any hematopoietic differentiation state. Moreover, they allow for rich phenotyping through single-cell RNA sequencing readouts and separately for characterization of editing outcomes through pooled single-cell genotyping. We efficiently design improved leukemia immunotherapy approaches, comprehensively identify non-coding variants modulating fetal hemoglobin expression, define mechanisms regulating hematopoietic differentiation, and probe the pathogenicity of uncharacterized disease-associated variants. These strategies will advance effective and high-throughput variant-to-function mapping in human hematopoiesis to identify the causes of diverse diseases.


Asunto(s)
Edición Génica , Células Madre Hematopoyéticas , Humanos , Diferenciación Celular , Sistemas CRISPR-Cas , Genoma , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Ingeniería Genética , Análisis de la Célula Individual
19.
Cell ; 186(1): 194-208.e18, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36580914

RESUMEN

The diversity and complex organization of cells in the brain have hindered systematic characterization of age-related changes in its cellular and molecular architecture, limiting our ability to understand the mechanisms underlying its functional decline during aging. Here, we generated a high-resolution cell atlas of brain aging within the frontal cortex and striatum using spatially resolved single-cell transcriptomics and quantified changes in gene expression and spatial organization of major cell types in these regions over the mouse lifespan. We observed substantially more pronounced changes in cell state, gene expression, and spatial organization of non-neuronal cells over neurons. Our data revealed molecular and spatial signatures of glial and immune cell activation during aging, particularly enriched in the subcortical white matter, and identified both similarities and notable differences in cell-activation patterns induced by aging and systemic inflammatory challenge. These results provide critical insights into age-related decline and inflammation in the brain.


Asunto(s)
Envejecimiento , Sustancia Blanca , Ratones , Animales , Envejecimiento/genética , Encéfalo/metabolismo , Neuroglía , Longevidad , Transcriptoma , Análisis de la Célula Individual
20.
Cell ; 186(9): 2002-2017.e21, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37080201

RESUMEN

Paired mapping of single-cell gene expression and electrophysiology is essential to understand gene-to-function relationships in electrogenic tissues. Here, we developed in situ electro-sequencing (electro-seq) that combines flexible bioelectronics with in situ RNA sequencing to stably map millisecond-timescale electrical activity and profile single-cell gene expression from the same cells across intact biological networks, including cardiac and neural patches. When applied to human-induced pluripotent stem-cell-derived cardiomyocyte patches, in situ electro-seq enabled multimodal in situ analysis of cardiomyocyte electrophysiology and gene expression at the cellular level, jointly defining cell states and developmental trajectories. Using machine-learning-based cross-modal analysis, in situ electro-seq identified gene-to-electrophysiology relationships throughout cardiomyocyte development and accurately reconstructed the evolution of gene expression profiles based on long-term stable electrical measurements. In situ electro-seq could be applicable to create spatiotemporal multimodal maps in electrogenic tissues, potentiating the discovery of cell types and gene programs responsible for electrophysiological function and dysfunction.


Asunto(s)
Electrónica , Análisis de Secuencia de ARN , Humanos , Diferenciación Celular , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/metabolismo , Análisis de la Célula Individual , Transcriptoma , Electrónica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA