Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.211
Filtrar
Más filtros

Intervalo de año de publicación
2.
Proc Natl Acad Sci U S A ; 121(21): e2404763121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743626

RESUMEN

Congenital stationary night blindness (CSNB) is an inherited retinal disease that causes a profound loss of rod sensitivity without severe retinal degeneration. One well-studied rhodopsin point mutant, G90D-Rho, is thought to cause CSNB because of its constitutive activity in darkness causing rod desensitization. However, the nature of this constitutive activity and its precise molecular source have not been resolved for almost 30 y. In this study, we made a knock-in (KI) mouse line with a very low expression of G90D-Rho (equal in amount to ~0.1% of normal rhodopsin, WT-Rho, in WT rods), with the remaining WT-Rho replaced by REY-Rho, a mutant with a very low efficiency of activating transducin due to a charge reversal of the highly conserved ERY motif to REY. We observed two kinds of constitutive noise: one being spontaneous isomerization (R*) of G90D-Rho at a molecular rate (R* s-1) 175-fold higher than WT-Rho and the other being G90D-Rho-generated dark continuous noise comprising low-amplitude unitary events occurring at a very high molecular rate equivalent in effect to ~40,000-fold of R* s-1 from WT-Rho. Neither noise type originated from G90D-Opsin because exogenous 11-cis-retinal had no effect. Extrapolating the above observations at low (0.1%) expression of G90D-Rho to normal disease exhibited by a KI mouse model with RhoG90D/WTand RhoG90D/G90D genotypes predicts the disease condition very well quantitatively. Overall, the continuous noise from G90D-Rho therefore predominates, constituting the major equivalent background light causing rod desensitization in CSNB.


Asunto(s)
Enfermedades Hereditarias del Ojo , Enfermedades Genéticas Ligadas al Cromosoma X , Miopía , Ceguera Nocturna , Rodopsina , Animales , Ceguera Nocturna/genética , Ceguera Nocturna/metabolismo , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/metabolismo , Ratones , Rodopsina/genética , Rodopsina/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Miopía/genética , Miopía/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/patología , Oscuridad , Transducina/genética , Transducina/metabolismo , Técnicas de Sustitución del Gen , Modelos Animales de Enfermedad
3.
Proc Natl Acad Sci U S A ; 121(22): e2318859121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771880

RESUMEN

Megalin (low-density lipoprotein receptor-related protein 2) is a giant glycoprotein of about 600 kDa, mediating the endocytosis of more than 60 ligands, including those of proteins, peptides, and drug compounds [S. Goto, M. Hosojima, H. Kabasawa, A. Saito, Int. J. Biochem. Cell Biol. 157, 106393 (2023)]. It is expressed predominantly in renal proximal tubule epithelial cells, as well as in the brain, lungs, eyes, inner ear, thyroid gland, and placenta. Megalin is also known to mediate the endocytosis of toxic compounds, particularly those that cause renal and hearing disorders [Y. Hori et al., J. Am. Soc. Nephrol. 28, 1783-1791 (2017)]. Genetic megalin deficiency causes Donnai-Barrow syndrome/facio-oculo-acoustico-renal syndrome in humans. However, it is not known how megalin interacts with such a wide variety of ligands and plays pathological roles in various organs. In this study, we elucidated the dimeric architecture of megalin, purified from rat kidneys, using cryoelectron microscopy. The maps revealed the densities of endogenous ligands bound to various regions throughout the dimer, elucidating the multiligand receptor nature of megalin. We also determined the structure of megalin in complex with receptor-associated protein, a molecular chaperone for megalin. The results will facilitate further studies on the pathophysiology of megalin-dependent multiligand endocytic pathways in multiple organs and will also be useful for the development of megalin-targeted drugs for renal and hearing disorders, Alzheimer's disease [B. V. Zlokovic et al., Proc. Natl. Acad. Sci. U.S.A. 93, 4229-4234 (1996)], and other illnesses.


Asunto(s)
Microscopía por Crioelectrón , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Animales , Humanos , Ratas , Ligandos , Endocitosis , Agenesia del Cuerpo Calloso/metabolismo , Agenesia del Cuerpo Calloso/genética , Defectos Congénitos del Transporte Tubular Renal , Miopía , Hernias Diafragmáticas Congénitas , Proteinuria , Pérdida Auditiva Sensorineural
4.
Annu Rev Genomics Hum Genet ; 24: 177-202, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37624667

RESUMEN

The axial length of the eye is critical for normal visual function by enabling light to precisely focus on the retina. The mean axial length of the adult human eye is 23.5 mm, but the molecular mechanisms regulating ocular axial length remain poorly understood. Underdevelopment can lead to microphthalmia (defined as a small eye with an axial length of less than 19 mm at 1 year of age or less than 21 mm in adulthood) within the first trimester of pregnancy. However, continued overgrowth can lead to axial high myopia (an enlarged eye with an axial length of 26.5 mm or more) at any age. Both conditions show high genetic and phenotypic heterogeneity associated with significant visual morbidity worldwide. More than 90 genes can contribute to microphthalmia, and several hundred genes are associated with myopia, yet diagnostic yields are low. Crucially, the genetic pathways underpinning the specification of eye size are only now being discovered, with evidence suggesting that shared molecular pathways regulate under- or overgrowth of the eye. Improving our mechanistic understanding of axial length determination will help better inform us of genotype-phenotype correlations in both microphthalmia and myopia, dissect gene-environment interactions in myopia, and develop postnatal therapies that may influence overall eye growth.


Asunto(s)
Microftalmía , Miopía , Adulto , Femenino , Embarazo , Humanos , Microftalmía/genética , Miopía/genética , Interacción Gen-Ambiente , Progenie de Nacimiento Múltiple , Primer Trimestre del Embarazo
5.
Mol Cell Proteomics ; 23(6): 100783, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729610

RESUMEN

High myopia is a leading cause of blindness worldwide, among which pathologic myopia, characterized by typical myopic macular degeneration, is the most detrimental. However, its pathogenesis remains largely unknown. Here, using a HuProt array, we first initiated a serological autoantibody profiling of high myopia and identified 18 potential autoantibodies, of which anti-LIMS1 autoantibody was validated by a customized focused microarray. Further subgroup analysis revealed its actual relevance to pathologic myopia, rather than simple high myopia without myopic macular degeneration. Mechanistically, anti-LIMS1 autoantibody predominantly belonged to IgG1/IgG2/IgG3 subclasses. Serum IgG obtained from patients with pathologic myopia could disrupt the barrier function of retinal pigment epithelial cells via cytoskeleton disorganization and tight junction component reduction, and also trigger a pro-inflammatory mediator cascade in retinal pigment epithelial cells, which were all attenuated by depletion of anti-LIMS1 autoantibody. Together, these data uncover a previously unrecognized autoimmune etiology of myopic macular degeneration in pathologic myopia.


Asunto(s)
Autoanticuerpos , Autoinmunidad , Epitelio Pigmentado de la Retina , Humanos , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Epitelio Pigmentado de la Retina/patología , Epitelio Pigmentado de la Retina/metabolismo , Masculino , Femenino , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Persona de Mediana Edad , Miopía Degenerativa/inmunología , Miopía/inmunología , Adulto
6.
Proc Natl Acad Sci U S A ; 120(52): e2310050120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38117851

RESUMEN

Myopia involves giving disproportionate weight to outcomes that occur close to the present. Myopia in people's evaluations of political outcomes and proposals threatens effective policymaking. It can lead to inefficient spending just before elections, cause inaction on important future policy challenges, and create incentives for government interventions aimed at boosting short-term performance at the expense of long-term welfare. But, are people generally myopic? Existing evidence comes mostly from studies that disregard either the future or collective outcomes. Political science characterizes people as myopic based on how they retrospectively evaluate collective outcomes, such as the state of the economy. Behavioral economics and psychology find that people make myopic choices involving future individual outcomes, such as money or personal health. To characterize myopia more generally, we offer two innovations: First, we adapt measurement approaches from behavioral economics and psychology to precisely gauge myopia over politically relevant collective outcomes. Second, we estimate myopia using the same approach for collective political outcomes in both past and future. We conduct two surveys on three different samples (including a large probability-based sample) asking respondents to evaluate national conditions randomly described as past or future while holding constant the domain, information about conditions, and the elicitation method. Results show that prospective evaluations are significantly less myopic than retrospective evaluations. People are often not myopic at all when looking to the future. This surprising pattern calls for more research to probe its robustness and spell out how low prospective myopia might lead to forward-looking policy.


Asunto(s)
Miopía , Humanos , Estudios Retrospectivos
7.
J Neurosci ; 44(3)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38050109

RESUMEN

The human visual cortex processes light and dark stimuli with ON and OFF pathways that are differently modulated by luminance contrast. We have previously demonstrated that ON cortical pathways have higher contrast sensitivity than OFF cortical pathways and the difference increases with luminance range (defined as the maximum minus minimum luminance in the scene). Here, we demonstrate that these ON-OFF cortical differences are already present in the human retina and that retinal responses measured with electroretinography are more affected by reductions in luminance range than cortical responses measured with electroencephalography. Moreover, we show that ON-OFF pathway differences measured with electroretinography become more pronounced in myopia, a visual disorder that elongates the eye and blurs vision at far distance. We find that, as the eye axial length increases across subjects, ON retinal pathways become less responsive, slower in response latency, less sensitive, and less effective and slower at driving pupil constriction. Based on these results, we conclude that myopia is associated with a deficit in ON pathway function that decreases the ability of the retina to process low contrast and regulate retinal illuminance in bright environments.


Asunto(s)
Sensibilidad de Contraste , Miopía , Humanos , Retina/fisiología , Visión Ocular , Electrorretinografía , Estimulación Luminosa
8.
Hum Mol Genet ; 32(13): 2229-2240, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37017337

RESUMEN

The susceptibility single nucleotide polymorphisms (SNPs) obtained by genome-wide association studies leave some thorny questions, such as prioritization, false positives and unknown pathogenesis. Previous studies suggested that genetic variation may perturb the RNA secondary structure, influence protein recruitment and binding and ultimately affect splicing processes. Therefore, exploring the perturbation of SNPs to structure-function correlations may provide an effective bridge toward understanding the genetic contribution to diseases. Here, aiming to decipher the regulatory mechanism of myopia susceptibility variants, we systematically evaluated the roles of SNP-induced structural changes during splicing. In addition, 7.53% of myopia-related SNPs exhibited significant global structural changes, 19.53% presented noteworthy local structural disturbance and there were wide-ranging structural perturbations in the splice-related motifs. We established a comprehensive evaluation system for structural disturbance in the splicing-related motifs and gave the priority ranking for the SNPs at RNA structural level. These high-priority SNPs were revealed to widely disturb the molecular interaction properties between splicing-related proteins and pre-mRNAs by HDOCK. Moreover, mini-gene assays confirmed that structural perturbation could influence splicing efficiency through structural remodelling. This study deepens our understanding of the potential molecular regulatory mechanisms of susceptible SNPs in myopia and contributes to personalized diagnosis, personalized medicine, disease-risk prediction and functional verification study by guiding the prioritization of the susceptibility SNPs.


Asunto(s)
Miopía , ARN , Humanos , ARN/genética , Polimorfismo de Nucleótido Simple/genética , Estudio de Asociación del Genoma Completo , Empalme del ARN/genética , Predisposición Genética a la Enfermedad
10.
J Med Genet ; 61(3): 262-269, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37852749

RESUMEN

BACKGROUND: High myopia (HM) refers to an eye refractive error exceeding -5.00 D, significantly elevating blindness risk. The underlying mechanism of HM remains elusive. Given the extensive genetic heterogeneity and vast genetic base opacity, it is imperative to identify more causative genes and explore their pathogenic roles in HM. METHODS: We employed exome sequencing to pinpoint the causal gene in an HM family. Sanger sequencing was used to confirm and analyse the gene mutations in this family and 200 sporadic HM cases. Single-cell RNA sequencing was conducted to evaluate the gene's expression patterns in developing human and mouse retinas. The CRISPR/Cas9 system facilitated the gene knockout cells, aiding in the exploration of the gene's function and its mutations. Immunofluorescent staining and immunoblot techniques were applied to monitor the functional shifts of the gene mutations at the cellular level. RESULTS: A suspected nonsense mutation (c.C172T, p.Q58X) in CCDC66 was found to be co-segregated with the HM phenotype in the family. Additionally, six other rare variants were identified among the 200 sporadic patients. CCDC66 was consistently expressed in the embryonic retinas of both humans and mice. Notably, in CCDC66-deficient HEK293 cells, there was a decline in cell proliferation, microtube polymerisation rate and ace-tubulin level. Furthermore, the mutated CCDC66 failed to synchronise with the tubulin system during Hela cell mitosis, unlike its wild type counterpart. CONCLUSIONS: Our research indicates that the CCDC66 variant c.C172T is associated with HM. A deficiency in CCDC66 might disrupt cell proliferation by influencing the mitotic process during retinal growth, leading to HM.


Asunto(s)
Miopía , Tubulina (Proteína) , Humanos , Animales , Ratones , Tubulina (Proteína)/genética , Células HeLa , Células HEK293 , Miopía/genética , Mutación , Mitosis/genética , Proteínas del Ojo/genética
11.
Proc Natl Acad Sci U S A ; 119(21): e2119675119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35594404

RESUMEN

Myopia is the commonest visual impairment. Several genetic loci confer risk, but mechanisms by which they do this are unknown. Retinal signals drive eye growth, and myopia usually results from an excessively long eye. The common variant most strongly associated with myopia is near the GJD2 gene, encoding connexin-36, which forms retinal gap junctions. Light-evoked responses of retinal neurons can be recorded noninvasively as the electroretinogram (ERG). We analyzed these responses from 186 adult twin volunteers who had been genotyped at this locus. Participants underwent detailed ERG recordings incorporating international standard stimuli as well as experimental protocols aiming to separate dark-adapted rod- and cone-driven responses. A mixed linear model was used to explore association between allelic dosage at the locus and international standard ERG parameters after adjustment for age, sex, and family structure. Significant associations were found for parameters of light-adapted, but not dark-adapted, responses. Further investigation of isolated rod- and cone-driven ERGs confirmed associations with cone-driven, but not rod-driven, a-wave amplitudes. Comparison with responses to similar experimental stimuli from a patient with a prior central retinal artery occlusion, and from two patients with selective loss of ON-bipolar cell signals, was consistent with the associated parameters being derived from signals from cone-driven OFF-bipolar cells. Analysis of single-cell transcriptome data revealed strongest GJD2 expression in cone photoreceptors; bipolar cell expression appeared strongest in OFF-bipolar cells and weakest in rod-driven ON-bipolar cells. Our findings support a potential role for altered signaling in cone-driven OFF pathways in myopia development.


Asunto(s)
Miopía , Células Fotorreceptoras Retinianas Conos , Electrorretinografía/métodos , Estudio de Asociación del Genoma Completo , Humanos , Miopía/genética , Miopía/metabolismo , Polimorfismo Genético , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo
12.
PLoS Genet ; 18(11): e1010478, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36395078

RESUMEN

Myopia most often develops during school age, with the highest incidence in countries with intensive education systems. Interactions between genetic variants and educational exposure are hypothesized to confer susceptibility to myopia, but few such interactions have been identified. Here, we aimed to identify genetic variants that interact with education level to confer susceptibility to myopia. Two groups of unrelated participants of European ancestry from UK Biobank were studied. A 'Stage-I' sample of 88,334 participants whose refractive error (avMSE) was measured by autorefraction and a 'Stage-II' sample of 252,838 participants who self-reported their age-of-onset of spectacle wear (AOSW) but who did not undergo autorefraction. Genetic variants were prioritized via a 2-step screening process in the Stage-I sample: Step 1 was a genome-wide association study for avMSE; Step 2 was a variance heterogeneity analysis for avMSE. Genotype-by-education interaction tests were performed in the Stage-II sample, with University education coded as a binary exposure. On average, participants were 58 years-old and left full-time education when they were 18 years-old; 35% reported University level education. The 2-step screening strategy in the Stage-I sample prioritized 25 genetic variants (GWAS P < 1e-04; variance heterogeneity P < 5e-05). In the Stage-II sample, 19 of the 25 (76%) genetic variants demonstrated evidence of variance heterogeneity, suggesting the majority were true positives. Five genetic variants located near GJD2, RBFOX1, LAMA2, KCNQ5 and LRRC4C had evidence of a genotype-by-education interaction in the Stage-II sample (P < 0.002) and consistent evidence of a genotype-by-education interaction in the Stage-I sample. For all 5 variants, University-level education was associated with an increased effect of the risk allele. In this cohort, additional years of education were associated with an enhanced effect of genetic variants that have roles including axon guidance and the development of neuronal synapses and neural circuits.


Asunto(s)
Miopía , Errores de Refracción , Humanos , Persona de Mediana Edad , Adolescente , Estudio de Asociación del Genoma Completo , Miopía/genética , Escolaridad , Errores de Refracción/genética , Alelos , Factores de Empalme de ARN/genética
13.
Proc Natl Acad Sci U S A ; 119(13): e2117038119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35316139

RESUMEN

SignificanceCanine models of inherited retinal diseases have helped advance adeno-associated virus (AAV)-based gene therapies targeting specific cells in the outer retina for treating blinding diseases in patients. However, therapeutic targeting of diseases such as congenital stationary night blindness (CSNB) that exhibit defects in ON-bipolar cells (ON-BCs) of the midretina remains underdeveloped. Using a leucine-rich repeat, immunoglobulin-like and transmembrane domain 3 (LRIT3) mutant canine model of CSNB exhibiting ON-BC dysfunction, we tested the ability of cell-specific AAV capsids and promotors to specifically target ON-BCs for gene delivery. Subretinal injection of one vector demonstrated safety and efficacy with robust and stable rescue of electroretinography signals and night vision up to 1 y, paving the way for clinical trials in patients.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Ceguera Nocturna , Animales , Dependovirus/genética , Perros , Electrorretinografía , Enfermedades Hereditarias del Ojo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/terapia , Terapia Genética , Humanos , Proteínas de la Membrana/genética , Miopía , Ceguera Nocturna/genética , Ceguera Nocturna/terapia
14.
J Neurosci ; 43(48): 8231-8242, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37751999

RESUMEN

Dopamine is a key neurotransmitter in the signaling cascade controlling ocular refractive development, but the exact role and site of action of dopamine D1 receptors (D1Rs) involved in myopia remains unclear. Here, we determine whether retinal D1Rs exclusively mediate the effects of endogenous dopamine and systemically delivered D1R agonist or antagonist in the mouse form deprivation myopia (FDM) model. Male C57BL/6 mice subjected to unilateral FDM or unobstructed vision were divided into the following four groups: one noninjected and three groups that received intraperitoneal injections of a vehicle, D1R agonist SKF38393 (18 and 59 nmol/g), or D1R antagonist SCH39166 (0.1 and 1 nmol/g). The effects of these drugs on FDM were further assessed in Drd1-knock-out (Drd1-KO), retina-specific conditional Drd1-KO (Drd1-CKO) mice, and corresponding wild-type littermates. In the visually unobstructed group, neither SKF38393 nor SCH39166 affected normal refractive development, whereas myopia development was attenuated by SKF38393 and enhanced by SCH39166 injections. In Drd1-KO or Drd1-CKO mice, however, these drugs had no effect on FDM development, suggesting that activation of retinal D1Rs is pertinent to myopia suppression by the D1R agonist. Interestingly, the development of myopia was unchanged by either Drd1-KO or Drd1-CKO, and neither SKF38393 nor SCH39166 injections, nor Drd1-KO, affected the retinal or vitreal dopamine and the dopamine metabolite DOPAC levels. Effects on axial length were less marked than effects on refraction. Therefore, activation of D1Rs, specifically retinal D1Rs, inhibits myopia development in mice. These results also suggest that multiple dopamine D1R mechanisms play roles in emmetropization and myopia development.SIGNIFICANCE STATEMENT While dopamine is recognized as a "stop" signal that inhibits myopia development (myopization), the location of the dopamine D1 receptors (D1Rs) that mediate this action remains to be addressed. Answers to this key question are critical for understanding how dopaminergic systems regulate ocular growth and refraction. We report here the results of our study showing that D1Rs are essential for controlling ocular growth and myopia development in mice, and for identifying the retina as the site of action for dopaminergic control via D1Rs. These findings highlight the importance of intrinsic retinal dopaminergic mechanisms for the regulation of ocular growth and suggest specific avenues for exploring the retinal mechanisms involved in the dopaminergic control of emmetropization and myopization.


Asunto(s)
Dopamina , Miopía , Masculino , Ratones , Animales , Dopamina/metabolismo , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Ratones Endogámicos C57BL , Miopía/genética , Miopía/metabolismo , Retina/metabolismo , Receptores de Dopamina D1/metabolismo
15.
J Proteome Res ; 23(3): 916-928, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367214

RESUMEN

Myopia accounts for a significant proportion of visual lesions worldwide and has the potential to progress toward pathological myopia. This study aims to reveal the difference in protein content in aqueous humor between high myopic and nonhigh myopic patients, as well as better understand the dysregulation of proteins in myopic eyes. Aqueous humor was collected for liquid chromatograph mass spectrometer (LC/MS) analysis from 30 individual eyes that underwent phacoemulsification and intraocular lens (IOL) implantation. Results showed that a total of 190 differentially expressed proteins were identified, which revealed their involvement in cell metabolism, immune and inflammatory response, and system and anatomical structure. Further analysis focused on 15 intensively interacted hub proteins, encompassing functions related to complement cascades, lipoprotein metabolism, and fibrin biological function. Subsequent validations demonstrated elevated levels of APOE (apolipoprotein E), C3 (complement 3), and AHSG (α-2-HS-glycoprotein) in the high myopia group (31 eyes of cataracts and 45 eyes of high myopia with cataracts). AHSG had a significant positive correlation with axial length in high myopic patients, with good efficacy in distinguishing between myopic and nonmyopic groups. AHSG may be a potential indicator of the pathological severity and participator in the pathological progress of high myopia. This study depicted differential expression characteristics of aqueous humor in patients with high myopia and provided optional information for further experimental research on exploring the molecular mechanisms and potential therapeutic targets for high myopia. Data are available via ProteomeXchange with the identifier PXD047584.


Asunto(s)
Extracción de Catarata , Catarata , Miopía , Humanos , Humor Acuoso , Proteómica
16.
Hum Mol Genet ; 31(19): 3290-3298, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-35567543

RESUMEN

High myopia [refractive error ≤ -6 diopters (D)] is a heterogeneous condition, and without clear accompanying features, it can be difficult to pinpoint a genetic cause. This observational study aimed to evaluate the utility of whole exome sequencing (WES) using an eye disorder gene panel in European patients with high myopia. Patients with high myopia were recruited by ophthalmologists and clinical geneticists. Clinical features were categorized into isolated high myopia, high myopia with other ocular involvement or with systemic involvement. WES was performed and an eye disorder gene panel of ~500 genes was evaluated. Hundred and thirteen patients with high myopia [mean (SD) refractive error - 11.8D (5.2)] were included. Of these, 53% were children younger than 12 years of age (53%), 13.3% were aged 12-18 years and 34% were adults (aged > 18 years). Twenty-three out of 113 patients (20%) received a genetic diagnosis of which 11 patients displayed additional ocular or systemic involvement. Pathogenic variants were identified in retinal dystrophy genes (e.g. GUCY2D and CACNA1F), connective tissue disease genes (e.g. COL18A1 and COL2A1), non-syndromic high myopia genes (ARR3), ocular development genes (e.g. PAX6) and other genes (ASPH and CNNM4). In 20% of our high myopic study population, WES using an eye gene panel enabled us to diagnose the genetic cause for this disorder. Eye genes known to cause retinal dystrophy, developmental or syndromic disorders can cause high myopia without apparent clinical features of other pathology.


Asunto(s)
Miopía , Distrofias Retinianas , Adulto , Niño , Ojo , Proteínas del Ojo/genética , Humanos , Miopía/genética , Distrofias Retinianas/genética , Secuenciación del Exoma
17.
Hum Mol Genet ; 31(17): 3012-3019, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35220419

RESUMEN

Refractive errors, particularly myopia, are the most common eye conditions, often leading to serious visual impairment. The age of onset is correlated with the severity of refractive error in adulthood observed in epidemiological and genetic studies and can be used as a proxy in refractive error genetic studies. To further elucidate genetic factors that influence refractive error, we analysed self-reported age of refractive error correction data from the UK Biobank European and perform genome-wide time-to-event analyses on the age of first spectacle wear (AFSW). Genome-wide proportional hazards ratio analyses were conducted in 340 318 European subjects. We subsequently assessed the similarities and differences in the genetic architectures of refractive error correction from different causes. All-cause AFSW was genetically strongly correlated (rg = -0.68) with spherical equivalent (the measured strength of spectacle lens required to correct the refractive error) and was used as a proxy for refractive error. Time-to-event analyses found genome-wide significant associations at 44 independent genomic loci, many of which (GJD2, LAMA2, etc.) were previously associated with refractive error. We also identified six novel regions associated with AFSW, the most significant of which was on chromosome 17q (P = 3.06 × 10-09 for rs55882072), replicating in an independent dataset. We found that genes associated with AFSW were significantly enriched for expression in central nervous system tissues and were involved in neurogenesis. This work demonstrates the merits of time-to-event study design in the genetic investigation of refractive error and contributes additional knowledge on its genetic risk factors in the general population.


Asunto(s)
Miopía , Errores de Refracción , Adulto , Anteojos , Estudio de Asociación del Genoma Completo , Humanos , Miopía/genética , Errores de Refracción/genética
18.
Hum Mol Genet ; 31(11): 1909-1919, 2022 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-35022715

RESUMEN

Refractive errors are associated with a range of pathological conditions, such as myopic maculopathy and glaucoma, and are highly heritable. Studies of missense and putative loss of function (pLOF) variants identified via whole exome sequencing (WES) offer the prospect of directly implicating potentially causative disease genes. We performed a genome-wide association study for refractive error in 51 624 unrelated adults, of European ancestry, aged 40-69 years from the UK and genotyped using WES. After testing 29 179 pLOF and 495 263 missense variants, 1 pLOF and 18 missense variants in 14 distinct genomic regions were taken forward for fine-mapping analysis. This yielded 19 putative causal variants of which 18 had a posterior inclusion probability >0.5. Of the 19 putative causal variants, 12 were novel discoveries. Specific variants were associated with a more myopic refractive error, while others were associated with a more hyperopic refractive error. Association with age of onset of spectacle wear (AOSW) was examined in an independent validation sample (38 100 early AOSW cases and 74 243 controls). Of 11 novel variants that could be tested, 8 (73%) showed evidence of association with AOSW status. This work identified COL4A4 and ATM as novel candidate genes associated with refractive error. In addition, novel putative causal variants were identified in the genes RASGEF1, ARMS2, BMP4, SIX6, GSDMA, GNGT2, ZNF652 and CRX. Despite these successes, the study also highlighted the limitations of community-based WES studies compared with high myopia case-control WES studies.


Asunto(s)
Miopía , Errores de Refracción , Adulto , Exoma/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Miopía/genética , Proteínas de Neoplasias/genética , Proteínas Citotóxicas Formadoras de Poros , Errores de Refracción/genética , Secuenciación del Exoma
19.
Mol Med ; 30(1): 25, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355399

RESUMEN

BACKGROUND: Scleral extracellular matrix (ECM) remodeling plays a crucial role in the development of myopia, particularly in ocular axial elongation. Thrombospondin-1 (THBS1), also known as TSP-1, is a significant cellular protein involved in matrix remodeling in various tissues. However, the specific role of THBS1 in myopia development remains unclear. METHOD: We employed the HumanNet database to predict genes related to myopic sclera remodeling, followed by screening and visualization of the predicted genes using bioinformatics tools. To investigate the potential target gene Thbs1, we utilized lens-induced myopia models in male C57BL/6J mice and performed Western blot analysis to detect the expression level of scleral THBS1 during myopia development. Additionally, we evaluated the effects of scleral THBS1 knockdown on myopia development through AAV sub-Tenon's injection. The refractive status and axial length were measured using a refractometer and SD-OCT system. RESULTS: During lens-induced myopia, THBS1 protein expression in the sclera was downregulated, particularly in the early stages of myopia induction. Moreover, the mice in the THBS1 knockdown group exhibited alterations in myopia development in both refraction and axial length changed compared to the control group. Western blotting analysis confirmed the effectiveness of AAV-mediated knockdown, demonstrating a decrease in COLA1 expression and an increase in MMP9 levels in the sclera. CONCLUSION: Our findings indicate that sclera THBS1 levels decreased during myopia development and subsequent THBS1 knockdown showed a decrease in scleral COLA1 expression. Taken together, these results suggest that THBS1 plays a role in maintaining the homeostasis of scleral extracellular matrix, and the reduction of THBS1 may promote the remodeling process and then affect ocular axial elongation during myopia progression.


Asunto(s)
Miopía , Esclerótica , Animales , Masculino , Ratones , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Miopía/genética , Miopía/metabolismo , Esclerótica/metabolismo , Trombospondina 1/genética , Trombospondina 1/metabolismo
20.
Biochem Biophys Res Commun ; 692: 149348, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38064999

RESUMEN

PURPOSE: We studied changes in the choroid, particularly variation in blood flow, during the development of myopia. The hemodynamic mechanism in play remains unclear. We evaluated blood flow by quantitating indocyanine green (ICG) fluorescence in a guinea pig model of form-deprivation myopia. METHODS: Guinea pigs were divided into form-deprivation myopia (FDM) and normal control (NC) groups. Ocular biometric and choroidal hemodynamics parameters were quantitatively derived via ICG imaging, and included the maximal ICG fluorescence intensity (Imax), rising time (Trising), blood flow index (BFI), and mean transit time (MTT). RESULTS: Form deprivation was associated with significant interocular differences in terms of both refractive error and axial length. ICG fluorescence hemodynamic maps of fundal blood flow and vasculature density were evident. In deprived eyes, the fluorescence signals exhibited significantly longer Trising and MTT but lower Imax and BFI than fellow eyes and NC group. The interocular differences in terms of the ocular biometric and hemodynamic parameters were significantly correlated. Hemodynamic analysis of choriocapillaris lobules revealed weakened fluorescence intensity and prolonged arrival and filling times in deprived eyes. Form deprivation reduced the number of lobulated choriocapillaris structures. CONCLUSION: Form-deprivation myopia triggered changes in the hemodynamic and vascular network structures of the choroid and choriocapillaris. The ICG fluorescence imaging/analysis method provides a unique tool for further myopia research.


Asunto(s)
Miopía , Errores de Refracción , Animales , Cobayas , Diagnóstico por Imagen , Coroides/diagnóstico por imagen , Hemodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA