Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 297(5): 101268, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34600890

RESUMEN

Biogenic amines activate G-protein-coupled receptors (GPCRs) in the central nervous system in vertebrate animals. Several biogenic amines, when excreted, stimulate trace amine-associated receptors (TAARs), a group of GPCRs in the main olfactory epithelium, and elicit innate behaviors. How TAARs recognize amines with varying numbers of amino groups is largely unknown. We reasoned that a comparison between lamprey and mammalian olfactory TAARs, which are thought to have evolved independently but show convergent responses to polyamines, may reveal structural determinants of amine recognition. Here, we demonstrate that sea lamprey TAAR365 (sTAAR365) responds strongly to biogenic polyamines cadaverine, putrescine, and spermine, and shares a similar response profile as a mammalian TAAR (mTAAR9). Docking and site-directed mutagenesis analyses show that both sTAAR365 and mTAAR9 recognize the two amino groups of cadaverine with the conserved Asp3.32 and Tyr6.51 residues. sTAAR365, which has remarkable sensitivity for cadaverine (EC50 = 4 nM), uses an extra residue, Thr7.42, to stabilize ligand binding. These cadaverine recognition sites also interact with amines with four and three amino groups (spermine and spermidine, respectively). Glu7.36 of sTAAR365 cooperates with Asp3.32 and Thr7.42 to recognize spermine, whereas mTAAR9 recognizes spermidine through an additional aromatic residue, Tyr7.43. These results suggest a conserved mechanism whereby independently evolved TAAR receptors recognize amines with two, three, or four amino groups using the same recognition sites, at which sTAAR365 and mTAAR9 evolved distinct motifs. These motifs interact directly with the amino groups of the polyamines, a class of potent and ecologically important odorants, mediating olfactory signaling.


Asunto(s)
Poliaminas Biogénicas/química , Proteínas de Peces/química , Simulación del Acoplamiento Molecular , Receptores Odorantes/química , Secuencias de Aminoácidos , Animales , Sitios de Unión , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Células HEK293 , Humanos , Lampreas , Ratones , Mutagénesis Sitio-Dirigida , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
2.
J Biol Chem ; 297(4): 101219, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34560100

RESUMEN

Polyamines are fundamental molecules of life, and their deep evolutionary history is reflected in extensive biosynthetic diversification. The polyamines putrescine, agmatine, and cadaverine are produced by pyridoxal 5'-phosphate-dependent L-ornithine, L-arginine, and L-lysine decarboxylases (ODC, ADC, LDC), respectively, from both the alanine racemase (AR) and aspartate aminotransferase (AAT) folds. Two homologous forms of AAT-fold decarboxylase are present in bacteria: an ancestral form and a derived, acid-inducible extended form containing an N-terminal fusion to the receiver-like domain of a bacterial response regulator. Only ADC was known from the ancestral form and limited to the Firmicutes phylum, whereas extended forms of ADC, ODC, and LDC are present in Proteobacteria and Firmicutes. Here, we report the discovery of ancestral form ODC, LDC, and bifunctional O/LDC and extend the phylogenetic diversity of functionally characterized ancestral ADC, ODC, and LDC to include phyla Fusobacteria, Caldiserica, Nitrospirae, and Euryarchaeota. Using purified recombinant enzymes, we show that these ancestral forms have a nascent ability to decarboxylate kinetically less preferred amino acid substrates with low efficiency, and that product inhibition primarily affects preferred substrates. We also note a correlation between the presence of ancestral ODC and ornithine/arginine auxotrophy and link this with a known symbiotic dependence on exogenous ornithine produced by species using the arginine deiminase system. Finally, we show that ADC, ODC, and LDC activities emerged independently, in parallel, in the homologous AAT-fold ancestral and extended forms. The emergence of the same ODC, ADC, and LDC activities in the nonhomologous AR-fold suggests that polyamine biosynthesis may be inevitable.


Asunto(s)
Proteínas Arqueales , Bacterias , Proteínas Bacterianas , Poliaminas Biogénicas , Carboxiliasas , Euryarchaeota , Evolución Molecular , Ornitina Descarboxilasa , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Poliaminas Biogénicas/biosíntesis , Poliaminas Biogénicas/química , Carboxiliasas/química , Carboxiliasas/genética , Carboxiliasas/metabolismo , Euryarchaeota/enzimología , Euryarchaeota/genética , Ornitina Descarboxilasa/química , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Molecules ; 24(18)2019 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31540079

RESUMEN

Polyamines are positively charged small molecules ubiquitously existing in all living organisms, and they are considered as one kind of the most ancient cellular components. The most common polyamines are spermidine, spermine, and their precursor putrescine generated from ornithine. Polyamines play critical roles in cells by stabilizing chromatin structure, regulating DNA replication, modulating gene expression, etc., and they also affect the structure and function of proteins. A few studies have investigated the impact of polyamines on protein structure and function previously, but no reports have focused on a protein-based biological module with a dedicated function. In this report, we investigated the impact of polyamines (putrescine, spermidine, and spermine) on the cyanobacterial KaiABC circadian oscillator. Using an established in vitro reconstitution system, we noticed that polyamines could disrupt the robustness of the KaiABC oscillator by inducing the denaturation of the Kai proteins (KaiA, KaiB, and KaiC). Further experiments showed that the denaturation was likely due to the induced change of the thermal stability of the clock proteins. Our study revealed an intriguing role of polyamines as a component in complex cellular environments and would be of great importance for elucidating the biological function of polyamines in future.


Asunto(s)
Proteínas Bacterianas/química , Poliaminas Biogénicas/química , Relojes Biológicos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/química , Desnaturalización Proteica , Synechococcus/química
4.
Molecules ; 23(5)2018 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-29783733

RESUMEN

Alkaloids compose a large class of natural products, and mono-methylated polyamines are a common intermediate in their biosynthesis. In order to evaluate the role of selectively methylated natural products, synthetic strategies are needed to prepare them. Here, N-methylcadaverine is prepared in 37.3% yield in three steps. The alternative literature two-step strategy resulted in reductive deamination to give N-methylpiperidine as determined by the single crystal structure. A straightforward strategy to obtain the mono-alkylated aliphatic diamine, cadaverine, which avoids potential side-reactions, is demonstrated.


Asunto(s)
Poliaminas Biogénicas/síntesis química , Cadaverina/química , Piperidinas/síntesis química , Poliaminas Biogénicas/química , Cristalografía por Rayos X , Ciclización , Metilación , Modelos Moleculares , Estructura Molecular , Piperidinas/química
5.
Amino Acids ; 48(10): 2423-31, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27168074

RESUMEN

Polyamines are positively charged organic cations under physiologic ionic and pH conditions and hence they interact with negatively charged macromolecules such as DNA and RNA. Although electrostatic interaction is the predominant mode of polyamine-nucleic acid interactions, site- and structure-specific binding has also been recognized. A major consequence of polyamine-DNA interaction is the collapse of DNA to nanoparticles of approximately 100 nm diameter. Electron and atomic force microscopic studies have shown that these nanoparticles are spheroids, toroids and rods. DNA transport to cells for gene therapy applications requires the condensation of DNA to nanoparticles and hence the study of polyamines and related compounds with nucleic acids has received technological importance. In addition to natural and synthetic polyamines, several amine-terminated or polyamine-substituted agents are under intense investigation for non-viral gene delivery vehicles.


Asunto(s)
Poliaminas Biogénicas , ADN , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Nanopartículas/química , Animales , Poliaminas Biogénicas/química , Poliaminas Biogénicas/farmacología , ADN/química , ADN/farmacología , Humanos
6.
Sud Med Ekspert ; 58(6): 49-52, 2015.
Artículo en Ruso | MEDLINE | ID: mdl-26856062

RESUMEN

This review of the literature presents the results of analysis of the publications concerning the prospects of the investigations of ptomaines including their influence on the results of determination of toxic substances present in the putrescent cadaveric tissues and on the persistence of analytes in the biological materials. Special emphasis is laid on the peculiarities of investigation of ptomaines and the necessity of the further development of the methods for the detection, isolation, and identification of toxicants in the putrescent and exhumed biological objects bearing in mind that such studies are not infrequently provide the sole opportunity to prove intoxication with certain substances.


Asunto(s)
Poliaminas Biogénicas , Poliaminas Biogénicas/análisis , Poliaminas Biogénicas/biosíntesis , Poliaminas Biogénicas/química , Toxicología Forense/métodos , Humanos , Cambios Post Mortem
7.
Mol Ther ; 20(1): 91-100, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21988874

RESUMEN

We have designed a series of versatile lipopolyamines which are amenable to chemical modification for in vivo delivery of small interfering RNA (siRNA). This report focuses on one such lipopolyamine (Staramine), its functionalized derivatives and the lipid nanocomplexes it forms with siRNA. Intravenous (i.v.) administration of Staramine/siRNA nanocomplexes modified with methoxypolyethylene glycol (mPEG) provides safe and effective delivery of siRNA and significant target gene knockdown in the lungs of normal mice, with much lower knockdown in liver, spleen, and kidney. Although siRNA delivered via Staramine is initially distributed across all these organs, the observed clearance rate from the lung tissue is considerably slower than in other tissues resulting in prolonged siRNA accumulation on the timescale of RNA interference (RNAi)-mediated transcript depletion. Complete blood count (CBC) analysis, serum chemistry analysis, and histopathology results are all consistent with minimal toxicity. An in vivo screen of mPEG modified Staramine nanocomplexes-containing siRNAs targeting lung cell-specific marker proteins reveal exclusive transfection of endothelial cells. Safe and effective delivery of siRNA to the lung with chemically versatile lipopolyamine systems provides opportunities for investigation of pulmonary cell function in vivo as well as potential treatments of pulmonary disease with RNAi-based therapeutics.


Asunto(s)
Poliaminas Biogénicas/química , Pulmón/metabolismo , ARN Interferente Pequeño/administración & dosificación , Animales , Poliaminas Biogénicas/síntesis química , Poliaminas Biogénicas/metabolismo , Recuento de Células Sanguíneas , Femenino , Silenciador del Gen , Inyecciones Intravenosas , Pulmón/patología , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Nanoconjugados/administración & dosificación , Nanoconjugados/efectos adversos , Nanoconjugados/química , Polietilenglicoles/química , ARN Interferente Pequeño/síntesis química , ARN Interferente Pequeño/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Transfección
8.
RNA ; 16(10): 1968-79, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20729276

RESUMEN

Biogenic polyamines are found to modulate protein synthesis at different levels. This effect may be explained by the ability of polyamines to bind and influence the secondary structure of tRNA, mRNA, and rRNA. We report the interaction between tRNA and the three biogenic polyamines putrescine, spermidine, spermine, and cobalt(III)hexamine at physiological conditions, using FTIR spectroscopy, capillary electrophoresis, and molecular modeling. The results indicated that tRNA was stabilized at low biogenic polyamine concentration, as a consequence of polyamine interaction with the backbone phosphate group. The main tRNA reactive sites for biogenic polyamine at low concentration were guanine-N7/O6, uracil-O2/O4, adenine-N3, and 2'OH of the ribose. At high polyamine concentration, the interaction involves guanine-N7/O6, adenine-N7, uracil-O2 reactive sites, and the backbone phosphate group. The participation of the polycation primary amino group, in the interaction and the presence of the hydrophobic contact, are also shown. The binding affinity of biogenic polyamine to tRNA molecule was in the order of spermine > spermidine > putrescine with K(Spm) = 8.7 × 10(5) M(-1), K(Spd) = 6.1 × 10(5) M(-1), and K(Put) = 1.0 × 10(5) M(-1), which correlates with their positively charged amino group content. Hill analysis showed positive cooperativity for the biogenic polyamines and negative cooperativity for cobalt-hexamine. Cobalt(III)hexamine contains high- and low-affinity sites in tRNA with K(1) = 3.2 × 10(5) M(-1) and K(2) = 1.7 × 10(5) M(-1), that have been attributed to the interactions with guanine-N7 sites and the backbone PO(2) group, respectively. This mechanism of tRNA binding could explain the condensation phenomenon observed at high Co(III) content, as previously shown in the Co(III)-DNA complexes.


Asunto(s)
Poliaminas Biogénicas/metabolismo , ARN de Transferencia/metabolismo , Sitios de Unión , Poliaminas Biogénicas/química , Cobalto/metabolismo , Electroforesis Capilar , Cinética , Modelos Moleculares , Conformación de Ácido Nucleico , Putrescina/metabolismo , Estabilidad del ARN , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN de Transferencia/química , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Espermidina/metabolismo , Espermina/metabolismo
9.
Sci Rep ; 12(1): 2691, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177711

RESUMEN

Orthosteric binding sites of olfactory receptors have been well understood for ligand-receptor interactions. However, a lack of explanation for subtle differences in ligand profile of olfactory receptors even with similar orthosteric binding sites promotes more exploration into the entry tunnels of the receptors. An important question regarding entry tunnels is the number of entry tunnels, which was previously believed to be one. Here, we used TAAR9 that recognizes important biogenic amines such as cadaverine, spermine, and spermidine as a model for entry tunnel study. We identified two entry tunnels in TAAR9 and described the residues that form the tunnels. In addition, we found two vestibular binding pockets, each located in one tunnel. We further confirmed the function of two tunnels through site-directed mutagenesis. Our study challenged the existing views regarding the number of entry tunnels in the subfamily of olfactory receptors and demonstrated the possible mechanism how the entry tunnels function in odorant recognition.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Acoplados a Proteínas G/química , Receptores Odorantes/química , Animales , Sitios de Unión , Poliaminas Biogénicas/química , Ratones , Mutagénesis Sitio-Dirigida , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/metabolismo
10.
Commun Biol ; 4(1): 803, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211094

RESUMEN

Polyamine detection and depletion have been extensively investigated for cancer prevention and treatment. However, the therapeutic efficacy is far from satisfactory, mainly due to a polyamine compensation mechanism from the systemic circulation in the tumor environment. Herein, we explore a new solution for improving polyamine detection as well as a possible consumption therapy based on a new photosensitizer that can efficiently consume polyamines via an irreversible chemical reaction. The new photosensitizer is pyrrolopyrroleaza-BODIPY pyridinium salt (PPAB-PyS) nanoparticles that can react with the over-expressed polyamine in cancer cells and produce two photosensitizers with enhanced phototoxicity on cancer destruction. Meanwhile, PPAB-PyS nanoparticles provide a simultaneous ratiometric fluorescence imaging of intracellular polyamine. This combination polyamine consumption with a chemical reaction provides a new modality to enable polyamine detection along with photodynamic therapy as well as a putative depletion of polyamines for cancer treatment and prevention.


Asunto(s)
Poliaminas Biogénicas/análisis , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Poliaminas Biogénicas/química , Línea Celular Tumoral , Humanos , Neoplasias/química , Neoplasias/prevención & control , Imagen Óptica
11.
Anal Chem ; 82(4): 1245-52, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20088546

RESUMEN

The interaction of double-stranded DNA with two polynuclear Pd(II) chelates with the biogenic polyamines spermidine (Spd) and spermine (Spm), Pd(II)-Spd and Pd(II)-Spm, as well as with the free ligands Spd and Spm, was studied using atomic force microscopy (AFM) at a highly oriented pyrolytic graphite (HOPG) surface, voltammetry at a glassy carbon (GC) electrode, and gel electrophoresis. The AFM and voltammetric results showed that the interaction of Spd and Spm with DNA occurred even for a low concentration of polyamines and caused no oxidative damage to DNA. The Pd(II)-Spd and Pd(II)-Spm complexes were found to induce greater morphological changes in the dsDNA conformation, when compared with their ligands. The interaction was specific, inducing distortion and local denaturation of the B-DNA structure with release of some guanine bases. The DNA strands partially opened give rise to palladium intra- and interstrand cross-links, leading to the formation of DNA adducts and aggregates, particularly in the case of the Pd(II)-Spd complex.


Asunto(s)
Poliaminas Biogénicas/química , Quelantes/química , ADN/metabolismo , Compuestos Organometálicos/química , Compuestos Organometálicos/metabolismo , Paladio/química , Animales , Carbono/química , Bovinos , ADN/química , Electroquímica , Electrodos , Electroforesis , Vidrio/química , Grafito/química , Ligandos , Microscopía de Fuerza Atómica , Modelos Moleculares , Conformación de Ácido Nucleico , Oxidación-Reducción , Propiedades de Superficie
12.
Biomacromolecules ; 11(6): 1507-15, 2010 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-20433143

RESUMEN

Biogenic polyamines are found to modulate protein synthesis at different levels, while polyamine analogues have shown major antitumor activity in multiple experimental models, including breast cancer. The aim of this study was to examine the interaction of bovine serum albumin (BSA) with biogenic polyamines, spermine and spermidine, and polyamine analogues 3,7,11,15-tetrazaheptadecane x 4 HCl (BE-333) and 3,7,11,15,19-pentazahenicosane x 5 HCl (BE-3333) in aqueous solution at physiological conditions. FTIR, UV-visible, CD, and fluorescence spectroscopic methods were used to determine the polyamine binding mode and the effects of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind BSA via both hydrophilic and hydrophobic interactions. Stronger polyamine-protein complexes formed with biogenic than synthetic polyamines with overall binding constants of K(spm) = 3.56 (+/-0.5) x 10(5) M(-1), K(spmd) = 1.77 (+/-0.4) x 10(5) M(-1), K(BE-333) = 1.11 (+/-0.3) x 10(4) M(-1) and K(BE-3333) = 3.90 (+/-0.7) x 10(4) M(-1) that correlate with their positively charged amino group contents. Major alterations of protein conformation were observed with reduction of alpha-helix from 63% (free protein) to 55-33% and increase of turn 12% (free protein) to 28-16% and random coil from 6% (free protein) to 24-17% in the polyamine-BSA complexes, indicating a partial protein unfolding. These data suggest that serum albumins might act as polyamine carrier proteins in delivering polyamine analogues to target tissues.


Asunto(s)
Poliaminas Biogénicas/química , Albúmina Sérica Bovina/química , Animales , Poliaminas Biogénicas/síntesis química , Bovinos , Dicroismo Circular , Modelos Moleculares , Estructura Molecular , Unión Proteica , Conformación Proteica , Solubilidad , Soluciones , Espectrometría de Fluorescencia , Espectroscopía Infrarroja por Transformada de Fourier
13.
Sci Rep ; 10(1): 10098, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572101

RESUMEN

Many gaps in our understanding of Alzheimer's disease remain despite intense research efforts. One such prominent gap is the mechanism of Tau condensation and fibrillization. One viewpoint is that positively charged Tau is condensed by cytosolic polyanions. However, this hypothesis is likely based on an overestimation of the abundance and stability of cytosolic polyanions and an underestimation of crucial intracellular constituents - the cationic polyamines. Here, we propose an alternative mechanism grounded in cellular biology. We describe extensive molecular dynamics simulations and analysis on physiologically relevant model systems, which suggest that it is not positively charged, unmodified Tau that is condensed by cytosolic polyanions but negatively charged, hyperphosphorylated Tau that is condensed by cytosolic polycations. Our work has broad implications for anti-Alzheimer's research and drug development and the broader field of tauopathies in general, potentially paving the way to future etiologic therapies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Poliaminas Biogénicas/efectos adversos , Proteínas tau/metabolismo , Poliaminas Biogénicas/química , Citosol/metabolismo , Humanos , Modelos Biológicos , Simulación de Dinámica Molecular , Fosforilación , Poliaminas/metabolismo , Polielectrolitos/metabolismo , Agregación Patológica de Proteínas/etiología , Agregación Patológica de Proteínas/metabolismo , Tauopatías , Proteínas tau/efectos de los fármacos
14.
Biochem Cell Biol ; 87(4): 621-30, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19767825

RESUMEN

We studied the interaction between tRNA and three polyamine analogues (1,11-diamino-4,8-diazaundecane.4HCl (333), 3,7,11,15-tetrazaheptadecane.4HCl (BE-333), and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333)) using FTIR, UV-visible, and CD spectroscopic methods. Spectroscopic evidence showed that polyamine analogues bound tRNA via guanine N7, adenine, uracil O2, and the backbone phosphate (PO2-) groups, while the most reactive sites for biogenic polyamines were guanine N7/O6, adenine N7, uracil O2, and sugar 2'-OH groups as well as the backbone phosphate group. The binding constants of polyamine analogue-tRNA recognition were lower than those of the biogenic polyamine-tRNA complexes, with K333 = 2.8 (+/-0.5) x 10(4), K(BE-333) = 3.7 (+/-0.7) x 10(4), K(BE-3333) = 4.0 (+/-0.9) x 10(4), K(spm) = 8.7 (+/-0.9) x 10(5), K(spd) = 6.1 (+/-0.7) x 10(5), and K(put) = 1.0 (+/-0.3) x 10(5) mol/L. tRNA remained in the A-family conformation; however, it aggregated at high polyamine analogue concentrations.


Asunto(s)
Antineoplásicos/química , Poliaminas Biogénicas/química , ARN de Transferencia/química , Dicroismo Circular , Conformación de Ácido Nucleico , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier
15.
Electrophoresis ; 29(22): 4475-81, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19035402

RESUMEN

For the first time, CEC was coupled with tris(2,2-bipyridyl) ruthenium(II) (Ru(bpy)(3)(2+) electrochemiluminescence detection. Efficient CEC separations of proline, putrescine, spermidine and spermine were achieved when the pH of the mobile phase is in the range of 3.5-7.0. The optimum mobile phase for CEC separation is much less acidic than that for CZE separation, which matches better with the optimum pH for Ru(bpy)(3)(2+) electrochemiluminescence detection and dramatically shortens the analysis time because of larger EOF at higher pH. The time for CEC separation of the polyamines is less than 12.5 min, which is about half as much as the time needed for CZE. The detection limits were 1.7, 0.2, and 0.2 microM for putrescine, spermidine, and spermine, respectively. The RSD of retention time and peak height of these polyamines were less than 0.85 and 6.1%, respectively. The column showed good long-term stability, and the RSD of retention time is below 5% for 150 runs over one-month use. The method was successfully used for the determination of polyamines in urine samples.


Asunto(s)
Poliaminas Biogénicas/orina , Electrocromatografía Capilar/métodos , Mediciones Luminiscentes/métodos , Compuestos Organometálicos/química , Prolina/orina , Poliaminas Biogénicas/química , Tampones (Química) , Electroquímica/métodos , Humanos , Modelos Lineales , Prolina/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
16.
Org Lett ; 20(8): 2420-2423, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29624063

RESUMEN

The extension of the family of dyn[ n]arenes toward a three-membered macrocycle is reported. Through a templated approach, a single diastereoisomer of a dyn[3]arene that bears six carboxyl groups could be isolated by precipitation in 59-63% yield and excellent purity (≥95%). A combination of experimental and computational experiments in water at physiological pH revealed that the macrocycle could bind parent biogenic polyamines with a unique diversity of surface-binding modes. Whereas no binding event could be accurately measured with 1,3-diaminopropane, spermidine formed a classical stoichiometric complex with the dyn[3]arene in the millimolar concentration range. On the other hand, the data obtained for spermine could only be attributed to a more complex binding event with the formation of a 2:1 complex at high [host]/[guest] ratios and redistribution toward a 1:1 complex upon further addition of guest.


Asunto(s)
Poliaminas Biogénicas/química , Estructura Molecular , Estereoisomerismo , Agua
17.
Plant Physiol Biochem ; 125: 205-211, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29475086

RESUMEN

Siliceous frustules of diatom algae contain unique long-chain polyamines, including those having more than six nitrogen atoms. These polyamines participate in the formation of the siliceous frustules of the diatoms but their precise physiological role is not clear. The main hypotheses include formation of a polyamine and polyphosphate supramolecular matrix. We have synthesized novel fluorescent dyes from a synthetic oligomeric mixture of polyamines and the fluorophore 7-nitro-2,1,3-benzoxadiazole. The long polyamine chain ensures the high affinity of these dyes to silica, which allows their application in the staining of siliceous materials, such as valves of diatom algae and fossilized samples from sediments. The fluorescently stained diatom valves were found to be promising liquid flow tracers in hydrodynamic tests. Furthermore, complexation of the polyamine component of the dyes with carbonic polymeric acids results in changes to the visible spectrum of the fluorophore, which allows study of the stability of the complex vs the length of the polyamine chain. Using poly (vinyl phosphonic acid) as a model for phosphate functionality in silaffins (a potential matrix in the formation of biogenic silica) little complexation with the polyamine fluorophores was observed, bringing into question the role of a polyamine - polymeric phosphate matrix in biosilicification.


Asunto(s)
4-Cloro-7-nitrobenzofurazano/química , Poliaminas Biogénicas , Diatomeas , Colorantes Fluorescentes/química , Coloración y Etiquetado/métodos , Poliaminas Biogénicas/química , Poliaminas Biogénicas/metabolismo , Diatomeas/citología , Diatomeas/metabolismo
18.
Int J Biol Macromol ; 112: 175-178, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29414728

RESUMEN

We have performed a biophysical characterization, at single molecule level, of the interaction between the DNA molecule and the biogenic polyamine putrescine. By using force spectroscopy, we were able to monitor the complexes formation as putrescine is added to the sample, determining the mechanical properties of such complexes and the physicochemical (binding) parameters of the interaction for three different ionic strengths. In particular, it was shown that the behavior of the equilibrium binding constant as a function of the counterion concentration deviates from the prediction of the Record-Lohman model. The measured constants were (1.3 ± 0.2) × 105 M- 1 for [Na] = 150 mM, (2.1 ± 0.2) × 105 M- 1 for [Na] = 10 mM, and (2.2 ± 0.3) × 105 M- 1 for [Na] = 1 mM. The cooperativity degree of the binding reaction, on the other hand, increases with the ionic strength. From these analysis, the DNA-putrescine binding mechanisms are inferred, and a comparison with results reported for ordinary bivalent ions like magnesium is performed. Such study provides new insights on the general behavior of the DNA interactions with biogenic polyamines.


Asunto(s)
Poliaminas Biogénicas/química , Proteínas de Unión al ADN/química , ADN/química , Nanotecnología , Sitios de Unión , Fenómenos Biofísicos , Modelos Moleculares , Conformación de Ácido Nucleico , Concentración Osmolar , Espermidina/química , Espermina/química
19.
J Am Soc Mass Spectrom ; 18(2): 346-58, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17095242

RESUMEN

Noncovalent complexes involving a single-stranded DNA oligonucleotide and a polybasic compound (spermine, penta-L-lysine, penta-L-arginine, or polydisperse poly-L-lysine) were detected by nanospray-MS. Several control experiments tended to show that these complexes preexisted in solution and that the interactions were initially ionic ones between oligonucleotide phosphates and protonated basic sites of the polybasic compound. Collision-induced dissociation (CID) experiments carried out with these complexes allowed us to identify some differences in the nature of the interactions between the solution and the gas phase, arising from possible proton transfers. Different dissociation pathways were observed according to the nature of the polybasic compound and to the initial charge state of the complex. The complex involving spermine dissociated by cleavage of noncovalent bonds leading to the separation of the two components, whereas the one involving penta-L-arginine underwent fragmentations of covalent bonds. Both behaviors were independent of the initial charge state of the complex. On the other hand, the dissociation pathway of the complex involving penta-L-lysine has been shown to be clearly charge state dependent. Noncovalent dissociation (separation of the two components) driven by coulomb repulsion occurred for the higher charged complexes, whereas fragmentation of covalent bonds was the main pathway of the lower charged complexes. In the latter case, differences in CID behavior were observed for different lengths of poly-L-lysine.


Asunto(s)
Poliaminas Biogénicas/química , ADN de Cadena Simple/química , Nanotecnología , Espectrometría de Masa por Ionización de Electrospray/métodos , Oligonucleótidos/química
20.
J Am Soc Mass Spectrom ; 18(11): 1977-89, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17900921

RESUMEN

MALDI-MS was evaluated as a method for the study of noncovalent complexes involving DNA oligonucleotides and various polybasic compounds (basic polypeptides and polyamines). Complexes involving single-stranded DNA were successfully detected using DHAP matrix in the presence of an ammonium salt. Control experiments confirmed that the interactions involved basic sites of the polybasic compounds and that the complexes were not formed in the gas phase but were pre-existing in the matrix crystals. Moreover, the pre-existence in solution was probed by isothermal titration calorimetry at concentration and ionic strength similar to those used for mass spectrometry. Spectra showed no important difference between negative and positive ion modes. The influence of nature and size of DNA and polybasic compound on the relative intensities and stoichiometries of the complexes was investigated. Despite the fact that relative intensities can be affected by ionization yields and the gas-phase stabilities of the different species, numerous trends observed in the MALDI study were consistent with the expected in-solution behaviors. Experimental conditions related to sample preparation were investigated also. Complex abundance generally decreased when increasing the ammonium acetate concentration. It was dramatically decreased when using ATT instead of DHAP. Penta-L-arginine is an exception to these observations. Lastly, in the case of complexes involving DNA duplex, the ATT matrix was shown to favor the observation of specific DNA duplex but not that of its complex with polybasic compounds. Inversely, DHAP was appropriate for the conservation of DNA-polybasic compound interaction but not for the transfer of intact duplex.


Asunto(s)
Poliaminas Biogénicas/química , ADN/química , Péptidos/química , Oligonucleótidos/química , Reproducibilidad de los Resultados , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA