Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.011
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(25): 5554-5568.e18, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065080

RESUMEN

Cancer cells are regulated by oncogenic mutations and microenvironmental signals, yet these processes are often studied separately. To functionally map how cell-intrinsic and cell-extrinsic cues co-regulate cell fate, we performed a systematic single-cell analysis of 1,107 colonic organoid cultures regulated by (1) colorectal cancer (CRC) oncogenic mutations, (2) microenvironmental fibroblasts and macrophages, (3) stromal ligands, and (4) signaling inhibitors. Multiplexed single-cell analysis revealed a stepwise epithelial differentiation phenoscape dictated by combinations of oncogenes and stromal ligands, spanning from fibroblast-induced Clusterin (CLU)+ revival colonic stem cells (revCSCs) to oncogene-driven LRIG1+ hyper-proliferative CSCs (proCSCs). The transition from revCSCs to proCSCs is regulated by decreasing WNT3A and TGF-ß-driven YAP signaling and increasing KRASG12D or stromal EGF/Epiregulin-activated MAPK/PI3K flux. We find that APC loss and KRASG12D collaboratively limit access to revCSCs and disrupt stromal-epithelial communication-trapping epithelia in the proCSC fate. These results reveal that oncogenic mutations dominate homeostatic differentiation by obstructing cell-extrinsic regulation of cell-fate plasticity.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Diferenciación Celular , Oncogenes , Proteínas Proto-Oncogénicas p21(ras)/genética , Células Madre , Humanos , Animales , Ratones , Linaje de la Célula
2.
Cell ; 183(4): 850-859, 2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-33065029

RESUMEN

KRAS mutations are among the most common genetic alterations in lung, colorectal, and pancreatic cancers. Direct inhibition of KRAS oncoproteins has been a long-standing pursuit in precision oncology, one established shortly after the discovery of RAS mutations in human cancer cells nearly 40 years ago. Recent advances in medicinal chemistry have established inhibitors targeting KRAS(G12C), a mutation found in ∼13% of lung adenocarcinomas and, at a lower frequency, in other cancers. Preclinical studies describing their discovery and mechanism of action, coupled with emerging clinical data from patients treated with these drugs, have sparked a renewed enthusiasm in the study of KRAS and its therapeutic potential. Here, we discuss how these advances are reshaping the fundamental aspects of KRAS oncoprotein biology and the strides being made toward improving patient outcomes in the clinic.


Asunto(s)
Antineoplásicos/farmacología , Terapia Molecular Dirigida , Mutación/genética , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Ensayos Clínicos como Asunto , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos
3.
Cell ; 172(4): 645-647, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29425486

RESUMEN

K-Ras is the undisputed champion of oncogenes, yet our ability to interfere with its oncogenic function is hampered by insufficient mechanistic understanding. In this issue of Cell, Ambrogio and colleagues connect the ability of K-Ras to dimerize to the ability of wild-type K-Ras to limit the oncogenic properties of the mutant.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Hermanos , Carcinogénesis , Dimerización , Humanos , Masculino , Oncogenes
4.
Cell ; 172(3): 578-589.e17, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29373830

RESUMEN

KRASG12C was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRASG12C between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS in vitro; however, it is uncertain whether this approach would translate to in vivo. Here, we describe structure-based design and identification of ARS-1620, a covalent compound with high potency and selectivity for KRASG12C. ARS-1620 achieves rapid and sustained in vivo target occupancy to induce tumor regression. We use ARS-1620 to dissect oncogenic KRAS dependency and demonstrate that monolayer culture formats significantly underestimate KRAS dependency in vivo. This study provides in vivo evidence that mutant KRAS can be selectively targeted and reveals ARS-1620 as representing a new generation of KRASG12C-specific inhibitors with promising therapeutic potential.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Experimentales/tratamiento farmacológico , Piperazinas/farmacología , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Quinazolinas/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Femenino , Células HCT116 , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Mutación , Piperazinas/química , Piperazinas/uso terapéutico , Unión Proteica , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Quinazolinas/química , Quinazolinas/uso terapéutico
5.
Cell ; 172(4): 857-868.e15, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29336889

RESUMEN

The mechanism by which the wild-type KRAS allele imparts a growth inhibitory effect to oncogenic KRAS in various cancers, including lung adenocarcinoma (LUAD), is poorly understood. Here, using a genetically inducible model of KRAS loss of heterozygosity (LOH), we show that KRAS dimerization mediates wild-type KRAS-dependent fitness of human and murine KRAS mutant LUAD tumor cells and underlies resistance to MEK inhibition. These effects are abrogated when wild-type KRAS is replaced by KRASD154Q, a mutant that disrupts dimerization at the α4-α5 KRAS dimer interface without changing other fundamental biochemical properties of KRAS, both in vitro and in vivo. Moreover, dimerization has a critical role in the oncogenic activity of mutant KRAS. Our studies provide mechanistic and biological insights into the role of KRAS dimerization and highlight a role for disruption of dimerization as a therapeutic strategy for KRAS mutant cancers.


Asunto(s)
Adenocarcinoma del Pulmón , Inhibidores Enzimáticos/farmacología , Neoplasias Pulmonares , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Mutación Missense , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/enzimología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Pérdida de Heterocigocidad , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Noqueados , Multimerización de Proteína/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
6.
Cell ; 173(4): 864-878.e29, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29681454

RESUMEN

Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/patología , Bibliotecas de Moléculas Pequeñas/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Familia 4 del Citocromo P450/deficiencia , Familia 4 del Citocromo P450/genética , Descubrimiento de Drogas , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Glucocorticoides/farmacología , Proteínas Facilitadoras del Transporte de la Glucosa/antagonistas & inhibidores , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
7.
Immunity ; 56(11): 2570-2583.e6, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37909039

RESUMEN

Dimeric IgA (dIgA) can move through cells via the IgA/IgM polymeric immunoglobulin receptor (PIGR), which is expressed mainly on mucosal epithelia. Here, we studied the ability of dIgA to target commonly mutated cytoplasmic oncodrivers. Mutation-specific dIgA, but not IgG, neutralized KRASG12D within ovarian carcinoma cells and expelled this oncodriver from tumor cells. dIgA binding changed endosomal trafficking of KRASG12D from accumulation in recycling endosomes to aggregation in the early/late endosomes through which dIgA transcytoses. dIgA targeting of KRASG12D abrogated tumor cell proliferation in cell culture assays. In vivo, KRASG12D-specific dIgA1 limited the growth of KRASG12D-mutated ovarian and lung carcinomas in a manner dependent on CD8+ T cells. dIgA specific for IDH1R132H reduced colon cancer growth, demonstrating effective targeting of a cytoplasmic oncodriver not associated with surface receptors. dIgA targeting of KRASG12D restricted tumor growth more effectively than small-molecule KRASG12D inhibitors, supporting the potential of this approach for the treatment of human cancers.


Asunto(s)
Carcinoma , Inmunoglobulina A , Humanos , Inmunoglobulina A/metabolismo , Linfocitos T CD8-positivos/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Citoplasma/metabolismo
8.
Cell ; 168(1-2): 239-251.e16, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28041850

RESUMEN

K-Ras is targeted to the plasma membrane by a C-terminal membrane anchor that comprises a farnesyl-cysteine-methyl-ester and a polybasic domain. We used quantitative spatial imaging and atomistic molecular dynamics simulations to examine molecular details of K-Ras plasma membrane binding. We found that the K-Ras anchor binds selected plasma membrane anionic lipids with defined head groups and lipid side chains. The precise amino acid sequence and prenyl group define a combinatorial code for lipid binding that extends beyond simple electrostatics; within this code lysine and arginine residues are non-equivalent and prenyl chain length modifies nascent polybasic domain lipid preferences. The code is realized by distinct dynamic tertiary structures of the anchor on the plasma membrane that govern amino acid side-chain-lipid interactions. An important consequence of this specificity is the ability of such anchors when aggregated to sort subsets of phospholipids into nanoclusters with defined lipid compositions that determine K-Ras signaling output.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Membrana Celular/química , Humanos , Lípidos/química , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Neopreno/química , Neopreno/metabolismo , Dominios Proteicos , Proteínas Proto-Oncogénicas p21(ras)/genética
9.
Cell ; 168(5): 878-889.e29, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28235199

RESUMEN

Design of small molecules that disrupt protein-protein interactions, including the interaction of RAS proteins and their effectors, may provide chemical probes and therapeutic agents. We describe here the synthesis and testing of potential small-molecule pan-RAS ligands, which were designed to interact with adjacent sites on the surface of oncogenic KRAS. One compound, termed 3144, was found to bind to RAS proteins using microscale thermophoresis, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry and to exhibit lethality in cells partially dependent on expression of RAS proteins. This compound was metabolically stable in liver microsomes and displayed anti-tumor activity in xenograft mouse cancer models. These findings suggest that pan-RAS inhibition may be an effective therapeutic strategy for some cancers and that structure-based design of small molecules targeting multiple adjacent sites to create multivalent inhibitors may be effective for some proteins.


Asunto(s)
Antineoplásicos/farmacología , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/química , Animales , Antineoplásicos/química , Calorimetría , Línea Celular , Fibroblastos/metabolismo , Xenoinjertos , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras , Transducción de Señal , Bibliotecas de Moléculas Pequeñas
10.
Cell ; 171(6): 1301-1315.e14, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29195074

RESUMEN

The two oncogenes KRas and Myc cooperate to drive tumorigenesis, but the mechanism underlying this remains unclear. In a mouse lung model of KRasG12D-driven adenomas, we find that co-activation of Myc drives the immediate transition to highly proliferative and invasive adenocarcinomas marked by highly inflammatory, angiogenic, and immune-suppressed stroma. We identify epithelial-derived signaling molecules CCL9 and IL-23 as the principal instructing signals for stromal reprogramming. CCL9 mediates recruitment of macrophages, angiogenesis, and PD-L1-dependent expulsion of T and B cells. IL-23 orchestrates exclusion of adaptive T and B cells and innate immune NK cells. Co-blockade of both CCL9 and IL-23 abrogates Myc-induced tumor progression. Subsequent deactivation of Myc in established adenocarcinomas triggers immediate reversal of all stromal changes and tumor regression, which are independent of CD4+CD8+ T cells but substantially dependent on returning NK cells. We show that Myc extensively programs an immune suppressive stroma that is obligatory for tumor progression.


Asunto(s)
Adenocarcinoma/inmunología , Adenoma/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenoma/genética , Adenoma/patología , Animales , Carcinogénesis , Quimiocinas CC/inmunología , Modelos Animales de Enfermedad , Femenino , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-23/inmunología , Neoplasias Pulmonares/patología , Proteínas Inflamatorias de Macrófagos/inmunología , Macrófagos/inmunología , Masculino , Ratones , Microambiente Tumoral
11.
Cell ; 168(5): 817-829.e15, 2017 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-28215705

RESUMEN

Investigating therapeutic "outliers" that show exceptional responses to anti-cancer treatment can uncover biomarkers of drug sensitivity. We performed preclinical trials investigating primary murine acute myeloid leukemias (AMLs) generated by retroviral insertional mutagenesis in KrasG12D "knockin" mice with the MEK inhibitor PD0325901 (PD901). One outlier AML responded and exhibited intrinsic drug resistance at relapse. Loss of wild-type (WT) Kras enhanced the fitness of the dominant clone and rendered it sensitive to MEK inhibition. Similarly, human colorectal cancer cell lines with increased KRAS mutant allele frequency were more sensitive to MAP kinase inhibition, and CRISPR-Cas9-mediated replacement of WT KRAS with a mutant allele sensitized heterozygous mutant HCT116 cells to treatment. In a prospectively characterized cohort of patients with advanced cancer, 642 of 1,168 (55%) with KRAS mutations exhibited allelic imbalance. These studies demonstrate that serial genetic changes at the Kras/KRAS locus are frequent in cancer and modulate competitive fitness and MEK dependency.


Asunto(s)
Antineoplásicos/uso terapéutico , Benzamidas/uso terapéutico , Neoplasias Colorrectales/genética , Difenilamina/análogos & derivados , Sistema de Señalización de MAP Quinasas , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Antineoplásicos/farmacología , Benzamidas/farmacología , Línea Celular Tumoral , Evolución Clonal , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Difenilamina/farmacología , Difenilamina/uso terapéutico , Resistencia a Antineoplásicos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Mutación , Retroviridae
12.
Cell ; 167(7): 1803-1813.e12, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27984728

RESUMEN

There is growing evidence that stress-coping mechanisms represent tumor cell vulnerabilities that may function as therapeutically beneficial targets. Recent work has delineated an integrated stress adaptation mechanism that is characterized by the formation of cytoplasmic mRNA and protein foci, termed stress granules (SGs). Here, we demonstrate that SGs are markedly elevated in mutant KRAS cells following exposure to stress-inducing stimuli. The upregulation of SGs by mutant KRAS is dependent on the production of the signaling lipid molecule 15-deoxy-delta 12,14 prostaglandin J2 (15-d-PGJ2) and confers cytoprotection against stress stimuli and chemotherapeutic agents. The secretion of 15-d-PGJ2 by mutant KRAS cells is sufficient to enhance SG formation and stress resistance in cancer cells that are wild-type for KRAS. Our findings identify a mutant KRAS-dependent cell non-autonomous mechanism that may afford the establishment of a stress-resistant niche that encompasses different tumor subclones. These results should inform the design of strategies to eradicate tumor cell communities.


Asunto(s)
Adenocarcinoma/patología , Neoplasias del Colon/metabolismo , Gránulos Citoplasmáticos/metabolismo , Neoplasias Pancreáticas/patología , Prostaglandina D2/análogos & derivados , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/metabolismo , Animales , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Resistencia a Antineoplásicos , Factor 4A Eucariótico de Iniciación/metabolismo , Femenino , Xenoinjertos , Humanos , Ratones , Mutación , Trasplante de Neoplasias , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Prostaglandina D2/biosíntesis , Prostaglandina D2/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Regulación hacia Arriba
13.
Cell ; 165(4): 910-20, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27087446

RESUMEN

Oncogenic mutations regulate signaling within both tumor cells and adjacent stromal cells. Here, we show that oncogenic KRAS (KRAS(G12D)) also regulates tumor cell signaling via stromal cells. By combining cell-specific proteome labeling with multivariate phosphoproteomics, we analyzed heterocellular KRAS(G12D) signaling in pancreatic ductal adenocarcinoma (PDA) cells. Tumor cell KRAS(G12D) engages heterotypic fibroblasts, which subsequently instigate reciprocal signaling in the tumor cells. Reciprocal signaling employs additional kinases and doubles the number of regulated signaling nodes from cell-autonomous KRAS(G12D). Consequently, reciprocal KRAS(G12D) produces a tumor cell phosphoproteome and total proteome that is distinct from cell-autonomous KRAS(G12D) alone. Reciprocal signaling regulates tumor cell proliferation and apoptosis and increases mitochondrial capacity via an IGF1R/AXL-AKT axis. These results demonstrate that oncogene signaling should be viewed as a heterocellular process and that our existing cell-autonomous perspective underrepresents the extent of oncogene signaling in cancer. VIDEO ABSTRACT.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Animales , Comunicación Celular , Humanos , Ratones , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Células del Estroma/metabolismo
14.
Cell ; 166(4): 963-976, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27477511

RESUMEN

Pancreatic cancer is a deadly malignancy that lacks effective therapeutics. We previously reported that oncogenic Kras induced the redox master regulator Nfe2l2/Nrf2 to stimulate pancreatic and lung cancer initiation. Here, we show that NRF2 is necessary to maintain pancreatic cancer proliferation by regulating mRNA translation. Specifically, loss of NRF2 led to defects in autocrine epidermal growth factor receptor (EGFR) signaling and oxidation of specific translational regulatory proteins, resulting in impaired cap-dependent and cap-independent mRNA translation in pancreatic cancer cells. Combined targeting of the EGFR effector AKT and the glutathione antioxidant pathway mimicked Nrf2 ablation to potently inhibit pancreatic cancer ex vivo and in vivo, representing a promising synthetic lethal strategy for treating the disease.


Asunto(s)
Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Pancreáticas/metabolismo , Biosíntesis de Proteínas , Animales , Comunicación Autocrina , Cisteína/metabolismo , Glutatión/metabolismo , Humanos , Ratones , Organoides/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal
15.
Mol Cell ; 83(14): 2390-2392, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37478822

RESUMEN

In this issue of Molecular Cell, Shui et al.1 use a systems biology approach to unravel a paradoxical role of microRNA in oncogenic KrasG12D regulation of gene and protein expression.


Asunto(s)
MicroARNs , MicroARNs/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Genes ras , Mutación
16.
Genes Dev ; 37(17-18): 818-828, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37775182

RESUMEN

Activating KRAS mutations (KRAS*) in pancreatic ductal adenocarcinoma (PDAC) drive anabolic metabolism and support tumor maintenance. KRAS* inhibitors show initial antitumor activity followed by recurrence due to cancer cell-intrinsic and immune-mediated paracrine mechanisms. Here, we explored the potential role of cancer-associated fibroblasts (CAFs) in enabling KRAS* bypass and identified CAF-derived NRG1 activation of cancer cell ERBB2 and ERBB3 receptor tyrosine kinases as a mechanism by which KRAS*-independent growth is supported. Genetic extinction or pharmacological inhibition of KRAS* resulted in up-regulation of ERBB2 and ERBB3 expression in human and murine models, which prompted cancer cell utilization of CAF-derived NRG1 as a survival factor. Genetic depletion or pharmacological inhibition of ERBB2/3 or NRG1 abolished KRAS* bypass and synergized with KRASG12D inhibitors in combination treatments in mouse and human PDAC models. Thus, we found that CAFs can contribute to KRAS* inhibitor therapy resistance via paracrine mechanisms, providing an actionable therapeutic strategy to improve the effectiveness of KRAS* inhibitors in PDAC patients.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proliferación Celular , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Neurregulina-1/genética , Neurregulina-1/metabolismo
17.
Cell ; 161(7): 1539-1552, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26091037

RESUMEN

The adenomatous polyposis coli (APC) tumor suppressor is mutated in the vast majority of human colorectal cancers (CRC) and leads to deregulated Wnt signaling. To determine whether Apc disruption is required for tumor maintenance, we developed a mouse model of CRC whereby Apc can be conditionally suppressed using a doxycycline-regulated shRNA. Apc suppression produces adenomas in both the small intestine and colon that, in the presence of Kras and p53 mutations, can progress to invasive carcinoma. In established tumors, Apc restoration drives rapid and widespread tumor-cell differentiation and sustained regression without relapse. Tumor regression is accompanied by the re-establishment of normal crypt-villus homeostasis, such that once aberrantly proliferating cells reacquire self-renewal and multi-lineage differentiation capability. Our study reveals that CRC cells can revert to functioning normal cells given appropriate signals and provide compelling in vivo validation of the Wnt pathway as a therapeutic target for treatment of CRC.


Asunto(s)
Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Neoplasias Colorrectales/genética , Modelos Animales de Enfermedad , Intestino Grueso/patología , Intestino Delgado/patología , Proteína de la Poliposis Adenomatosa del Colon/genética , Animales , Proliferación Celular , Neoplasias Colorrectales/patología , Doxiciclina/administración & dosificación , Genes p53 , Pólipos Intestinales/metabolismo , Pólipos Intestinales/patología , Intestino Grueso/metabolismo , Intestino Delgado/metabolismo , Ratones , Ratones Transgénicos , Proteínas Proto-Oncogénicas p21(ras)/genética , Interferencia de ARN , Vía de Señalización Wnt
18.
Cell ; 161(6): 1345-60, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26004068

RESUMEN

For the majority of patients with pancreas cancer, the high metastatic proclivity is life limiting. Some patients, however, present with and succumb to locally destructive disease. A molecular understanding of these distinct disease manifestations can critically inform patient management. Using genetically engineered mouse models, we show that heterozygous mutation of Dpc4/Smad4 attenuates the metastatic potential of Kras(G12D/+);Trp53(R172H/+) pancreatic ductal adenocarcinomas while increasing their proliferation. Subsequent loss of heterozygosity of Dpc4 restores metastatic competency while further unleashing proliferation, creating a highly lethal combination. Expression levels of Runx3 respond to and combine with Dpc4 status to coordinately regulate the balance between cancer cell division and dissemination. Thus, Runx3 serves as both a tumor suppressor and promoter in slowing proliferation while orchestrating a metastatic program to stimulate cell migration, invasion, and secretion of proteins that favor distant colonization. These findings suggest a model to anticipate likely disease behaviors in patients and tailor treatment strategies accordingly.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Subunidad alfa 3 del Factor de Unión al Sitio Principal/metabolismo , Metástasis de la Neoplasia/genética , Neoplasias Pancreáticas/metabolismo , Animales , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Genes p53 , Humanos , Ratones , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteína Smad4/genética
19.
Cell ; 163(5): 1237-1251, 2015 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26590425

RESUMEN

K-Ras and H-Ras share identical effectors and have similar properties; however, the high degree of tumor-type specificity associated with K-Ras and H-Ras mutations suggests that they have unique roles in oncogenesis. Here, we report that oncogenic K-Ras, but not H-Ras, suppresses non-canonical Wnt/Ca(2+) signaling, an effect that contributes strongly to its tumorigenic properties. K-Ras does this by binding to calmodulin and so reducing CaMKii activity and expression of Fzd8. Restoring Fzd8 in K-Ras mutant pancreatic cells suppresses malignancy, whereas depletion of Fzd8 in H-Ras(V12)-transformed cells enhances their tumor initiating capacity. Interrupting K-Ras-calmodulin binding using genetic means or by treatment with an orally active protein kinase C (PKC)-activator, prostratin, represses tumorigenesis in K-Ras mutant pancreatic cancer cells. These findings provide an alternative way to selectively target this "undruggable" protein.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Superficie Celular/metabolismo , Vía de Señalización Wnt , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Calmodulina/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Genes ras , Humanos , Ratones , Datos de Secuencia Molecular , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Papiloma/metabolismo , Ésteres del Forbol/administración & dosificación , Fosforilación , Unión Proteica/efectos de los fármacos
20.
Cell ; 162(1): 146-59, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26140595

RESUMEN

KRAS is one of the most frequently mutated oncogenes in human cancer. Despite substantial efforts, no clinically applicable strategy has yet been developed to effectively treat KRAS-mutant tumors. Here, we perform a cell-line-based screen and identify strong synergistic interactions between cell-cycle checkpoint-abrogating Chk1- and MK2 inhibitors, specifically in KRAS- and BRAF-driven cells. Mechanistically, we show that KRAS-mutant cancer displays intrinsic genotoxic stress, leading to tonic Chk1- and MK2 activity. We demonstrate that simultaneous Chk1- and MK2 inhibition leads to mitotic catastrophe in KRAS-mutant cells. This actionable synergistic interaction is validated using xenograft models, as well as distinct Kras- or Braf-driven autochthonous murine cancer models. Lastly, we show that combined checkpoint inhibition induces apoptotic cell death in KRAS- or BRAF-mutant tumor cells directly isolated from patients. These results strongly recommend simultaneous Chk1- and MK2 inhibition as a therapeutic strategy for the treatment of KRAS- or BRAF-driven cancers.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas ras/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma del Pulmón , Animales , Puntos de Control del Ciclo Celular , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN , Modelos Animales de Enfermedad , Xenoinjertos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas p21(ras) , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA