Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 185(4): 1081-1090, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33403770

RESUMO

Pathogenic variants in Steroid 5 alpha reductase type 3 (SRD5A3) cause rare inherited congenital disorder of glycosylation known as SRD5A3-CDG (MIM# 612379). To date, 43 affected individuals have been reported. Despite the development of various dysmorphic features in significant number of patients, facial recognition entity has not yet been established for SRD5A3-CDG. Herein, we reported a novel SRD5A3 missense pathogenic variant c.460 T > C p.(Ser154Pro). The 3D structural modeling of the SRD5A3 protein revealed additional transmembrane α-helices and predicted that the p.(Ser154Pro) variant is located in a potential active site and is capable of reducing its catalytic efficiency. Based on phenotypes of our patients and all published SRD5A3-CDG cases, we identified the most common clinical features as well as some recurrent dysmorphic features such as arched eyebrows, wide eyes, shallow nasal bridge, short nose, and large mouth. Based on facial digital 2D images, we successfully designed and validated a SRD5A3-CDG computer based dysmorphic facial analysis, which achieved 92.5% accuracy. The current work integrates genotypic, 3D structural modeling and phenotypic characteristics of CDG-SRD5A3 cases with the successful development of computer tool for accurate facial recognition of CDG-SRD5A3 complex cases to assist in the diagnosis of this particular disorder globally.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Anormalidades Múltiplas/genética , Catarata/genética , Defeitos Congênitos da Glicosilação/genética , Proteínas de Membrana/genética , Atrofia Muscular/genética , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/ultraestrutura , Anormalidades Múltiplas/patologia , Adolescente , Catarata/complicações , Catarata/patologia , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/complicações , Defeitos Congênitos da Glicosilação/patologia , Olho/patologia , Reconhecimento Facial , Fácies , Feminino , Humanos , Proteínas de Membrana/ultraestrutura , Atrofia Muscular/complicações , Atrofia Muscular/patologia , Mutação de Sentido Incorreto/genética
2.
J Assist Reprod Genet ; 36(1): 69-77, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30362053

RESUMO

PURPOSE: To explore the three-dimensional (3D) organization of sperm genome in DPY19L2-deficient globozoospermic patients speculating a link between DPY19L2 and genome organization of sperm nucleus. METHODS: This is a study of chromatin organization in DPY19L2-deficient globozoospermic patients and healthy donors using three-dimensional fluorescence in situ hybridization (3D-FISH) combined with confocal laser scanning microscopy followed by 3D image analysis. The 3D structures of sperm nuclei, chromocenter, telomeric regions and chromosome territories (CTs), were reconstructed using IMARIS software, and the relative radial position for each individual signal was calculated. Statistical analysis used a non-parametric Mann-Whitney test was appropriate with significance at p < 0.05. RESULTS: DPY19L2-deficient globozoospermic patients display impaired sperm chromocenter organization resulting in an increased number of chromocenters (5.4 vs 3.5; p < 0.0001). Moreover, radial positions of telomeres are modified with a more central position in globozoospermic nuclei. 3D-FISH analysis of five chromosome territories (CTs) (X, Y, 7, 17, 18) showed that DPY19L2-deficient globozoospermic sperm nuclei display altered spatial organization of CT X, CT 7 and CT 18. CONCLUSIONS: Our findings strengthen the hypothesis that DPY19L2 might be considered as a LINC-like protein having a crucial role in the organization of nuclear chromatin in sperm nucleus through its interaction with nuclear lamina. Our results might also explain defective embryonic development after intracytoplasmic sperm injection (ICSI) performed with DPY19L2-deficient globozoospermic sperm.


Assuntos
Cromossomos Humanos/química , Cromossomos Humanos/genética , Genoma Humano , Hibridização in Situ Fluorescente/métodos , Proteínas de Membrana/deficiência , Espermatozoides/metabolismo , Teratozoospermia/genética , Adulto , Estudos de Casos e Controles , Humanos , Masculino , Proteínas de Membrana/genética , Teratozoospermia/patologia
3.
Biochem Biophys Res Commun ; 499(3): 563-569, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29596833

RESUMO

Congenital heart defects represent a characteristic part of several genetic syndromes associated with chromosomal abnormalities such as 22q11.2 deletion syndrome; many genes located in this locus, mainly TBX1, are candidate genes for congenital heart defects. In our cohort of 27 subjects with congenital heart defect, both karyotype analysis and Fluorescence in situ hybridization (FISH) were performed. The TBX1 gene was sequenced in patients lacking chromosomal abnormalities. FISH analysis showed a de novo 22q11.2 deletion in two patients. The screening of TBX1 coding sequence identified a novel missense mutation c.569C > A (p.P190Q) in six unrelated patients and detected two associated known single nucleotide polymorphisms; the c.664C > T (rs2301558) in three patients and the c.420T > C (p.Phe140 Phe) (rs41298814) in one patient. Bioinformatic tools show that the novel missense mutation c.569C > A could modify the function and the stability of the TBX1 protein. The c.569C > A mutation was not found in 50 healthy controls. Ours results suggest a deleterious role of the c.569C > A mutation and strengthen the hypothesis that this mutation might be responsible for the same phenotype spectrum as the 22q11.2 deletion syndrome.


Assuntos
Cardiopatias Congênitas/genética , Mutação de Sentido Incorreto/genética , Proteínas com Domínio T/genética , Sequência de Aminoácidos , Sequência de Bases , Cromossomos Humanos Par 22/genética , Simulação por Computador , Análise Mutacional de DNA , Humanos , Hibridização in Situ Fluorescente , Cariotipagem , Modelos Moleculares , Síndrome , Proteínas com Domínio T/química
4.
Am J Med Genet A ; 170(7): 1912-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27119754

RESUMO

Chromosomal microarray analysis has become a powerful diagnostic tool in the investigation of patients with intellectual disability leading to the discovery of dosage sensitive genes implicated in the manifestation of various genomic disorders. Interstitial deletions of the short arm of chromosome 10 represent rare genetic abnormalities, especially those encompassing the chromosomal region 10p11-p12. To date, only 10 postnatal cases with microdeletion of this region have been described, and all patients shared a common phenotype, including intellectual disability, abnormal behavior, distinct dysmorphic features, visual impairment, and cardiac malformations. WAC was suggested to be the main candidate gene for intellectual disability associated with 10 p11-p12 deletion syndrome. Here, we describe a new case of de novo 10p11.23-p12.1 microdeletion in a patient with intellectual disability, abnormal behavior, and distinct dysmorphic features. Our observation allows us to redefine the smallest region of overlap among patients reported so far, with a size of 80 Kb and which contains only the WAC gene. These findings strengthen the hypothesis that haploinsufficency of WAC gene might be likely responsible for intellectual disability and behavior disorders. Our data also led us to propose a clinical pathway for patients with this recognizable genetic syndrome depending on the facial dysmorphisms. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Transtornos Mentais/genética , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 10/genética , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/fisiopatologia , Masculino , Transtornos Mentais/fisiopatologia , Mutação
5.
J Sex Med ; 10(10): 2586-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22594312

RESUMO

INTRODUCTION: 17ß-hydroxysteroid dehydrogenase type 3 (HSD17B3) isoenzyme is present almost exclusively in the testes and converts delta 4 androstenedione to testosterone. Mutations in the HSD17B3 gene cause HSD17B3 deficiency and result in 46,XY Disorders of Sex Development (46,XY DSD). AIM: This study aimed to present the clinical and biochemical features of a Tunisian patient who presented a sexual ambiguity orienting to HSD17B3 deficiency and to search for a mutation in the HSD17B3 gene by DNA sequencing. METHODS: Polymerase chain reaction (PCR) amplification and subsequent sequencing of all the coding exons of HSD17B3 gene were performed on genomic DNA from the patient, her family, and 50 controls. RESULTS: Genetic mutation analysis of the HSD17B3 gene revealed the presence of a novel homozygous nonsense mutation in the exon 9 (c.618 C>A) leading to the substitution p.C206X. The mutation p.C206X in the coding exons supports the hypothesis of HSD17B3 deficiency in our patient. CONCLUSION: The patient described in this study represented a new case of a rare form of 46,XY DSD, associated to a novel gene mutation of HSD17B3 gene. The screening of this mutation is useful for confirming the diagnosis of HSD17B3 deficiency and for prenatal diagnosis.


Assuntos
17-Hidroxiesteroide Desidrogenases/deficiência , Códon sem Sentido , Transtorno 46,XY do Desenvolvimento Sexual/genética , Ginecomastia/genética , Erros Inatos do Metabolismo de Esteroides/genética , 17-Hidroxiesteroide Desidrogenases/sangue , 17-Hidroxiesteroide Desidrogenases/genética , Androstenodiona/sangue , Biomarcadores/sangue , Pré-Escolar , Análise Mutacional de DNA/métodos , Transtorno 46,XY do Desenvolvimento Sexual/sangue , Transtorno 46,XY do Desenvolvimento Sexual/diagnóstico , Transtorno 46,XY do Desenvolvimento Sexual/enzimologia , Éxons , Feminino , Predisposição Genética para Doença , Ginecomastia/sangue , Ginecomastia/diagnóstico , Ginecomastia/enzimologia , Homozigoto , Humanos , Masculino , Linhagem , Fenótipo , Reação em Cadeia da Polimerase , Erros Inatos do Metabolismo de Esteroides/sangue , Erros Inatos do Metabolismo de Esteroides/diagnóstico , Erros Inatos do Metabolismo de Esteroides/enzimologia , Testosterona/sangue , Tunísia
6.
Am J Med Genet A ; 158A(3): 617-21, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22302515

RESUMO

We report on a fetus with an isolated short femur detected by ultrasound and a de novo interstitial deletion of chromosome 15. The deletion was diagnosed prenatally by karyotype and further mapped by fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (array-CGH) to bands 15q15.3 to 15q21.3 with a size of 11.11 Mb. Fetal autopsy showed characteristic minor anomalies, urinary abnormalities, and delayed bone maturation, but neither craniosynostosis, nor congenital heart defects as observed in previously reported cases. Despite the existence of ultrasound abnormalities, all five cases reported so far were diagnosed after birth. This is the first case of an interstitial deletion involving chromosomal band 15q15.3-q21.3 diagnosed prenatally and characterized at the molecular level. Our observation suggests the absence of imprinted genes in the area of 15q15-q22 and strengthens the hypothesis that a critical region for craniosynostosis may be mapped outside the deleted region in the present patient.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 15 , Fêmur/anormalidades , Diagnóstico Pré-Natal , Adulto , Hibridização Genômica Comparativa , Evolução Fatal , Feminino , Fêmur/embriologia , Humanos , Hibridização in Situ Fluorescente , Gravidez
7.
Eur J Med Genet ; 65(11): 104613, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36113757

RESUMO

We report on the results of array-CGH and Whole exome sequencing (WES) studies carried out in a Tunisian family with 46,XX premature ovarian insufficiency (POI). This study has led to the identification of a familial Xp22.12 tandem duplication with a size of 559.4 kb, encompassing only three OMIM genes (RPS6KA3, SH3KBP1and EIF1AX), and a new heterozygous variant in SPIDR gene: NM_001080394.3:c.1845_1853delTATAATTGA (p.Ile616_Asp618del) segregating with POI. Increased mRNA expression levels were detected for SH3KBP1 and EIF1AX, while a normal transcript level for RPS6KA3 was detected in the three affected family members, explaining the absence of intellectual disability (ID). To the best of our knowledge, this is the first duplication involving the Xp22.12 region, reported in a family without ID, but rather with secondary amenorrhea (SA) and female infertility. As EIF1AX is a regulatory gene escaping X-inactivation, which has an extreme dosage sensitivity and highly expressed in the ovary, we suggest that this gene might be a candidate gene for ovarian function. Homozygous nonsense pathogenic variants of SPIDR gene have been reported in familial cases in POI. It has been suggested that chromosomal instability associated with SPIDR molecular defects supports the role of SPIDR protein in double-stranded DNA damage repair in vivo in humans and its causal role in POI. In this family, the variant (p.Ile616_Asp618del), present in a heterozygous state, is located in the domain that interacts with BLM and might disrupt the BLM binding ability of SPIDR protein. These findings strengthen the hypothesis that the additional effect of this variant could lead to POI in this family. Although the work represents the first evidence that EIF1AX duplication might be responsible for POI through its over-expression, further functional studies are needed to clarify and prove EIF1AX involvement in POI phenotype.


Assuntos
Insuficiência Ovariana Primária , Feminino , Humanos , Heterozigoto , Fenótipo , Insuficiência Ovariana Primária/genética , RNA Mensageiro , Sequenciamento do Exoma , Cromossomos Humanos X
8.
Andrology ; 10(8): 1625-1631, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36026611

RESUMO

BACKGROUND: The translocation of SRY onto one of the two X chromosomes results in a 46,XX testicular disorder of sex development; this is supposedly because of non-allelic homologous recombination between the protein kinase X gene (PRKX) and the inverted protein kinase Y pseudogene (PRKY). Although 46,XX SRY-positive men are infertile, the literature data indicate that some of these individuals are of short stature (relative to the general population). We sought to determine whether short stature was linked to additional, more complex chromosomal rearrangements. METHODS: Twelve laboratories gathered detailed clinical, anthropomorphic, cytogenetic and genetic data (including chromosome microarray data) on patients with 46,XX SRY-positive male syndrome. RESULTS: SRY was present (suggesting a der(X)t(X;Y)) in 34 of the 38 cases (89.5%). When considering only the 20 patients with chromosome microarray data, we identified several chromosomal rearrangements and breakpoints, especially on the X chromosome. In the five cases for whom the X chromosome breakpoint was located in the pseudoautosomal region, there was partial duplication of the derivate X chromosome. In contrast, in the 15 cases for whom the breakpoint was located downstream of the pseudoautosomal region, part of the derivate X chromosome had been deleted (included the arylsulfatase E [ARSE] gene in 11 patients). For patients with versus without ARSE deletion, the mean height was, respectively, 167.7 ± 4.5 and 173.1 ± 4.0 cm; this difference was not statistically significant (p = 0.1005). CONCLUSION: Although 46,XX SRY-positive male syndromes were mainly because of imbalanced crossover between the X and Y chromosome during meiosis, the breakpoints differed markedly from one patient to another (especially on the X chromosome); this suggests the presence of a replication-based mechanism for recombination between non-homologous sequences. In some patients, the translocation of SRY to the X chromosome was associated with ARSE gene deletion, which might have led to short stature. With a view to explaining this disorder of sex development, whole exome sequencing could be suggested for SRY-negative patients.


Assuntos
Transtornos Testiculares 46, XX do Desenvolvimento Sexual , Arilsulfatases , Doenças Testiculares , Transtornos Testiculares 46, XX do Desenvolvimento Sexual/genética , Arilsulfatases/genética , Humanos , Masculino , Proteínas Quinases , Translocação Genética
9.
Mol Genet Genomic Med ; 9(11): e1811, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34549899

RESUMO

BACKGROUND: 8q21.11 microdeletion syndrome is a rare chromosomal disorder characterized by recurrent dysmorphic features, a variable degree of intellectual disability and ocular, cardiac and hand/feet abnormalities. To date, ZFHX4 is the only candidate gene implicated in the ocular findings. In this study, we evaluated a patient with a de novo 8q21.13-21.3 deletion to define a new small region of overlap (SRO) for this entity. METHODS: We conducted a clinical evaluation and comparative genomic hybridization (CGH) 4x44K microarrays in a patient with de novo unbalanced translocation t(8;16)(q21; q11.2). RESULTS: The case, a 6-year-old boy, presented dysmorphic features including an elongated face, brachycephaly with a high forehead, an underdeveloped ala, thin upper lip, micrognathia, low-set ears, hypotonia, mild intellectual disability, cortical atrophy with thin corpus callosum defect, and an atrial septal defect. No ocular abnormalities were found. Microarray analysis revealed a 9.6 Mb interstitial 8q21.11-21.3 deletion, not including the ZFHX4 gene. This microdeletion was confirmed in our patient through qPCR analysis, and both parents had a normal profile. Alignment analysis of our case defined a new SRO encompassing five genes. Among them, the HEY1 gene is involved in the embryonic development of the heart, central nervous system, and vascular system. Hrt1/Hey1 null mice show perinatal lethality due to congenital malformations of the aortic arch and its branch arteries. HEY1 has also been linked to the maintenance of neural stem cells, inhibition of oligodendrocyte differentiation, and myelin gene expression. CONCLUSION: HEY1 is a candidate gene for both neurological and cardiac features of the 8q21.11 microdeletion syndrome and might, therefore, explain specific components of its pathophysiology.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Ciclo Celular/genética , Deleção Cromossômica , Cromossomos Humanos Par 8/genética , Cardiopatias Congênitas/genética , Transtornos do Neurodesenvolvimento/genética , Criança , Cardiopatias Congênitas/patologia , Humanos , Masculino , Transtornos do Neurodesenvolvimento/patologia
11.
Am J Clin Pathol ; 142(2): 248-53, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25015868

RESUMO

OBJECTIVES: We report here the unusual association of Silver-Russell syndrome (SRS) and cerebellar dysplasia with trisomy 7 mosaicism and maternal uniparental disomy of chromosome 7 [UPD(7)m]. METHODS: Low-level trisomy 7 mosaicism was diagnosed prenatally on amniocytes, and UPD(7)m was confirmed after birth. RESULTS: Medical examination at birth showed dysmorphic facial features of SRS. Cytogenetic analysis on several tissues and cells confirmed mosaic trisomy 7. Unusual severe psychomotor retardation, hypotonia, and choreoathetoid movement were noted at 6 months. Brain magnetic resonance imaging showed both cerebellar hypoplasia and dysplasia. CONCLUSIONS: This unusual association of SRS and dysplasia of the cerebellum might be related to the presence of the trisomy 7 mosaicism on the cerebellum. Our observation strengthens the hypothesis that the phenotype observed in patients with SRS with UPD(7)m might also result from an undetected low level of trisomy 7 mosaicism that could best be revealed by performing cytogenetic investigations.


Assuntos
Encéfalo/patologia , Síndrome de Silver-Russell/genética , Trissomia/genética , Dissomia Uniparental/genética , Adulto , Cerebelo/anormalidades , Cromossomos Humanos Par 7/genética , Análise Citogenética , Deficiências do Desenvolvimento/diagnóstico , Feminino , Humanos , Mosaicismo , Malformações do Sistema Nervoso/diagnóstico , Síndrome de Silver-Russell/complicações , Síndrome de Silver-Russell/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA