Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Hum Genet ; 110(2): 215-227, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586412

RESUMO

Neurodevelopmental disorders (NDDs) result from highly penetrant variation in hundreds of different genes, some of which have not yet been identified. Using the MatchMaker Exchange, we assembled a cohort of 27 individuals with rare, protein-altering variation in the transcriptional coregulator ZMYM3, located on the X chromosome. Most (n = 24) individuals were males, 17 of which have a maternally inherited variant; six individuals (4 male, 2 female) harbor de novo variants. Overlapping features included developmental delay, intellectual disability, behavioral abnormalities, and a specific facial gestalt in a subset of males. Variants in almost all individuals (n = 26) are missense, including six that recurrently affect two residues. Four unrelated probands were identified with inherited variation affecting Arg441, a site at which variation has been previously seen in NDD-affected siblings, and two individuals have de novo variation resulting in p.Arg1294Cys (c.3880C>T). All variants affect evolutionarily conserved sites, and most are predicted to damage protein structure or function. ZMYM3 is relatively intolerant to variation in the general population, is widely expressed across human tissues, and encodes a component of the KDM1A-RCOR1 chromatin-modifying complex. ChIP-seq experiments on one variant, p.Arg1274Trp, indicate dramatically reduced genomic occupancy, supporting a hypomorphic effect. While we are unable to perform statistical evaluations to definitively support a causative role for variation in ZMYM3, the totality of the evidence, including 27 affected individuals, recurrent variation at two codons, overlapping phenotypic features, protein-modeling data, evolutionary constraint, and experimentally confirmed functional effects strongly support ZMYM3 as an NDD-associated gene.


Assuntos
Deficiência Intelectual , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Humanos , Masculino , Feminino , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Fenótipo , Regulação da Expressão Gênica , Face , Proteínas Nucleares/genética , Histona Desmetilases/genética
3.
Eur J Hum Genet ; 13(2): 176-83, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15508018

RESUMO

The Chudley-Lowry syndrome (ChLS, MIM 309490) is an X-linked recessive condition characterized by moderate to severe mental retardation, short stature, mild obesity, hypogonadism, and distinctive facial features characterized by depressed nasal bridge, anteverted nares, inverted-V-shaped upper lip, and macrostomia. The original Chudley-Lowry family consists of three affected males in two generations. Linkage analysis had localized the gene to a large interval, Xp21-Xq26 and an obligate carrier was demonstrated to have highly skewed X inactivation. The combination of the clinical phenotype, consistent with that of the patients with ATR-X syndrome, the skewed X-inactivation pattern in a carrier female, as well as the mapping interval including band Xq13.3, prompted us to consider the XNP/ATR-X gene being involved in this syndrome. Using RT-PCR analysis, we screened the entire XNP/ATR-X gene and found a mutation in exon 2 (c.109C > T) giving rise to a stop codon at position 37 (p.R37X). Western blot and immunocytochemical analyses using a specific monoclonal antibody directed against XNP/ATR-X showed the protein to be present in lymphoblastoid cells from one affected male, despite the premature stop codon. To explain these discordant results, we further analyzed the 5' region of the XNP/ATR-X gene and found three alternative transcripts, which differ in the presence or absence of exon 2, and the length of exon 1. Our data suggest that ChLS is allelic to the ATR-X syndrome with its less severe phenotype being due to the presence of some XNP/ATR-X protein.


Assuntos
Processamento Alternativo/genética , DNA Helicases/genética , Éxons/genética , Mutação da Fase de Leitura/genética , Genes Recessivos/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteínas Nucleares/genética , Sequência de Aminoácidos , Cromossomos Humanos X/genética , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Sítios de Splice de RNA/genética , Proteína Nuclear Ligada ao X
4.
Am J Med Genet ; 112(1): 17-22, 2002 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-12239714

RESUMO

Nonspecific X-linked mental retardation (MRX) patients are characterized by mental retardation, without additional distinguishing features. Consequently, MRX families can only be distinguished by mapping studies; yet, due to imprecise mapping studies performed in the past, the number of genes causing MRX is debatable, and a more precise localization for families is necessary to estimate this number. MRX 9 has been mapped to the pericentromeric region Xp21-q13. We refined the mapping of the MRX9 family to Xp11.22-Xp11.4. A sequencing analysis of three likely candidate genes in Xp11, SREB3, synapsin I, and TM4SF2, revealed no mutations.


Assuntos
Cromossomos Humanos X , Heterogeneidade Genética , Ligação Genética , Deficiência Intelectual/genética , Sequência de Bases , Primers do DNA , Feminino , Humanos , Masculino , Linhagem
5.
BMC Med Genomics ; 6: 1, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23356856

RESUMO

BACKGROUND: A number of neurodevelopmental syndromes are caused by mutations in genes encoding proteins that normally function in epigenetic regulation. Identification of epigenetic alterations occurring in these disorders could shed light on molecular pathways relevant to neurodevelopment. RESULTS: Using a genome-wide approach, we identified genes with significant loss of DNA methylation in blood of males with intellectual disability and mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 demethylase, in comparison to age/sex matched controls. Loss of DNA methylation in such individuals is consistent with known interactions between DNA methylation and H3 lysine 4 methylation. Further, loss of DNA methylation at the promoters of the three top candidate genes FBXL5, SCMH1, CACYBP was not observed in more than 900 population controls. We also found that DNA methylation at these three genes in blood correlated with dosage of KDM5C and its Y-linked homologue KDM5D. In addition, parallel sex-specific DNA methylation profiles in brain samples from control males and females were observed at FBXL5 and CACYBP. CONCLUSIONS: We have, for the first time, identified epigenetic alterations in patient samples carrying a mutation in a gene involved in the regulation of histone modifications. These data support the concept that DNA methylation and H3 lysine 4 methylation are functionally interdependent. The data provide new insights into the molecular pathogenesis of intellectual disability. Further, our data suggest that some DNA methylation marks identified in blood can serve as biomarkers of epigenetic status in the brain.


Assuntos
Metilação de DNA , Oxirredutases N-Desmetilantes/genética , Contagem de Células Sanguíneas , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio/sangue , Proteínas de Ligação ao Cálcio/genética , Cromossomos Humanos X , Cromossomos Humanos Y , Ilhas de CpG , Epigênese Genética , Proteínas F-Box/sangue , Proteínas F-Box/genética , Feminino , Histona Desmetilases , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Mutação , Proteínas do Grupo Polycomb/sangue , Proteínas do Grupo Polycomb/genética , Regiões Promotoras Genéticas , Complexos Ubiquitina-Proteína Ligase , Ubiquitina-Proteína Ligases/sangue , Ubiquitina-Proteína Ligases/genética
6.
Eur J Hum Genet ; 18(5): 544-52, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20029458

RESUMO

Mutations of the calcium/calmodulin-dependent serine protein kinase (CASK) gene have recently been associated with X-linked mental retardation (XLMR) with microcephaly, optic atrophy and brainstem and cerebellar hypoplasia, as well as with an X-linked syndrome having some FG-like features. Our group has recently identified four male probands from 358 probable XLMR families with missense mutations (p.Y268H, p.P396S, p.D710G and p.W919R) in the CASK gene. Congenital nystagmus, a rare and striking feature, was present in two of these families. We screened a further 45 probands with either nystagmus or microcephaly and mental retardation (MR), and identified two further mutations, a missense mutation (p.Y728C) and a splice mutation (c.2521-2A>T) in two small families with nystagmus and MR. Detailed clinical examinations of all six families, including an ophthalmological review in four families, were undertaken to further characterise the phenotype. We report on the clinical features of 24 individuals, mostly male, from six families with CASK mutations. The phenotype was variable, ranging from non-syndromic mild MR to severe MR associated with microcephaly and dysmorphic facial features. Carrier females were variably affected. Congenital nystagmus was found in members of four of the families. Our findings reinforce the CASK gene as a relatively frequent cause of XLMR in females and males. We further define the phenotypic spectrum and demonstrate that affected males with missense mutations or in-frame deletions in CASK are frequently associated with congenital nystagmus and XLMR, a striking feature not previously reported.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/complicações , Guanilato Quinases/genética , Deficiência Intelectual Ligada ao Cromossomo X/enzimologia , Deficiência Intelectual Ligada ao Cromossomo X/genética , Mutação/genética , Nistagmo Congênito/complicações , Nistagmo Congênito/genética , Sequência de Aminoácidos , Sequência de Bases , Estudos de Casos e Controles , Cromossomos Humanos X/genética , Estudos de Coortes , Análise Mutacional de DNA , Fácies , Família , Feminino , Doenças Genéticas Ligadas ao Cromossomo X/genética , Guanilato Quinases/química , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/complicações , Microcefalia/complicações , Microcefalia/genética , Pessoa de Meia-Idade , Dados de Sequência Molecular , Nistagmo Congênito/enzimologia , Linhagem , Fenótipo , Inativação do Cromossomo X/genética
7.
Nat Genet ; 41(5): 535-43, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19377476

RESUMO

Large-scale systematic resequencing has been proposed as the key future strategy for the discovery of rare, disease-causing sequence variants across the spectrum of human complex disease. We have sequenced the coding exons of the X chromosome in 208 families with X-linked mental retardation (XLMR), the largest direct screen for constitutional disease-causing mutations thus far reported. The screen has discovered nine genes implicated in XLMR, including SYP, ZNF711 and CASK reported here, confirming the power of this strategy. The study has, however, also highlighted issues confronting whole-genome sequencing screens, including the observation that loss of function of 1% or more of X-chromosome genes is compatible with apparently normal existence.


Assuntos
Cromossomos Humanos X/genética , Éxons/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Análise de Sequência de DNA/métodos , Mapeamento Cromossômico , Feminino , Variação Genética , Humanos , Masculino , Linhagem
8.
Hum Mol Genet ; 14(8): 1019-27, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15746149

RESUMO

The renin-angiotensin system (RAS) is essential for blood pressure control and water-electrolyte balance. Until the discovery of the renin receptor, renin was believed to be mainly a circulating enzyme with a unique function, the cleavage of angiotensinogen. We report a unique mutation in the renin receptor gene (ATP6AP2) present in patients with X-linked mental retardation and epilepsy (OMIM no. 300423), but absent in 1200 control X-chromosomes. A silent mutation (c.321C>T, p.D107D) residing in a putative exonic splicing enhancer site resulted in inefficient inclusion of exon 4 in 50% of renin receptor mRNA, as demonstrated by quantitative RT-PCR. Analysis of membrane associated-receptor molecular forms showed the presence of full-length and truncated proteins in the patient. Functional analysis demonstrated that the mutated receptor could bind renin and increase renin catalytic activity, similar to the wild-type receptor, but resulted in a modest and reproducible impairment of ERK1/2 activation. Thus, our findings confirm the importance of the RAS in cognitive processes and indicate a novel specific role for the renin receptor in cognitive functions and brain development.


Assuntos
Epilepsia/genética , Deficiência Intelectual Ligada ao Cromossomo X/genética , Receptores de Superfície Celular/genética , ATPases Vacuolares Próton-Translocadoras/genética , Processamento Alternativo , Sequência de Aminoácidos , Elementos Facilitadores Genéticos , Epilepsia/metabolismo , Éxons , Feminino , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Dados de Sequência Molecular , Mutação , Linhagem , Receptores de Superfície Celular/metabolismo , Sistema Renina-Angiotensina/genética , Sistema Renina-Angiotensina/fisiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA