Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Hum Genet ; 109(8): 1472-1483, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931051

RESUMO

Dyskeratosis congenita (DC) is an inherited bone-marrow-failure disorder characterized by a triad of mucocutaneous features that include abnormal skin pigmentation, nail dystrophy, and oral leucoplakia. Despite the identification of several genetic variants that cause DC, a significant proportion of probands remain without a molecular diagnosis. In a cohort of eight independent DC-affected families, we have identified a remarkable series of heterozygous germline variants in the gene encoding thymidylate synthase (TYMS). Although the inheritance appeared to be autosomal recessive, one parent in each family had a wild-type TYMS coding sequence. Targeted genomic sequencing identified a specific haplotype and rare variants in the naturally occurring TYMS antisense regulator ENOSF1 (enolase super family 1) inherited from the other parent. Lymphoblastoid cells from affected probands have severe TYMS deficiency, altered cellular deoxyribonucleotide triphosphate pools, and hypersensitivity to the TYMS-specific inhibitor 5-fluorouracil. These defects in the nucleotide metabolism pathway resulted in genotoxic stress, defective transcription, and abnormal telomere maintenance. Gene-rescue studies in cells from affected probands revealed that post-transcriptional epistatic silencing of TYMS is occurring via elevated ENOSF1. These cell and molecular abnormalities generated by the combination of germline digenic variants at the TYMS-ENOSF1 locus represent a unique pathogenetic pathway for DC causation in these affected individuals, whereas the parents who are carriers of either of these variants in a singular fashion remain unaffected.


Assuntos
Disceratose Congênita , Timidilato Sintase , Disceratose Congênita/genética , Células Germinativas , Heterozigoto , Humanos , Nucleotídeos , Timidilato Sintase/deficiência , Timidilato Sintase/genética
3.
Hum Genet ; 140(6): 945-955, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33709208

RESUMO

Telomere biology disorders are complex clinical conditions that arise due to mutations in genes required for telomere maintenance. Telomere length has been utilised as part of the diagnostic work-up of patients with these diseases; here, we have tested the utility of high-throughput STELA (HT-STELA) for this purpose. HT-STELA was applied to a cohort of unaffected individuals (n = 171) and a retrospective cohort of mutation carriers (n = 172). HT-STELA displayed a low measurement error with inter- and intra-assay coefficient of variance of 2.3% and 1.8%, respectively. Whilst telomere length in unaffected individuals declined as a function of age, telomere length in mutation carriers appeared to increase due to a preponderance of shorter telomeres detected in younger individuals (< 20 years of age). These individuals were more severely affected, and age-adjusted telomere length differentials could be used to stratify the cohort for overall survival (Hazard Ratio = 5.6 (1.5-20.5); p < 0.0001). Telomere lengths of asymptomatic mutation carriers were shorter than controls (p < 0.0001), but longer than symptomatic mutation carriers (p < 0.0001) and telomere length heterogeneity was dependent on the diagnosis and mutational status. Our data show that the ability of HT-STELA to detect short telomere lengths, that are not readily detected with other methods, means it can provide powerful diagnostic discrimination and prognostic information. The rapid format, with a low measurement error, demonstrates that HT-STELA is a new high-quality laboratory test for the clinical diagnosis of an underlying telomeropathy.


Assuntos
Transtornos da Insuficiência da Medula Óssea/diagnóstico , Disceratose Congênita/diagnóstico , Retardo do Crescimento Fetal/diagnóstico , Triagem de Portadores Genéticos/métodos , Deficiência Intelectual/diagnóstico , Microcefalia/diagnóstico , Telômero/patologia , Adolescente , Adulto , Fatores Etários , Idoso , Doenças Assintomáticas , Transtornos da Insuficiência da Medula Óssea/genética , Transtornos da Insuficiência da Medula Óssea/patologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Disceratose Congênita/genética , Disceratose Congênita/patologia , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Microcefalia/genética , Microcefalia/patologia , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Análise de Sobrevida , Telômero/metabolismo , Homeostase do Telômero
4.
Blood Adv ; 5(23): 5360-5371, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34625797

RESUMO

Gene expression profiling has long been used in understanding the contribution of genes and related pathways in disease pathogenesis and susceptibility. We have performed whole-blood transcriptomic profiling in a subset of patients with inherited bone marrow failure (IBMF) whose diseases are clinically and genetically characterized as Fanconi anemia (FA), Shwachman-Diamond syndrome (SDS), and dyskeratosis congenita (DC). We hypothesized that annotating whole-blood transcripts genome wide will aid in understanding the complexity of gene regulation across these IBMF subtypes. Initial analysis of these blood-derived transcriptomes revealed significant skewing toward upregulated genes in patients with FA when compared with controls. Patients with SDS or DC also showed similar skewing profiles in their transcriptional status revealing a common pattern across these different IBMF subtypes. Gene set enrichment analysis revealed shared pathways involved in protein translation and elongation (ribosome constituents), RNA metabolism (nonsense-mediated decay), and mitochondrial function (electron transport chain). We further identified a discovery set of 26 upregulated genes at stringent cutoff (false discovery rate < 0.05) that appeared as a unified signature across the IBMF subtypes. Subsequent transcriptomic analysis on genetically uncharacterized patients with BMF revealed a striking overlap of genes, including 22 from the discovery set, which indicates a unified transcriptional drive across the classic (FA, SDS, and DC) and uncharacterized BMF subtypes. This study has relevance in disease pathogenesis, for example, in explaining the features (including the BMF) common to all patients with IBMF and suggests harnessing this transcriptional signature for patient benefit.


Assuntos
Doenças da Medula Óssea , Disceratose Congênita , Anemia de Fanconi , Doenças da Medula Óssea/genética , Transtornos da Insuficiência da Medula Óssea , Anemia de Fanconi/genética , Perfilação da Expressão Gênica , Humanos
5.
Nat Commun ; 11(1): 1044, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098966

RESUMO

The inclusion of familial myeloid malignancies as a separate disease entity in the revised WHO classification has renewed efforts to improve the recognition and management of this group of at risk individuals. Here we report a cohort of 86 acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) families with 49 harboring germline variants in 16 previously defined loci (57%). Whole exome sequencing in a further 37 uncharacterized families (43%) allowed us to rationalize 65 new candidate loci, including genes mutated in rare hematological syndromes (ADA, GP6, IL17RA, PRF1 and SEC23B), reported in prior MDS/AML or inherited bone marrow failure series (DNAH9, NAPRT1 and SH2B3) or variants at novel loci (DHX34) that appear specific to inherited forms of myeloid malignancies. Altogether, our series of MDS/AML families offer novel insights into the etiology of myeloid malignancies and provide a framework to prioritize variants for inclusion into routine diagnostics and patient management.


Assuntos
Mutação em Linhagem Germinativa , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Desaminase/genética , Dineínas do Axonema/genética , Estudos de Coortes , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Linhagem , Perforina/genética , Glicoproteínas da Membrana de Plaquetas/genética , RNA Helicases/genética , Receptores de Interleucina-17/genética , Proteínas de Transporte Vesicular/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA