Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2302661120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549288

RESUMO

Polycystic Echinococcosis (PE), a neglected life-threatening zoonotic disease caused by the cestode Echinococcus vogeli, is endemic in the Amazon. Despite being treatable, PE reaches a case fatality rate of around 29% due to late or missed diagnosis. PE is sustained in Pan-Amazonia by a complex sylvatic cycle. The hunting of its infected intermediate hosts (especially the lowland paca Cuniculus paca) enables the disease to further transmit to humans, when their viscera are improperly handled. In this study, we compiled a unique dataset of host occurrences (~86000 records) and disease infections (~400 cases) covering the entire Pan-Amazonia and employed different modeling and statistical tools to unveil the spatial distribution of PE's key animal hosts. Subsequently, we derived a set of ecological, environmental, climatic, and hunting covariates that potentially act as transmission risk factors and used them as predictors of two independent Maximum Entropy models, one for animal infections and one for human infections. Our findings indicate that temperature stability promotes the sylvatic circulation of the disease. Additionally, we show how El Niño-Southern Oscillation (ENSO) extreme events disrupt hunting patterns throughout Pan-Amazonia, ultimately affecting the probability of spillover. In a scenario where climate extremes are projected to intensify, climate change at regional level appears to be indirectly driving the spillover of E. vogeli. These results hold substantial implications for a wide range of zoonoses acquired at the wildlife-human interface for which transmission is related to the manipulation and consumption of wild meat, underscoring the pressing need for enhanced awareness and intervention strategies.


Assuntos
Equinococose , Echinococcus , Animais , Humanos , Hotspot de Doença , Equinococose/epidemiologia , Zoonoses/epidemiologia , Fatores de Risco , El Niño Oscilação Sul
2.
Curr Biol ; 31(8): 1788-1797.e3, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33607034

RESUMO

The COVID-19 pandemic has brought humanity's strained relationship with nature into sharp focus, with calls for cessation of wild meat trade and consumption, to protect public health and biodiversity.1,2 However, the importance of wild meat for human nutrition, and its tele-couplings to other food production systems, mean that the complete removal of wild meat from diets and markets would represent a shock to global food systems.3-6 The negative consequences of this shock deserve consideration in policy responses to COVID-19. We demonstrate that the sudden policy-induced loss of wild meat from food systems could have negative consequences for people and nature. Loss of wild meat from diets could lead to food insecurity, due to reduced protein and nutrition, and/or drive land-use change to replace lost nutrients with animal agriculture, which could increase biodiversity loss and emerging infectious disease risk. We estimate the magnitude of these consequences for 83 countries, and qualitatively explore how prohibitions might play out in 10 case study places. Results indicate that risks are greatest for food-insecure developing nations, where feasible, sustainable, and socially desirable wild meat alternatives are limited. Some developed nations would also face shocks, and while high-capacity food systems could more easily adapt, certain places and people would be disproportionately impacted. We urge decision-makers to consider potential unintended consequences of policy-induced shocks amidst COVID-19; and take holistic approach to wildlife trade interventions, which acknowledge the interconnectivity of global food systems and nature, and include safeguards for vulnerable people.


Assuntos
COVID-19/virologia , Abastecimento de Alimentos , Carne/provisão & distribuição , SARS-CoV-2 , Agricultura , Animais , Animais Selvagens , Biodiversidade , Saúde Global , Humanos
3.
R Soc Open Sci ; 7(4): 190717, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32431857

RESUMO

The persistent high deforestation rate and fragmentation of the Amazon forests are the main threats to their biodiversity. To anticipate and mitigate these threats, it is important to understand and predict how species respond to the rapidly changing landscape. The short-eared dog Atelocynus microtis is the only Amazon-endemic canid and one of the most understudied wild dogs worldwide. We investigated short-eared dog habitat associations on two spatial scales. First, we used the largest record database ever compiled for short-eared dogs in combination with species distribution models to map species habitat suitability, estimate its distribution range and predict shifts in species distribution in response to predicted deforestation across the entire Amazon (regional scale). Second, we used systematic camera trap surveys and occupancy models to investigate how forest cover and forest fragmentation affect the space use of this species in the Southern Brazilian Amazon (local scale). Species distribution models suggested that the short-eared dog potentially occurs over an extensive and continuous area, through most of the Amazon region south of the Amazon River. However, approximately 30% of the short-eared dog's current distribution is expected to be lost or suffer sharp declines in habitat suitability by 2027 (within three generations) due to forest loss. This proportion might reach 40% of the species distribution in unprotected areas and exceed 60% in some interfluves (i.e. portions of land separated by large rivers) of the Amazon basin. Our local-scale analysis indicated that the presence of forest positively affected short-eared dog space use, while the density of forest edges had a negative effect. Beyond shedding light on the ecology of the short-eared dog and refining its distribution range, our results stress that forest loss poses a serious threat to the conservation of the species in a short time frame. Hence, we propose a re-assessment of the short-eared dog's current IUCN Red List status (Near Threatened) based on findings presented here. Our study exemplifies how data can be integrated across sources and modelling procedures to improve our knowledge of relatively understudied species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA