Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 163(2): 406-18, 2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26411291

RESUMO

Message-specific translational control is required for gametogenesis. In yeast, the RNA-binding protein Rim4 mediates translational repression of numerous mRNAs, including the B-type cyclin CLB3, which is essential for establishing the meiotic chromosome segregation pattern. Here, we show that Rim4 forms amyloid-like aggregates and that it is the amyloid-like form of Rim4 that is the active, translationally repressive form of the protein. Our data further show that Rim4 aggregation is a developmentally regulated process. Starvation induces the conversion of monomeric Rim4 into amyloid-like aggregates, thereby activating the protein to bring about repression of translation. At the onset of meiosis II, Rim4 aggregates are abruptly degraded allowing translation to commence. Although amyloids are best known for their role in the etiology of diseases such as Alzheimer's, Parkinson's, and diabetes by forming toxic protein aggregates, our findings show that cells can utilize amyloid-like protein aggregates to function as central regulators of gametogenesis.


Assuntos
Gametogênese , Agregados Proteicos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/metabolismo , Animais , Ciclina B/genética , Regulação da Expressão Gênica , Masculino , Meiose , Camundongos , Camundongos Endogâmicos C57BL , Agregados Proteicos/efeitos dos fármacos , Biossíntese de Proteínas , Proteínas de Ligação a RNA/química , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Dodecilsulfato de Sódio/farmacologia
2.
EMBO J ; 42(23): e113332, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37921330

RESUMO

Amyloid-like protein assemblies have been associated with toxic phenotypes because of their repetitive and stable structure. However, evidence that cells exploit these structures to control function and activity of some proteins in response to stimuli has questioned this paradigm. How amyloid-like assembly can confer emergent functions and how cells couple assembly with environmental conditions remains unclear. Here, we study Rim4, an RNA-binding protein that forms translation-repressing assemblies during yeast meiosis. We demonstrate that in its assembled and repressive state, Rim4 binds RNA more efficiently than in its monomeric and idle state, revealing a causal connection between assembly and function. The Rim4-binding site location within the transcript dictates whether the assemblies can repress translation, underscoring the importance of the architecture of this RNA-protein structure for function. Rim4 assembly depends exclusively on its intrinsically disordered region and is prevented by the Ras/protein kinase A signaling pathway, which promotes growth and suppresses meiotic entry in yeast. Our results suggest a mechanism whereby cells couple a functional protein assembly with a stimulus to enforce a cell fate decision.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Meiose , Proteínas Amiloidogênicas/metabolismo , RNA/metabolismo , Nutrientes , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
3.
PLoS Genet ; 18(2): e1010049, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35171902

RESUMO

The epigenetic landscape of a cell frequently changes in response to fluctuations in nutrient levels, but the mechanistic link is not well understood. In fission yeast, the JmjC domain protein Epe1 is critical for maintaining the heterochromatin landscape. While loss of Epe1 results in heterochromatin expansion, overexpression of Epe1 leads to defective heterochromatin. Through a genetic screen, we found that mutations in genes of the cAMP signaling pathway suppress the heterochromatin defects associated with Epe1 overexpression. We further demonstrated that the activation of Pka1, the downstream effector of cAMP signaling, is required for the efficient translation of epe1+ mRNA to maintain Epe1 overexpression. Moreover, inactivation of the cAMP-signaling pathway, either through genetic mutations or glucose deprivation, leads to the reduction of endogenous Epe1 and corresponding heterochromatin changes. These results reveal the mechanism by which the cAMP signaling pathway regulates heterochromatin landscape in fission yeast.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Proteínas Nucleares/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais/genética
4.
EMBO Rep ; 22(7): e52891, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34184813

RESUMO

Fusobacterium nucleatum (Fn) is a Gram-negative oral commensal, prevalent in various human diseases. It is unknown how this common commensal converts to a rampant pathogen. We report that Fn secretes an adhesin (FadA) with amyloid properties via a Fap2-like autotransporter to enhance its virulence. The extracellular FadA binds Congo Red, Thioflavin-T, and antibodies raised against human amyloid ß42. Fn produces amyloid-like FadA under stress and disease conditions, but not in healthy sites or tissues. It functions as a scaffold for biofilm formation, confers acid tolerance, and mediates Fn binding to host cells. Furthermore, amyloid-like FadA induces periodontal bone loss and promotes CRC progression in mice, with virulence attenuated by amyloid-binding compounds. The uncleaved signal peptide of FadA is required for the formation and stability of mature amyloid FadA fibrils. We propose a model in which hydrophobic signal peptides serve as "hooks" to crosslink neighboring FadA filaments to form a stable amyloid-like structure. Our study provides a potential mechanistic link between periodontal disease and CRC and suggests anti-amyloid therapies as possible interventions for Fn-mediated disease processes.


Assuntos
Adesinas Bacterianas , Fusobacterium nucleatum , Adesinas Bacterianas/metabolismo , Animais , Transporte Biológico , Camundongos , Sinais Direcionadores de Proteínas , Virulência
5.
Genes Dev ; 27(19): 2147-63, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24115771

RESUMO

Production of haploid gametes from diploid progenitor cells is mediated by a specialized cell division, meiosis, where two divisions, meiosis I and II, follow a single S phase. Errors in progression from meiosis I to meiosis II lead to aneuploid and polyploid gametes, but the regulatory mechanisms controlling this transition are poorly understood. Here, we demonstrate that the conserved kinase Ime2 regulates the timing and order of the meiotic divisions by controlling translation. Ime2 coordinates translational activation of a cluster of genes at the meiosis I-meiosis II transition, including the critical determinant of the meiotic chromosome segregation pattern CLB3. We further show that Ime2 mediates translational control through the meiosis-specific RNA-binding protein Rim4. Rim4 inhibits translation of CLB3 during meiosis I by interacting with the 5' untranslated region (UTR) of CLB3. At the onset of meiosis II, Ime2 kinase activity rises and triggers a decrease in Rim4 protein levels, thereby alleviating translational repression. Our results elucidate a novel developmentally regulated translational control pathway that establishes the meiotic chromosome segregation pattern.


Assuntos
Segregação de Cromossomos/genética , Regulação Fúngica da Expressão Gênica , Meiose/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regiões 5' não Traduzidas/genética , Peptídeos e Proteínas de Sinalização Intracelular , Família Multigênica/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Exp Biol ; 222(Pt 19)2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31585999

RESUMO

Comparative physiologists are often interested in adaptive physiological phenomena found in unconventional model organisms; however, research on these species is frequently constrained by the limited availability of investigative tools. Here, we propose that induced pluripotent stem cells (iPSCs) from unconventional model organisms may retain certain species-specific features that can consequently be investigated in depth in vitro; we use hibernating mammals as an example. Many species (including ground squirrels, bats and bears) can enter a prolonged state of physiological dormancy known as hibernation to survive unfavorable seasonal conditions. Our understanding of the mechanisms underpinning the rapid transition and adaptation to a hypothermic, metabolically suppressed winter torpor state remains limited partially because of the lack of an easily accessible model. To address the fascinating unanswered questions underlying hibernation biology, we have developed a powerful model system: iPSCs from a hibernating species, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus). These stem cells can potentially be differentiated into any cell type, and can be used for the analysis of cell-autonomous mechanisms that facilitate adaptation to hibernation and for comparisons with non-hibernators. Furthermore, we can manipulate candidate molecular and cellular pathways underlying relevant physiological phenomena by pharmacological or RNAi-based methods, and CRISPR/Cas9 gene editing. Moreover, iPSC strategies can be applied to other species (e.g. seals, naked mole rats, humming birds) for in vitro studies on adaptation to extreme physiological conditions. In this Commentary, we discuss factors to consider when attempting to generate iPSCs from unconventional model organisms, based on our experience with the thirteen-lined ground squirrel.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Fisiologia Comparada , Sciuridae/fisiologia , Animais , Técnicas de Cultura de Células , Pesquisa
7.
PLoS Genet ; 8(10): e1002968, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23055940

RESUMO

Gene conversion, the non-reciprocal exchange of genetic information, is one of the potential products of meiotic recombination. It can shape genome structure by acting on repetitive DNA elements, influence allele frequencies at the population level, and is known to be implicated in human disease. But gene conversion is hard to detect directly except in organisms, like fungi, that group their gametes following meiosis. We have developed a novel visual assay that enables us to detect gene conversion events directly in the gametes of the flowering plant Arabidopsis thaliana. Using this assay we measured gene conversion events across the genome of more than one million meioses and determined that the genome-wide average frequency is 3.5×10(-4) conversions per locus per meiosis. We also detected significant locus-to-locus variation in conversion frequency but no intra-locus variation. Significantly, we found one locus on the short arm of chromosome 4 that experienced 3-fold to 6-fold more gene conversions than the other loci tested. Finally, we demonstrated that we could modulate conversion frequency by varying experimental conditions.


Assuntos
Arabidopsis/genética , Conversão Gênica , Genoma de Planta , Meiose , Alelos , Modelos Genéticos , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Recombinação Genética
8.
bioRxiv ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38766058

RESUMO

Bacteria defend themselves from viral infection using diverse immune systems, many of which sense and target foreign nucleic acids. Defense-associated reverse transcriptase (DRT) systems provide an intriguing counterpoint to this immune strategy by instead leveraging DNA synthesis, but the identities and functions of their DNA products remain largely unknown. Here we show that DRT2 systems execute an unprecedented immunity mechanism that involves de novo gene synthesis via rolling-circle reverse transcription of a non-coding RNA (ncRNA). Unbiased profiling of RT-associated RNA and DNA ligands in DRT2-expressing cells revealed that reverse transcription generates concatenated cDNA repeats through programmed template jumping on the ncRNA. The presence of phage then triggers second-strand cDNA synthesis, leading to the production of long double-stranded DNA. Remarkably, this DNA product is efficiently transcribed, generating messenger RNAs that encode a stop codon-less, never-ending ORF (neo) whose translation causes potent growth arrest. Phylogenetic analyses and screening of diverse DRT2 homologs further revealed broad conservation of rolling-circle reverse transcription and Neo protein function. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation, and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.

9.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798495

RESUMO

The human genome contains 24 gag -like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag -like genes PNMA1 and PNMA4 support reproductive capacity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. Analysis of donated human ovaries shows that expression of both genes declines normally with aging, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.

10.
PLoS Genet ; 6(6): e1000989, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20585549

RESUMO

Meiosis halves the chromosome number because its two divisions follow a single round of DNA replication. This process involves two cell transitions, the transition from prophase to the first meiotic division (meiosis I) and the unique meiosis I to meiosis II transition. We show here that the A-type cyclin CYCA1;2/TAM plays a major role in both transitions in Arabidopsis. A series of tam mutants failed to enter meiosis II and thus produced diploid spores and functional diploid gametes. These diploid gametes had a recombined genotype produced through the single meiosis I division. In addition, by combining the tam-2 mutation with AtSpo11-1 and Atrec8, we obtained plants producing diploid gametes through a mitotic-like division that were genetically identical to their parents. Thus tam alleles displayed phenotypes very similar to that of the previously described osd1 mutant. Combining tam and osd1 mutations leads to a failure in the prophase to meiosis I transition during male meiosis and to the production of tetraploid spores and gametes. This suggests that TAM and OSD1 are involved in the control of both meiotic transitions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina A1/metabolismo , Meiose , Prófase , Alelos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Ciclina A1/genética , Diploide , Regulação da Expressão Gênica de Plantas , Mutação , Pólen/citologia , Pólen/genética
11.
J Cell Biol ; 222(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37638885

RESUMO

Budding yeast cells have the capacity to adopt few but distinct physiological states depending on environmental conditions. Vegetative cells proliferate rapidly by budding while spores can survive prolonged periods of nutrient deprivation and/or desiccation. Whether or not a yeast cell will enter meiosis and sporulate represents a critical decision that could be lethal if made in error. Most cell fate decisions, including those of yeast, are understood as being triggered by the activation of master transcription factors. However, mechanisms that enforce cell fates posttranscriptionally have been more difficult to attain. Here, we perform a forward genetic screen to determine RNA-binding proteins that affect meiotic entry at the posttranscriptional level. Our screen revealed several candidates with meiotic entry phenotypes, the most significant being RIE1, which encodes an RRM-containing protein. We demonstrate that Rie1 binds RNA, is associated with the translational machinery, and acts posttranscriptionally to enhance protein levels of the master transcription factor Ime1 in sporulation conditions. We also identified a physical binding partner of Rie1, Sgn1, which is another RRM-containing protein that plays a role in timely Ime1 expression. We demonstrate that these proteins act independently of cell size regulation pathways to promote meiotic entry. We propose a model explaining how constitutively expressed RNA-binding proteins, such as Rie1 and Sgn1, can act in cell fate decisions both as switch-like enforcers and as repressors of spurious cell fate activation.


Assuntos
Meiose , Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Pontos de Checagem do Ciclo Celular , Diferenciação Celular/genética , Tamanho Celular , Meiose/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Membrana/genética
12.
Nat Genet ; 55(12): 2160-2174, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38049665

RESUMO

Whole-genome sequencing of longitudinal tumor pairs representing transformation of follicular lymphoma to high-grade B cell lymphoma with MYC and BCL2 rearrangements (double-hit lymphoma) identified coding and noncoding genomic alterations acquired during lymphoma progression. Many of these transformation-associated alterations recurrently and focally occur at topologically associating domain resident regulatory DNA elements, including H3K4me3 promoter marks located within H3K27ac super-enhancer clusters in B cell non-Hodgkin lymphoma. One region found to undergo recurrent alteration upon transformation overlaps a super-enhancer affecting the expression of the PAX5/ZCCHC7 gene pair. ZCCHC7 encodes a subunit of the Trf4/5-Air1/2-Mtr4 polyadenylation-like complex and demonstrated copy number gain, chromosomal translocation and enhancer retargeting-mediated transcriptional upregulation upon lymphoma transformation. Consequently, lymphoma cells demonstrate nucleolar dysregulation via altered noncoding 5.8S ribosomal RNA processing. We find that a noncoding mutation acquired during lymphoma progression affects noncoding rRNA processing, thereby rewiring protein synthesis leading to oncogenic changes in the lymphoma proteome.


Assuntos
Linfoma de Células B , Linfoma , Humanos , Mutação , Linfoma de Células B/genética , Linfoma de Células B/patologia , Translocação Genética/genética , Linfoma/genética , Sequências Reguladoras de Ácido Nucleico
13.
Genome Res ; 19(12): 2245-57, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19801530

RESUMO

During meiosis, chromatin undergoes extensive changes to facilitate recombination, homolog pairing, and chromosome segregation. To investigate the relationship between chromatin organization and meiotic processes, we used formaldehyde-assisted isolation of regulatory elements (FAIRE) to map open chromatin during the transition from mitosis to meiosis in the budding yeast Saccharomyces cerevisiae. We found that meiosis-induced opening of chromatin is associated with meiotic DSB hotpots. The positive association between open chromatin and DSB hotspots is most prominent 3 h into meiosis, when the early meiotic genes DMC1 and HOP1 exhibit maximum transcription and the early recombination genes SPO11 and RAD51 are strongly up-regulated. While the degree of chromatin openness is positively associated with the occurrence of recombination hotspots, many hotspots occur outside of open chromatin. Of particular interest, many DSB hotspots that fell outside of meiotic open chromatin nonetheless occurred in chromatin that had recently been open during mitotic growth. Finally, we find evidence for meiosis-specific opening of chromatin at the regions adjacent to boundaries of subtelomeric sequences, which exhibit specific crossover control patterns hypothesized to be regulated by chromatin.


Assuntos
Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla , Regulação Fúngica da Expressão Gênica , Meiose , Recombinação Genética , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina , Troca Genética , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Cell Rep ; 39(5): 110753, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508136

RESUMO

Amyloids are fibrous protein aggregates associated with age-related diseases. While these aggregates are typically described as irreversible and pathogenic, some cells use reversible amyloid-like structures that serve important functions. The RNA-binding protein Rim4 forms amyloid-like assemblies that are essential for translational control during Saccharomyces cerevisiae meiosis. Rim4 amyloid-like assemblies are disassembled in a phosphorylation-dependent manner at meiosis II onset. By investigating Rim4 clearance, we elucidate co-factors that mediate clearance of amyloid-like assemblies in a physiological setting. We demonstrate that yeast 14-3-3 proteins bind to Rim4 assemblies and facilitate their subsequent phosphorylation and timely clearance. Furthermore, distinct 14-3-3 proteins play non-redundant roles in facilitating phosphorylation and clearance of amyloid-like Rim4. Additionally, we find that 14-3-3 proteins contribute to global protein aggregate homeostasis. Based on the role of 14-3-3 proteins in aggregate homeostasis and their interactions with disease-associated assemblies, we propose that these proteins may protect against pathological protein aggregates.


Assuntos
Proteínas de Saccharomyces cerevisiae , Proteínas 14-3-3/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Agregados Proteicos , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Curr Biol ; 32(7): 1534-1547.e9, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35240051

RESUMO

The initiation of the cell division process of meiosis requires exogenous signals that activate internal gene regulatory networks. Meiotic commitment ensures the irreversible continuation of meiosis, even upon withdrawal of the meiosis-inducing signals. A loss of meiotic commitment can cause highly abnormal polyploid cells and can ultimately lead to germ cell tumors. Despite the importance of meiotic commitment, only a few genes involved in commitment are known. In this study, we have discovered six new regulators of meiotic commitment in budding yeast: the Bcy1 protein involved in nutrient sensing, the meiosis-specific kinase Ime2, Polo kinase Cdc5, RNA-binding protein Pes4, and the 14-3-3 proteins Bmh1 and Bmh2. Decreased levels of these proteins cause a failure to establish or maintain meiotic commitment. Importantly, we found that Bmh1 and Bmh2 are involved in multiple processes throughout meiosis and in meiotic commitment. First, cells depleted of both Bmh1 and Bmh2 trigger the pachytene checkpoint, likely due to a role in DNA double-strand break repair. Second, Bmh1 interacts directly with the middle meiosis transcription factor Ndt80, and both Bmh1 and Bmh2 maintain Ndt80 levels. Third, Bmh1 and Bmh2 bind to Cdc5 and enhance its kinase activity. Finally, Bmh1 binds to Pes4, which regulates the timing of the translation of several mRNAs in meiosis II and is required to maintain meiotic commitment. Our results demonstrate that meiotic commitment is actively maintained throughout meiosis, with the 14-3-3 proteins and Polo kinase serving as key regulators of this developmental program.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Meiose , Proteínas Serina-Treonina Quinases/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
16.
Dev Cell ; 56(1): 22-35.e7, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33278343

RESUMO

Retrotransposon proliferation poses a threat to germline integrity. While retrotransposons must be activated in developing germ cells in order to survive and propagate, how they are selectively activated in the context of meiosis is unclear. We demonstrate that the transcriptional activation of Ty3/Gypsy retrotransposons and host defense are controlled by master meiotic regulators. We show that budding yeast Ty3/Gypsy co-opts binding sites of the essential meiotic transcription factor Ndt80 upstream of the integration site, thereby tightly linking its transcriptional activation to meiotic progression. We also elucidate how yeast cells thwart Ty3/Gypsy proliferation by blocking translation of the retrotransposon mRNA using amyloid-like assemblies of the RNA-binding protein Rim4. In mammals, several inactive Ty3/Gypsy elements are undergoing domestication. We show that mammals utilize equivalent master meiotic regulators (Stra8, Mybl1, Dazl) to regulate Ty3/Gypsy-derived genes in developing gametes. Our findings inform how genes that are evolving from retrotransposons can build upon existing regulatory networks during domestication.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Germinativas/metabolismo , Meiose/genética , Proteínas de Ligação a RNA/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Retroelementos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sítios de Ligação , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas de Ligação a DNA/genética , Evolução Molecular , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Meiose/fisiologia , Camundongos , Gambás/genética , Gambás/metabolismo , Biossíntese de Proteínas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/genética , DNA Polimerase Dirigida por RNA/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
17.
PLoS Genet ; 3(8): e132, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17696612

RESUMO

MUS81 is conserved among plants, animals, and fungi and is known to be involved in mitotic DNA damage repair and meiotic recombination. Here we present a functional characterization of the Arabidopsis thaliana homolog AtMUS81, which has a role in both mitotic and meiotic cells. The AtMUS81 transcript is produced in all tissues, but is elevated greater than 9-fold in the anthers and its levels are increased in response to gamma radiation and methyl methanesulfonate treatment. An Atmus81 transfer-DNA insertion mutant shows increased sensitivity to a wide range of DNA-damaging agents, confirming its role in mitotically proliferating cells. To examine its role in meiosis, we employed a pollen tetrad-based visual assay. Data from genetic intervals on Chromosomes 1 and 3 show that Atmus81 mutants have a moderate decrease in meiotic recombination. Importantly, measurements of recombination in a pair of adjacent intervals on Chromosome 5 demonstrate that the remaining crossovers in Atmus81 are interference sensitive, and that interference levels in the Atmus81 mutant are significantly greater than those in wild type. These data are consistent with the hypothesis that AtMUS81 is involved in a secondary subset of meiotic crossovers that are interference insensitive.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/genética , Troca Genética/fisiologia , Endonucleases/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Carcinógenos/farmacologia , Sobrevivência Celular , Dano ao DNA/fisiologia , Endonucleases/genética , Endonucleases/isolamento & purificação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Meiose/genética , Mutagênese Insercional , Proteínas Mutantes/fisiologia , Plantas Geneticamente Modificadas , Pólen/citologia , Pólen/genética , Recombinação Genética
18.
Open Biol ; 10(12): 200328, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33352065

RESUMO

Most RNA-binding modules are small and bind few nucleotides. RNA-binding proteins typically attain the physiological specificity and affinity for their RNA targets by combining several RNA-binding modules. Here, we review how disordered linkers connecting RNA-binding modules govern the specificity and affinity of RNA-protein interactions by regulating the effective concentration of these modules and their relative orientation. RNA-binding proteins also often contain extended intrinsically disordered regions that mediate protein-protein and RNA-protein interactions with multiple partners. We discuss how these regions can connect proteins and RNA resulting in heterogeneous higher-order assemblies such as membrane-less compartments and amyloid-like structures that have the characteristics of multi-modular entities. The assembled state generates additional RNA-binding specificity and affinity properties that contribute to further the function of RNA-binding proteins within the cellular environment.


Assuntos
Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA/química , RNA/metabolismo , Amiloide/química , Amiloide/metabolismo , Animais , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Multimerização Proteica , RNA/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Relação Estrutura-Atividade
19.
Methods Mol Biol ; 557: 99-114, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19799179

RESUMO

Measuring meiotic gene conversion is important both because of its role in the fundamental mechanisms of meiotic recombination and because of its influence on linkage relationships and allelic diversity in the genome. Historically, gene conversion has been most thoroughly examined in fungal organisms through the use of tetrad analysis. Here we describe a method for using tetrad analysis in the model plant Arabidopsis thaliana to detect and quantify gene conversion events - a resource unavailable in most other higher eukaryotic model systems.


Assuntos
Arabidopsis/genética , Biomarcadores/análise , Conversão Gênica/fisiologia , Células Germinativas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Biomarcadores/metabolismo , Cromossomos de Plantas , Cruzamentos Genéticos , Células Germinativas/química , Modelos Biológicos , Fenótipo , Plantas Geneticamente Modificadas
20.
J Cell Biol ; 218(2): 559-579, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30538140

RESUMO

Cellular differentiation involves remodeling cellular architecture to transform one cell type to another. By investigating mitochondrial dynamics during meiotic differentiation in budding yeast, we sought to understand how organelle morphogenesis is developmentally controlled in a system where regulators of differentiation and organelle architecture are known, but the interface between them remains unexplored. We analyzed the regulation of mitochondrial detachment from the cell cortex, a known meiotic alteration to mitochondrial morphology. We found that mitochondrial detachment is enabled by the programmed destruction of the mitochondria-endoplasmic reticulum-cortex anchor (MECA), an organelle tether that bridges mitochondria and the plasma membrane. MECA regulation is governed by a meiotic transcription factor, Ndt80, which promotes the activation of a conserved kinase, Ime2. We further present evidence for Ime2-dependent phosphorylation and degradation of MECA in a temporally controlled manner. Our study defines a key mechanism that coordinates mitochondrial morphogenesis with the landmark events of meiosis and demonstrates that cells can developmentally regulate tethering to induce organelle remodeling.


Assuntos
Meiose/fisiologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/genética , Fosforilação/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA