Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Ann Allergy Asthma Immunol ; 129(2): 231-240.e2, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35405356

RESUMO

BACKGROUND: Despite the high prevalence of allergic asthma, currently, avoidance of the responsible allergens, which is nearly impossible for allergens such as house dust mite (HDM), remains among the most effective treatment. Consequently, determination of the immunogenic epitopes of allergens will aid in developing a better understanding of the condition for diagnostic and therapeutic purposes. Current methods of epitope identification, however, only evaluate immunoglobulin E-epitope binding interactions, which is not directly related to epitope immunogenicity. OBJECTIVE: To determine and rank the immunogenicity of the epitopes of major HDM allergen, Der p 2. METHODS: We performed degranulation assays with RBL-SX38 cells primed using patient plasma and challenged with nanoallergens which multivalently displayed epitopes to study the relative immunogenicity of various epitopes of Der p 2. Nanoallergens were used to evaluate epitopes individually or in combination. RESULTS: When evaluated using 3 patient samples, 3 epitopes in 2 distal regions of Der p 2 were identified as highly immunogenic when presented in combination, whereas no individual epitope triggered relevant degranulation. One of the epitopes (69-DPNACHYMKCPLVKGQQY-86) was identified to be cooperatively immunogenic when combined with other epitopes. CONCLUSION: Our study highlights the importance of conformational epitopes in HDM-related allergies. This study also provides further evidence of the versatility of nanoallergens and their value for functional characterization of allergy epitopes, by ranking the Der p 2 epitopes according to immunogenicity. We believe that nanoallergens, by aiding in identification and understanding of immunogenic epitopes, will provide a better understanding of the manifestation of the allergic condition and potentially aid in developing new treatments.


Assuntos
Antígenos de Dermatophagoides , Pyroglyphidae , Alérgenos , Animais , Proteínas de Artrópodes , Poeira , Epitopos/química , Humanos
2.
Proc Natl Acad Sci U S A ; 116(18): 8966-8974, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30962381

RESUMO

Allergies are a result of allergen proteins cross-linking allergen-specific IgE (sIgE) on the surface of mast cells and basophils. The diversity and complexity of allergen epitopes, and high-affinity of the sIgE-allergen interaction have impaired the development of allergen-specific inhibitors of allergic responses. This study presents a design of food allergen-specific sIgE inhibitors named covalent heterobivalent inhibitors (cHBIs) that selectively form covalent bonds to only sIgEs, thereby permanently inhibiting them. Using screening reagents termed nanoallergens, we identified two immunodominant epitopes in peanuts that were common in a population of 16 allergic patients. Two cHBIs designed to inhibit only these two epitopes completely abrogated the allergic response in 14 of the 16 patients in an in vitro assay and inhibited basophil activation in an allergic patient ex vivo analysis. The efficacy of the cHBI design has valuable clinical implications for many allergen-specific responses and more broadly for any antibody-based disease.


Assuntos
Arachis/imunologia , Imunoglobulina E/imunologia , Hipersensibilidade a Amendoim/imunologia , Alérgenos/imunologia , Basófilos/imunologia , Degranulação Celular , Epitopos/química , Epitopos/imunologia , Galectina 3/farmacologia , Humanos , Hipersensibilidade , Mastócitos/imunologia , Nanopartículas/uso terapêutico
3.
J Immunol ; 203(1): 21-30, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31101666

RESUMO

Drug allergies occur when hapten-like drug metabolites conjugated to serum proteins, through their interactions with specific IgE, trigger allergic reactions that can be life threatening. A molecule termed covalent heterobivalent inhibitor (cHBI) was designed to specifically target drug hapten-specific IgE to prevent it from binding drug-haptenated serum proteins. cHBI binds the two independent sites on a drug hapten-specific Ab and covalently conjugates only to the specific IgE, permanently inhibiting it. The cHBI design was evaluated via ELISA to measure cHBI-IgE binding, degranulation assays of rat basophil leukemia cells for in vitro efficacy, and mouse models of ear swelling and systemic anaphylaxis responses for in vivo efficacy. The cHBI design was evaluated using two separate models: one specific to inhibit penicillin G-reactive IgE and another to inhibit IgE specific to a model compound, dansyl. We show that cHBI conjugated specifically to its target Ab and inhibited degranulation in cellular degranulation assays using rat basophil leukemia cells. Furthermore, cHBIs demonstrated in vivo inhibition of allergic responses in both murine models. We establish the cHBI design to be a versatile platform for inhibiting hapten/IgE interactions, which can potentially be applied to inhibit IgE-mediated allergic reactions to any drug/small-molecule allergy.


Assuntos
Anafilaxia/prevenção & controle , Basófilos/imunologia , Hipersensibilidade a Drogas/tratamento farmacológico , Naftalenos/metabolismo , Alérgenos/imunologia , Anafilaxia/etiologia , Animais , Complexo Antígeno-Anticorpo/imunologia , Degranulação Celular , Linhagem Celular , Modelos Animais de Doenças , Hipersensibilidade a Drogas/complicações , Ensaio de Imunoadsorção Enzimática , Epitopos/metabolismo , Feminino , Haptenos/imunologia , Humanos , Imunoglobulina E/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Naftalenos/síntese química , Penicilinas/imunologia , Ligação Proteica , Ratos
5.
Analyst ; 141(24): 6571-6582, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27845784

RESUMO

Here, we present an affinity membrane chromatography technique for purification of monoclonal and polyclonal antibodies from cell culture media of hybridomas and ascites fluids. The m-NBST method utilizes the nucleotide-binding site (NBS) that is located on the Fab variable domain of immunoglobulins to enable capturing of antibody molecules on a membrane affinity column via a small molecule, tryptamine, which has a moderate binding affinity to the NBS. Regenerated cellulose membrane was selected as a matrix due to multiple advantages over traditionally used resin-based affinity systems. Rituximab was used for proof of concept experiments. Antibody purification was accomplished by first capture of injected samples while running equilibration buffer (50 mM sodium phosphate pH 7.0), followed by elution achieved by running a gradient of mild elution buffer (3 M NaCl in 50 mM phosphate pH 7.0). The results indicate that the m-NBST column efficiency for Rituximab was >98%, with a purity level of >98%. The quality and the capacity of this small molecule membrane affinity purification method is further evaluated for a number of parameters such as: injection concentrations, volumes, wash/bind time, elution gradient, antibody/protein-contaminant combinations, effects of injection buffer, post-purification antigen binding activity of antibodies, and column reusability and stability.


Assuntos
Cromatografia de Afinidade , Rituximab/isolamento & purificação , Triptaminas/química , Animais , Antígenos , Sítios de Ligação , Camundongos , Nucleotídeos
6.
J Immunol ; 192(5): 2035-41, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24489096

RESUMO

Current treatments for allergies include epinephrine and antihistamines, which treat the symptoms after an allergic response has taken place; steroids, which result in local and systemic immune suppression; and IgE-depleting therapies, which can be used only for a narrow range of clinical IgE titers. The limitations of current treatments motivated the design of a heterobivalent inhibitor (HBI) of IgE-mediated allergic responses that selectively inhibits allergen-IgE interactions, thereby preventing IgE clustering and mast cell degranulation. The HBI was designed to simultaneously target the allergen binding site and the adjacent conserved nucleotide binding site (NBS) found on the Fab of IgE Abs. The bivalent targeting was accomplished by linking a hapten to an NBS ligand with an ethylene glycol linker. The hapten moiety of HBI enables selective targeting of a specific IgE, whereas the NBS ligand enhances avidity for the IgE. Simultaneous bivalent binding to both sites provided HBI with 120-fold enhancement in avidity for the target IgE compared with the monovalent hapten. The increased avidity for IgE made HBI a potent inhibitor of mast cell degranulation in the rat basophilic leukemia mast cell model, in the passive cutaneous anaphylaxis mouse model of allergy, and in mice sensitized to the model allergen. In addition, HBI did not have any observable systemic toxic effects even at elevated doses. Taken together, these results establish the HBI design as a broadly applicable platform with therapeutic potential for the targeted and selective inhibition of IgE-mediated allergic responses, including food, environmental, and drug allergies.


Assuntos
Alérgenos/farmacologia , Complexo Antígeno-Anticorpo/farmacologia , Degranulação Celular/efeitos dos fármacos , Imunoglobulina E/farmacologia , Fragmentos Fab das Imunoglobulinas/farmacologia , Mastócitos/imunologia , Alérgenos/imunologia , Animais , Complexo Antígeno-Anticorpo/imunologia , Degranulação Celular/imunologia , Linhagem Celular Tumoral , Feminino , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Imunoglobulina E/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Ligantes , Mastócitos/citologia , Mastócitos/patologia , Camundongos , Ratos
7.
Nat Chem Biol ; 9(12): 789-95, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24096304

RESUMO

Development of specific inhibitors of allergy has had limited success, in part, owing to a lack of experimental models that reflect the complexity of allergen-IgE interactions. We designed a heterotetravalent allergen (HtTA) system, which reflects epitope heterogeneity, polyclonal response and number of immunodominant epitopes observed in natural allergens, thereby providing a physiologically relevant experimental model to study mast cell degranulation. The HtTA design revealed the importance of weak-affinity epitopes in allergy, particularly when presented with high-affinity epitopes. The effect of selective inhibition of weak-affinity epitope-IgE interactions was investigated with heterobivalent inhibitors (HBIs) designed to simultaneously target the antigen- and nucleotide-binding sites on the IgE Fab. HBI demonstrated enhanced avidity for the target IgE and was a potent inhibitor of degranulation in vitro and in vivo. These results demonstrate that partial inhibition of allergen-IgE interactions was sufficient to prevent mast cell degranulation, thus establishing the therapeutic potential of the HBI design.


Assuntos
Degranulação Celular/fisiologia , Epitopos/metabolismo , Imunoglobulina E/metabolismo , Mastócitos/fisiologia , Alérgenos/química , Alérgenos/imunologia , Animais , Sítios de Ligação , Epitopos/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Anafilaxia Cutânea Passiva/imunologia , Conformação Proteica , Engenharia de Proteínas
8.
Biotechnol Bioeng ; 112(7): 1327-34, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25678249

RESUMO

The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides.


Assuntos
Biotinilação , Doença pelo Vírus Ebola/diagnóstico , Fragmentos Fab das Imunoglobulinas/metabolismo , Testes Sorológicos/métodos , Antígenos Virais/metabolismo , Sítios de Ligação , Ligação Proteica , Sensibilidade e Especificidade
9.
Langmuir ; 31(35): 9728-36, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26273992

RESUMO

Oriented immobilization of antibodies and antibody fragments has become increasingly important as a result of the efforts to reduce the size of diagnostic and sensor devices to miniaturized dimensions for improved accessibility to the end-user. Reduced dimensions of sensor devices necessitate the immobilized antibodies to conserve their antigen binding activity for proper operation. Fab fragments are becoming more commonly used in small-scaled diagnostic devices due to their small size and ease of manufacture. In this study, we used the previously described UV-NBS(Biotin) method to functionalize Fab fragments with IBA-EG11-Biotin linker utilizing UV energy to initiate a photo-cross-linking reaction between the nucleotide binding site (NBS) on the Fab fragment and IBA-Biotin molecule. Our results demonstrate that immobilization of biotinylated Fab fragments via UV-NBS(Biotin) method generated the highest level of immobilized Fab on surfaces when compared to other typical immobilization methods while preserving antigen binding activity. UV-NBS(Biotin) method provided 432-fold, 114-fold, and 29-fold improved antigen detection sensitivity than physical adsorption, NHS-Biotin, and ε-NH3(+), methods, respectively. Additionally, the limit of detection (LOD) for PSA utilizing Fab fragments immobilized via UV-NBS(Biotin) method was significantly lower than that of the other immobilization methods, with an LOD of 0.4 pM PSA. In summary, site-specific biotinylation of Fab fragments without structural damage or loss in antigen binding activity provides a wide range of application potential for UV-NBS immobilization technique across numerous diagnostic devices and nanotechnologies.


Assuntos
Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Antígenos/análise , Antígenos/imunologia , Biotinilação , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Nucleotídeos/imunologia , Sítios de Ligação , Estrutura Molecular , Nucleotídeos/química
11.
Bioconjug Chem ; 25(7): 1198-202, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24932680

RESUMO

Described here is a UV photo-cross-linking method that utilizes the NBS (nucleotide binding site) for site-specific covalent functionalization of antibodies with reactive thiol moieties (UV-NBS(Thiol)), while preserving antibody activity. By synthesizing an indole-3-butyric acid (IBA) conjugated version of cysteine we site-specifically photo-cross-linked a reactive thiol moiety to antibodies at the NBS. This thiol moiety can then be used as an orthogonally reactive location to conjugate various types of functional ligands that possess a thiol reactive group through disulfide bond formation or reaction with a maleimide functionalized ligand. Our results demonstrate the utility of the UV-NBS(Thiol) method by successfully functionalizing a prostate specific antigen antibody (IgG(PSA)) with IBA-Thiol and subsequent reaction with maleimide-fluorescein. An optimal UV energy of 0.5-1.5 J/cm(2) was determined to yield the most efficient photo-cross-linking and resulted in 1-1.5 conjugations per antibody while preserving antibody/antigen binding activity and Fc recognition. Utilizing the IBA-Thiol ligand allows for an efficient means of site-specifically conjugating UV sensitive functionalities to antibody NBS that would otherwise not have been amenable by the previously described UV-NBS photo-cross-linking method. The UV-NBS(Thiol) conjugation strategy can be utilized in various diagnostic and therapeutic applications with nearly limitless potential for the preparation of site-specific covalent conjugation of affinity tags, fluorescent molecules, peptides, and chemotherapeutics to antibodies.


Assuntos
Anticorpos/imunologia , Anticorpos/metabolismo , Antígenos/metabolismo , Imunoglobulina G/imunologia , Nucleotídeos/metabolismo , Compostos de Sulfidrila/metabolismo , Anticorpos/química , Sítios de Ligação , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Indóis/química , Indóis/metabolismo , Modelos Moleculares , Nucleotídeos/química , Compostos de Sulfidrila/química , Raios Ultravioleta
12.
Analyst ; 139(17): 4247-55, 2014 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-25006715

RESUMO

In a previous study, we demonstrated a non-chromatographic affinity-based precipitation method, using trivalent haptens, for the purification of mAbs. In this study, we significantly improved this process by using a simplified bivalent peptidic hapten (BPH) design, which enables facile and rapid purification of mAbs while overcoming the limitations of the previous trivalent design. The improved affinity-based precipitation method (ABP(BPH)) combines the simplicity of salt-induced precipitation with the selectivity of affinity chromatography for the purification of mAbs. The ABP(BPH) method involves 3 steps: (i) precipitation and separation of protein contaminants larger than immunoglobulins with ammonium sulfate; (ii) selective precipitation of the target-antibody via BPH by inducing antibody-complex formation; (iii) solubilization of the antibody pellet and removal of BPH with membrane filtration resulting in the pure antibody. The ABP(BPH) method was evaluated by purifying the pharmaceutical antibody trastuzumab from common contaminants including CHO cell conditioned media, DNA, ascites fluid, other antibodies, and denatured antibody with >85% yield and >97% purity. Importantly, the purified antibody demonstrated native binding activity to cell lines expressing the target protein, HER2. Combined, the ABP(BPH) method is a rapid and scalable process for the purification of antibodies with the potential to improve product quality while decreasing purification costs.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Haptenos/imunologia , Sulfato de Amônio/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/isolamento & purificação , Células CHO , Linhagem Celular , Precipitação Química , Cromatografia de Afinidade/métodos , Cromatografia de Fase Reversa/métodos , Cricetinae , Cricetulus , Filtração/métodos , Haptenos/química , Humanos , Peptídeos/química , Peptídeos/imunologia , Desnaturação Proteica , Trastuzumab
13.
Biochem J ; 449(1): 91-9, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23050868

RESUMO

The present paper describes the design of a HtTA (heterotetravalent allergen) as a multi-component experimental system that enables an integrative approach to study mast cell degranulation. The HtTA design allows presentation of two distinct haptens, each with a valency of 2, thereby better reflecting the complexity of natural allergens by displaying epitope heterogeneity and IgE antibody variability. Using the HtTA design, synthetic allergens HtTA-1 and HtTA-2 were synthesized to model a combination of epitope/IgE affinities. HtTA-1 presented DNP (2,4-dinitrophenyl) and dansyl haptens (Kd=22 and 54 nM for IgEDNP and IgEdansyl respectively) and HtTA-2 presented dansyl and the weak-affinity DNP-Pro (DNP-proline) haptens (Kd=550 nM for IgEDNP). Both HtTAs effectively induced degranulation when mast cells were primed with both IgEDNP and IgEdansyl antibodies. Interestingly tetravalent DNP-Pro or bivalent dansyl were insufficient in stimulating a degranulation response, illustrating the significance of valency, affinity and synergy in allergen-IgE interactions. Importantly, maximum degranulation with both HtTA-1 and HtTA-2 was observed when only 50% of the mast cell-bound IgEs were hapten-specific (25% IgEdansyl and 25% IgEDNP). Taken together, results of the present study establish the HtTA system as a physiologically relevant experimental model and demonstrates its utility in elucidating critical mechanisms of mast cell degranulation.


Assuntos
Alérgenos/imunologia , Degranulação Celular/fisiologia , Desenho de Fármacos , Epitopos/química , Epitopos/imunologia , Imunoglobulina E/biossíntese , Mastócitos/imunologia , Mastócitos/metabolismo , Alérgenos/química , Alérgenos/fisiologia , Animais , Degranulação Celular/efeitos dos fármacos , Heterogeneidade Genética , Imunoglobulina E/química , Mastócitos/efeitos dos fármacos , Ratos
14.
Anal Chem ; 85(10): 5271-8, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23597026

RESUMO

This Article describes an affinity-based precipitation method for the rapid and nonchromatographic purification of bivalently active monoclonal antibodies by combining the selectivity of affinity chromatography with the simplicity of salt-induced precipitation. This procedure involves (i) precipitation of proteins heavier than immunoglobulins with ammonium sulfate; (ii) formation and selective precipitation of cyclic antibody complexes created by binding to trivalent haptens specific for the antibody; and (iii) membrane filtration of the solubilized antibody pellet to remove the trivalent hapten from the purified antibody. We applied this technique to the purification of two pharmaceutical antibodies, trastuzumab and rituximab, by synthesizing trivalent haptens specific for each antibody. Using this method, we were able to purify both antibodies from typical contaminants including CHO cell conditioned media, ascites fluid, DNA, and other antibodies with yields >85% and with >95% purity. The purified antibodies displayed native binding levels to cell lines expressing the target proteins demonstrating that the affinity-based precipitation method did not adversely affect the antibodies. The selectivity of the affinity-based precipitation method for bivalently active antibodies was established by purifying trastuzumab from a solution containing both active and chemically denatured trastuzumab. Prior to purification, the solutions displayed 20-76% reduction in binding activity, and after purification, native binding activity was restored, indicating that the purified product contained only bivalently active antibody. Taken together, the affinity-based precipitation method provides a rapid and straightforward process for the purification of antibodies with the potential to improve product quality while decreasing the purification costs at both the lab and the industrial scale.


Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/isolamento & purificação , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/isolamento & purificação , Ascite , Precipitação Química , Sulfato de Amônio/química , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Murinos/imunologia , Especificidade de Anticorpos , Células CHO , Cricetinae , Cricetulus , Meios de Cultivo Condicionados/química , DNA/isolamento & purificação , Haptenos/imunologia , Desnaturação Proteica , Rituximab , Trastuzumab
15.
Analyst ; 138(17): 4746-51, 2013 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-23841107

RESUMO

Liposome Extruder Purification (LEP) allows for the rapid purification of diverse liposome formulations using the same extrusion apparatus employed during liposome formation. The LEP process provides a means for purifying functionalized liposomes from non-conjugated drug or protein contaminants with >93% liposome recovery and >93% contaminant removal in a single step.


Assuntos
Fracionamento Químico/métodos , Lipossomos/isolamento & purificação , Animais , Bovinos , Química Farmacêutica , Lipossomos/química , Fatores de Tempo
16.
Proc Natl Acad Sci U S A ; 107(28): 12435-40, 2010 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-20616005

RESUMO

Cisplatin is a first line chemotherapy for most types of cancer. However, its use is dose-limited due to severe nephrotoxicity. Here we report the rational engineering of a novel nanoplatinate inspired by the mechanisms underlying cisplatin bioactivation. We engineered a novel polymer, glucosamine-functionalized polyisobutylene-maleic acid, where platinum (Pt) can be complexed to the monomeric units using a monocarboxylato and an O --> Pt coordinate bond. We show that at a unique platinum to polymer ratio, this complex self-assembles into a nanoparticle, which releases cisplatin in a pH-dependent manner. The nanoparticles are rapidly internalized into the endolysosomal compartment of cancer cells, and exhibit an IC50 (4.25 +/- 0.16 microM) comparable to that of free cisplatin (3.87 +/- 0.37 microM), and superior to carboplatin (14.75 +/- 0.38 microM). The nanoparticles exhibited significantly improved antitumor efficacy in terms of tumor growth delay in breast and lung cancers and tumor regression in a K-ras(LSL/+)/Pten(fl/fl) ovarian cancer model. Furthermore, the nanoparticle treatment resulted in reduced systemic and nephrotoxicity, validated by decreased biodistribution of platinum to the kidney as quantified using inductively coupled plasma spectroscopy. Given the universal need for a better platinate, we anticipate this coupling of nanotechnology and structure-activity relationship to rationally reengineer cisplatin could have a major impact globally in the clinical treatment of cancer.


Assuntos
Cisplatino , Nanopartículas/uso terapêutico , Nanotecnologia/métodos , Animais , Carboplatina/farmacocinética , Carboplatina/farmacologia , Cisplatino/farmacocinética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Concentração Inibidora 50 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Platina , Polienos , Polímeros , Cloridrato de Raloxifeno , Relação Estrutura-Atividade , Distribuição Tecidual
17.
Nanoscale ; 15(32): 13322-13334, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37526009

RESUMO

Here, rational engineering of doxorubicin prodrug loaded peptide-targeted liposomal nanoparticles to selectively target metastatic breast cancer cells in vivo is described. Glucose-regulated protein 78 (GRP78), a heat shock protein typically localized in the endoplasmic reticulum in healthy cells, has been identified to home to the cell surface in certain cancers, and thus has emerged as a promising therapeutic target. Recent reports indicated GRP78 to be expressed on the cell surface of an aggressive subpopulation of stem-like breast cancer cells that exhibit metastatic potential. In this study, a targeted nanoparticle formulation with a GRP78-binding peptide (Kd of 7.4 ± 1.0 µM) was optimized to selectively target this subpopulation. In vitro studies with breast cancer cell lines showed the targeted nanoparticle formulation (TNPGRP78pep) achieved enhanced cellular uptake, while maintaining selectivity over the control groups. In vivo, TNPGRP78pep loaded with doxorubicin prodrug was evaluated using a lung metastatic mouse model and demonstrated inhibition of breast cancer cell seeding to lungs down at the level of negative control groups. Combined, this study established that specific-targeting of surface GRP78 expressing a subpopulation of aggressive breast cancer cells was able to inhibit breast cancer metastasis to lungs, and underpinned the significance of GRP78 in breast cancer metastasis.


Assuntos
Neoplasias , Pró-Fármacos , Animais , Camundongos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Membrana , Linhagem Celular Tumoral , Glucose , Peptídeos , Doxorrubicina/farmacologia
18.
Biomaterials ; 292: 121913, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442437

RESUMO

Here, we report a CD138 receptor targeting liposomal formulation (TNP[Prodrug-4]) that achieved efficacious tumor growth inhibition in treating multiple myeloma by overcoming the dose limiting severe toxicity issues of a highly potent drug, Mertansine (DM1). Despite the promising potential to treat various cancers, due to poor solubility and pharmacokinetic profile, DM1's translation to the clinic has been unsatisfactory. We hypothesized that the optimal prodrug chemistry would promote efficient loading of the prodrug into targeted nanoparticles and achieve controlled release following endocytosis by the cancer cells, consequently, accomplish the most potent tumor growth inhibition. We evaluated four functional linker chemistries for synthesizing DM1-Prodrug molecules and evaluated their stability and cancer cell toxicity in vitro. It was determined that the phosphodiester moiety, as part of nanoparticle formulations, demonstrated most favorable characteristics with an IC50 of ∼16 nM. Nanoparticle formulations of Prodrug-4 enabled its administration at 8-fold higher dosage of equivalent free drug while remaining below maximum tolerated dose. Importantly, TNP[Prodrug-4] achieved near complete inhibition of tumor growth (∼99% by day 10) compared to control, without displaying noticeable systemic toxicity. TNP[Prodrug-4] promises a formulation that could potentially make DM1 treatment available for wider clinical applications with a long-term goal for better patient outcomes.


Assuntos
Maitansina , Mieloma Múltiplo , Nanopartículas , Pró-Fármacos , Humanos , Pró-Fármacos/química , Mieloma Múltiplo/tratamento farmacológico , Maitansina/uso terapêutico , Maitansina/farmacologia , Nanopartículas/química , Lipossomos , Peptídeos , Linhagem Celular Tumoral
19.
Sci Transl Med ; 15(682): eadd6373, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36753563

RESUMO

Peanut-induced allergy is an immunoglobulin E (IgE)-mediated type I hypersensitivity reaction that manifests symptoms ranging from local edema to life-threatening anaphylaxis. Although there are treatments for symptoms in patients with allergies resulting from allergen exposure, there are few preventive therapies other than strict dietary avoidance or oral immunotherapy, neither of which are successful in all patients. We have previously designed a covalent heterobivalent inhibitor (cHBI) that binds in an allergen-specific manner as a preventive for allergic reactions. Building on previous in vitro testing, here, we developed a humanized mouse model to test cHBI efficacy in vivo. Nonobese diabetic-severe combined immunodeficient γc-deficient mice expressing transgenes for human stem cell factor, granulocyte-macrophage colony-stimulating factor, and interleukin-3 developed mature functional human mast cells in multiple tissues and displayed robust anaphylactic reactions when passively sensitized with patient-derived IgE monoclonal antibodies specific for peanut Arachis hypogaea 2 (Ara h 2). The allergic response in humanized mice was IgE dose dependent and was mediated by human mast cells. Using this humanized mouse model, we showed that cHBI prevented allergic reactions for more than 2 weeks when administered before allergen exposure. cHBI also prevented fatal anaphylaxis and attenuated allergic reactions when administered shortly after the onset of symptoms. cHBI impaired mast cell degranulation in vivo in an allergen-specific manner. cHBI rescued the mice from lethal anaphylactic responses during oral Ara h 2 allergen-induced anaphylaxis. Together, these findings suggest that cHBI has the potential to be an effective preventative for peanut-specific allergic responses in patients.


Assuntos
Anafilaxia , Hipersensibilidade a Amendoim , Humanos , Camundongos , Animais , Anafilaxia/prevenção & controle , Arachis , Alérgenos , Imunoglobulina E/metabolismo , Hipersensibilidade a Amendoim/prevenção & controle
20.
J Am Chem Soc ; 134(1): 333-45, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22088143

RESUMO

This paper describes a synthetic dimer of carbonic anhydrase, and a series of bivalent sulfonamide ligands with different lengths (25 to 69 Å between the ends of the fully extended ligands), as a model system to use in examining the binding of bivalent antibodies to antigens. Assays based on analytical ultracentrifugation and fluorescence binding indicate that this system forms cyclic, noncovalent complexes with a stoichiometry of one bivalent ligand to one dimer. This dimer binds the series of bivalent ligands with low picomolar avidities (K(d)(avidity) = 3-40 pM). A structurally analogous monovalent ligand binds to one active site of the dimer with K(d)(mono) = 16 nM. The bivalent association is thus significantly stronger (K(d)(mono)/K(d)(avidity) ranging from ~500 to 5000 unitless) than the monovalent association. We infer from these results, and by comparison of these results to previous studies, that bivalency in antibodies can lead to associations much tighter than monovalent associations (although the observed bivalent association is much weaker than predicted from the simplest level of theory: predicted K(d)(avidity) of ~0.002 pM and K(d)(mono)/K(d)(avidity) ~ 8 × 10(6) unitless).


Assuntos
Anidrases Carbônicas/química , Modelos Moleculares , Calorimetria , Anidrases Carbônicas/metabolismo , Etoxzolamida/química , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Ligantes , Multimerização Proteica , Estrutura Quaternária de Proteína , Sarcosina/química , Sulfonamidas/química , Sulfonamidas/metabolismo , Termodinâmica , Benzenossulfonamidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA