RESUMO
A catalytic protocol for the base-mediated amidation of unactivated esters with amino alcohol derivatives is reported. Investigations into mechanistic aspects of the process indicate that the reaction involves an initial transesterification, followed by an intramolecular rearrangement. The reaction is highly general in nature and can be extended to include the synthesis of oxazolidinone systems through use of dimethyl carbonate.
Assuntos
Amino Álcoois/química , Oxazolidinonas/síntese química , Catálise , Ésteres , Formiatos/química , Estrutura MolecularRESUMO
Cryptosporidiosis is a diarrheal disease caused by infection with Cryptosporidium spp. parasites and is a leading cause of death in malnourished children worldwide. The only approved treatment, nitazoxanide, has limited efficacy in this at-risk patient population. Additional safe therapeutics are urgently required to tackle this unmet medical need. However, the development of anti-cryptosporidial drugs is hindered by a lack of understanding of the optimal compound properties required to treat this gastrointestinal infection. To address this knowledge gap, a diverse set of potent lysyl-tRNA synthetase inhibitors was profiled to identify optimal physicochemical and pharmacokinetic properties required for efficacy in a chronic mouse model of infection. The results from this comprehensive study illustrated the importance of balancing solubility and permeability to achieve efficacy in vivo. Our results establish in vitro criteria for solubility and permeability that are predictive of compound efficacy in vivo to guide the optimization of anti-cryptosporidial drugs. Two compounds from chemically distinct series (DDD489 and DDD508) were identified as demonstrating superior efficacy and prioritized for further evaluation. Both compounds achieved marked parasite reduction in immunocompromised mouse models and a disease-relevant calf model of infection. On the basis of these promising data, these compounds have been selected for progression to preclinical safety studies, expanding the portfolio of potential treatments for this neglected infectious disease.
Assuntos
Criptosporidiose , Lisina-tRNA Ligase , Permeabilidade , Solubilidade , Animais , Criptosporidiose/tratamento farmacológico , Camundongos , Lisina-tRNA Ligase/metabolismo , Lisina-tRNA Ligase/antagonistas & inibidores , Cryptosporidium/efeitos dos fármacos , Humanos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Inibidores Enzimáticos/química , Modelos Animais de DoençasRESUMO
The expedient synthesis of compounds enriched in sp3 character is key goal in modern drug discovery. Herein, we report how a single pot Suzuki-Miyaura-hydrogenation can be used to furnish lead and fragment-like products in good to excellent yields. The approach has been successfully applied in formats amenable to parallel synthesis, in an asymmetric sense, and in the preparation of molecules with annotated biological activity.