Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Genes Dev ; 34(23-24): 1619-1636, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122293

RESUMO

Mutations in the telomere-binding protein POT1 are associated with solid tumors and leukemias. POT1 alterations cause rapid telomere elongation, ATR kinase activation, telomere fragility, and accelerated tumor development. Here, we define the impact of mutant POT1 alleles through complementary genetic and proteomic approaches based on CRISPR interference and biotin-based proximity labeling, respectively. These screens reveal that replication stress is a major vulnerability in cells expressing mutant POT1, which manifests as increased telomere mitotic DNA synthesis at telomeres. Our study also unveils a role for the nuclear pore complex in resolving replication defects at telomeres. Depletion of nuclear pore complex subunits in the context of POT1 dysfunction increases DNA damage signaling, telomere fragility and sister chromatid exchanges. Furthermore, we observed telomere repositioning to the nuclear periphery driven by nuclear F-actin polymerization in cells with POT1 mutations. In conclusion, our study establishes that relocalization of dysfunctional telomeres to the nuclear periphery is critical to preserve telomere repeat integrity.


Assuntos
Replicação do DNA/genética , Poro Nuclear/patologia , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Linhagem Celular Tumoral , Dano ao DNA/genética , Humanos , Mitose/genética , Mutação , Neoplasias/genética , Neoplasias/fisiopatologia , Complexo Shelterina , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
2.
Nature ; 589(7840): 103-109, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33239783

RESUMO

Mammalian telomeres protect chromosome ends from aberrant DNA repair1. TRF2, a component of the telomere-specific shelterin protein complex, facilitates end protection through sequestration of the terminal telomere repeat sequence within a lariat T-loop structure2,3. Deleting TRF2 (also known as TERF2) in somatic cells abolishes T-loop formation, which coincides with telomere deprotection, chromosome end-to-end fusions and inviability3-9. Here we establish that, by contrast, TRF2 is largely dispensable for telomere protection in mouse pluripotent embryonic stem (ES) and epiblast stem cells. ES cell telomeres devoid of TRF2 instead activate an attenuated telomeric DNA damage response that lacks accompanying telomere fusions, and propagate for multiple generations. The induction of telomere dysfunction in ES cells, consistent with somatic deletion of Trf2 (also known as Terf2), occurs only following the removal of the entire shelterin complex. Consistent with TRF2 being largely dispensable for telomere protection specifically during early embryonic development, cells exiting pluripotency rapidly switch to TRF2-dependent end protection. In addition, Trf2-null embryos arrest before implantation, with evidence of strong DNA damage response signalling and apoptosis specifically in the non-pluripotent compartment. Finally, we show that ES cells form T-loops independently of TRF2, which reveals why TRF2 is dispensable for end protection during pluripotency. Collectively, these data establish that telomere protection is solved by distinct mechanisms in pluripotent and somatic tissues.


Assuntos
Cromossomos de Mamíferos/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/deficiência , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Sobrevivência Celular , Cromossomos de Mamíferos/genética , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/citologia , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
3.
Mol Cell ; 71(4): 510-525.e6, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30033372

RESUMO

Telomeres regulate DNA damage response (DDR) and DNA repair activity at chromosome ends. How telomere macromolecular structure contributes to ATM regulation and its potential dissociation from control over non-homologous end joining (NHEJ)-dependent telomere fusion is of central importance to telomere-dependent cell aging and tumor suppression. Using super-resolution microscopy, we identify that ATM activation at mammalian telomeres with reduced TRF2 or at human telomeres during mitotic arrest occurs specifically with a structural change from telomere loops (t-loops) to linearized telomeres. Additionally, we find the TRFH domain of TRF2 regulates t-loop formation while suppressing ATM activity. Notably, we demonstrate that ATM activation and telomere linearity occur separately from telomere fusion via NHEJ and that linear DDR-positive telomeres can remain resistant to fusion, even during an extended G1 arrest, when NHEJ is most active. Collectively, these results suggest t-loops act as conformational switches that specifically regulate ATM activation independent of telomere mechanisms to inhibit NHEJ.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Reparo do DNA por Junção de Extremidades , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA , Fibroblastos/citologia , Fibroblastos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Células HEK293 , Células HeLa , Humanos , Camundongos , Mitose , Domínios Proteicos , Telômero/ultraestrutura , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
4.
Nature ; 575(7783): 523-527, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723267

RESUMO

The protection of telomere ends by the shelterin complex prevents DNA damage signalling and promiscuous repair at chromosome ends. Evidence suggests that the 3' single-stranded telomere end can assemble into a lasso-like t-loop configuration1,2, which has been proposed to safeguard chromosome ends from being recognized as DNA double-strand breaks2. Mechanisms must also exist to transiently disassemble t-loops to allow accurate telomere replication and to permit telomerase access to the 3' end to solve the end-replication problem. However, the regulation and physiological importance of t-loops in the protection of telomere ends remains unknown. Here we identify a CDK phosphorylation site in the shelterin subunit at Ser365 of TRF2, whose dephosphorylation in S phase by the PP6R3 phosphatase provides a narrow window during which the RTEL1 helicase can transiently access and unwind t-loops to facilitate telomere replication. Re-phosphorylation of TRF2 at Ser365 outside of S phase is required to release RTEL1 from telomeres, which not only protects t-loops from promiscuous unwinding and inappropriate activation of ATM, but also counteracts replication conflicts at DNA secondary structures that arise within telomeres and across the genome. Hence, a phospho-switch in TRF2 coordinates the assembly and disassembly of t-loops during the cell cycle, which protects telomeres from replication stress and an unscheduled DNA damage response.


Assuntos
Ciclo Celular , Quinases Ciclina-Dependentes/metabolismo , Fosfosserina/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , DNA/biossíntese , DNA/química , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA , Replicação do DNA , Fibroblastos , Genoma/genética , Células HEK293 , Humanos , Camundongos , Mutação , Fenótipo , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fase S , Complexo Shelterina , Telomerase/metabolismo , Telômero/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética
5.
Proc Natl Acad Sci U S A ; 116(15): 7323-7332, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30918123

RESUMO

To investigate how chromatin architecture is spatiotemporally organized at a double-strand break (DSB) repair locus, we established a biophysical method to quantify chromatin compaction at the nucleosome level during the DNA damage response (DDR). The method is based on phasor image-correlation spectroscopy of histone fluorescence lifetime imaging microscopy (FLIM)-Förster resonance energy transfer (FRET) microscopy data acquired in live cells coexpressing H2B-eGFP and H2B-mCherry. This multiplexed approach generates spatiotemporal maps of nuclear-wide chromatin compaction that, when coupled with laser microirradiation-induced DSBs, quantify the size, stability, and spacing between compact chromatin foci throughout the DDR. Using this technology, we identify that ataxia-telangiectasia mutated (ATM) and RNF8 regulate rapid chromatin decompaction at DSBs and formation of compact chromatin foci surrounding the repair locus. This chromatin architecture serves to demarcate the repair locus from the surrounding nuclear environment and modulate 53BP1 mobility.


Assuntos
Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
6.
J Cell Sci ; 132(5)2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30745338

RESUMO

Cancers that utilize the alternative lengthening of telomeres (ALT) mechanism for telomere maintenance are often difficult to treat and have a poor prognosis. They are also commonly deficient for expression of ATRX protein, a repressor of ALT activity, and a component of promyelocytic leukemia nuclear bodies (PML NBs) that are required for intrinsic immunity to various viruses. Here, we asked whether ATRX deficiency creates a vulnerability in ALT cancer cells that could be exploited for therapeutic purposes. We showed in a range of cell types that a mutant herpes simplex virus type 1 (HSV-1) lacking ICP0, a protein that degrades PML NB components including ATRX, was ten- to one thousand-fold more effective in infecting ATRX-deficient cells than wild-type ATRX-expressing cells. Infection of co-cultured primary and ATRX-deficient cancer cells revealed that mutant HSV-1 selectively killed ATRX-deficient cells. Sensitivity to mutant HSV-1 infection also correlated inversely with PML protein levels, and we showed that ATRX upregulates PML expression at both the transcriptional and post-transcriptional levels. These data provide a basis for predicting, based on ATRX or PML levels, which tumors will respond to a selective oncolytic herpesvirus.


Assuntos
Herpes Simples/metabolismo , Herpesvirus Humano 1/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Rim/metabolismo , Proteína da Leucemia Promielocítica/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína Nuclear Ligada ao X/deficiência , Animais , Morte Celular , Linhagem Celular Tumoral , Cricetinae , Herpes Simples/patologia , Humanos , Proteínas Imediatamente Precoces/genética , Imunidade Inata/genética , Rim/patologia , Mutação/genética , Terapia Viral Oncolítica , Proteína da Leucemia Promielocítica/genética , Homeostase do Telômero , Ubiquitina-Proteína Ligases/genética
7.
Nature ; 522(7557): 492-6, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26108857

RESUMO

Tumour formation is blocked by two barriers: replicative senescence and crisis. Senescence is triggered by short telomeres and is bypassed by disruption of tumour-suppressive pathways. After senescence bypass, cells undergo crisis, during which almost all of the cells in the population die. Cells that escape crisis harbour unstable genomes and other parameters of transformation. The mechanism of cell death during crisis remains unexplained. Here we show that human cells in crisis undergo spontaneous mitotic arrest, resulting in death during mitosis or in the following cell cycle. This phenotype is induced by loss of p53 function, and is suppressed by telomerase overexpression. Telomere fusions triggered mitotic arrest in p53-compromised non-crisis cells, indicating that such fusions are the underlying cause of cell death. Exacerbation of mitotic telomere deprotection by partial TRF2 (also known as TERF2) knockdown increased the ratio of cells that died during mitotic arrest and sensitized cancer cells to mitotic poisons. We propose a crisis pathway wherein chromosome fusions induce mitotic arrest, resulting in mitotic telomere deprotection and cell death, thereby eliminating precancerous cells from the population.


Assuntos
Pontos de Checagem do Ciclo Celular , Morte Celular , Aberrações Cromossômicas , Mitose , Neoplasias/patologia , Telômero/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Linhagem Celular , Senescência Celular , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Dano ao DNA , Fusão Gênica/genética , Instabilidade Genômica , Humanos , Mitose/efeitos dos fármacos , Mitose/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/deficiência , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
8.
Mol Cell ; 51(2): 141-55, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23850488

RESUMO

Loss of chromosome end protection through telomere erosion is a hallmark of aging and senescence. Here we developed an experimental system that mimics physiological telomere deprotection in human cells and discovered that the telomere deprotection response is functionally distinct from the genomic DNA damage response. We found that, unlike genomic breaks, deprotected telomeres that are recognized as DNA damage but remain in the fusion-resistant intermediate state activate differential ataxia telangiectasia mutated (ATM) signaling where CHK2 is not phosphorylated. Also unlike genomic breaks, we found that deprotected telomeres do not contribute to the G2/M checkpoint and are instead passed through cell division to induce p53-dependent G1 arrest in the daughter cells. Telomere deprotection is therefore an epigenetic signal passed between cell generations to ensure that replication-associated telomere-dependent growth arrest occurs in stable diploid G1 phase cells before genome instability can occur.


Assuntos
Divisão Celular/fisiologia , Senescência Celular/fisiologia , Dano ao DNA/genética , Replicação do DNA , Fase G2/fisiologia , Genoma Humano , Telômero/fisiologia , Western Blotting , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Citometria de Fluxo , Imunofluorescência , Humanos , Imunoprecipitação , Mitose/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Nat Rev Genet ; 11(5): 319-30, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20351727

RESUMO

Unlimited cellular proliferation depends on counteracting the telomere attrition that accompanies DNA replication. In human cancers this usually occurs through upregulation of telomerase activity, but in 10-15% of cancers - including some with particularly poor outcome - it is achieved through a mechanism known as alternative lengthening of telomeres (ALT). ALT, which is dependent on homologous recombination, is therefore an important target for cancer therapy. Although dissection of the mechanism or mechanisms of ALT has been challenging, recent advances have led to the identification of several genes that are required for ALT and the elucidation of the biological significance of some phenotypic markers of ALT. This has enabled development of a rapid assay of ALT activity levels and the construction of molecular models of ALT.


Assuntos
Neoplasias/genética , Telômero/metabolismo , Animais , Humanos , Modelos Genéticos , Neoplasias/metabolismo , Recombinação Genética , Proteínas de Ligação a Telômeros/metabolismo
10.
Bioessays ; 36(11): 1054-61, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25171524

RESUMO

Double strand break (DSB) repair is suppressed during mitosis because RNF8 and downstream DNA damage response (DDR) factors, including 53BP1, do not localize to mitotic chromatin. Discovery of the mitotic kinase-dependent mechanism that inhibits DSB repair during cell division was recently reported. It was shown that restoring mitotic DSB repair was detrimental, resulting in repair dependent genome instability and covalent telomere fusions. The telomere DDR that occurs naturally during cellular aging and in cancer is known to be refractory to G2/M checkpoint activation. Such DDR-positive telomeres, and those that occur as part of the telomere-dependent prolonged mitotic arrest checkpoint, normally pass through mitosis without covalent ligation, but result in cell growth arrest in G1 phase. The discovery that suppressing DSB repair during mitosis may function primarily to protect DDR-positive telomeres from fusing during cell division reinforces the unique cooperation between telomeres and the DDR to mediate tumor suppression.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Instabilidade Genômica/genética , Mitose/genética , Telômero/genética , Cromatina/genética , Proteínas de Ligação a DNA/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Ubiquitinação
11.
iScience ; 27(1): 108655, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38213617

RESUMO

Alternative lengthening of telomeres (ALT) is a homology-directed repair mechanism that becomes activated in a subset of cancers to maintain telomere length. One of the defining features of ALT cells is the prevalence of extrachromosomal telomeric repeat (ECTR) DNA. Here, we identify that ALT cells engage in two modes of telomere synthesis. Non-productive telomere synthesis occurs during the G2 phase of the cell cycle and is characterized by newly synthesized internal telomeric regions that are not retained in the subsequent G1, coinciding with an induction of ECTR DNA. Productive telomere synthesis occurs specifically during the transition from G2 to mitosis and is defined as the extension of the telomere termini. While many proteins associated with break-induced telomere synthesis function in both non-productive and productive telomere synthesis, POLH specifically promotes productive telomere lengthening and suppresses non-productive telomere synthesis. These findings delineate the mechanism and cell cycle regulation of ALT-mediated telomere synthesis and extension.

12.
Nat Commun ; 15(1): 2210, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472229

RESUMO

The ATR-CHK1 DNA damage response pathway becomes activated by the exposure of RPA-coated single-stranded DNA (ssDNA) that forms as an intermediate during DNA damage and repair, and as a part of the replication stress response. Here, we identify ZNF827 as a component of the ATR-CHK1 kinase pathway. We demonstrate that ZNF827 is a ssDNA binding protein that associates with RPA through concurrent binding to ssDNA intermediates. These interactions are dependent on two clusters of C2H2 zinc finger motifs within ZNF827. We find that ZNF827 accumulates at stalled forks and DNA damage sites, where it activates ATR and promotes the engagement of homologous recombination-mediated DNA repair. Additionally, we demonstrate that ZNF827 depletion inhibits replication initiation and sensitizes cancer cells to the topoisomerase inhibitor topotecan, revealing ZNF827 as a therapeutic target within the DNA damage response pathway.


Assuntos
Proteínas Quinases , Transdução de Sinais , Proteínas Quinases/metabolismo , Fosforilação , Proteína de Replicação A/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , Dano ao DNA , DNA de Cadeia Simples , Reparo do DNA
13.
Nat Commun ; 15(1): 1385, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360978

RESUMO

The Eyes Absent proteins (EYA1-4) are a biochemically unique group of tyrosine phosphatases known to be tumour-promoting across a range of cancer types. To date, the targets of EYA phosphatase activity remain largely uncharacterised. Here, we identify Polo-like kinase 1 (PLK1) as an interactor and phosphatase substrate of EYA4 and EYA1, with pY445 on PLK1 being the primary target site. Dephosphorylation of pY445 in the G2 phase of the cell cycle is required for centrosome maturation, PLK1 localization to centrosomes, and polo-box domain (PBD) dependent interactions between PLK1 and PLK1-activation complexes. Molecular dynamics simulations support the rationale that pY445 confers a structural impairment to PBD-substrate interactions that is relieved by EYA-mediated dephosphorylation. Depletion of EYA4 or EYA1, or chemical inhibition of EYA phosphatase activity, dramatically reduces PLK1 activation, causing mitotic defects and cell death. Overall, we have characterized a phosphotyrosine signalling network governing PLK1 and mitosis.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Tirosina/metabolismo , Mitose , Centrossomo/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Células HeLa , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transativadores/metabolismo
14.
EMBO J ; 28(7): 799-809, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19214183

RESUMO

Telomere lengths are maintained in many cancer cells by the ribonucleoprotein enzyme telomerase but can be further elongated by increasing telomerase activity through the overexpression of telomerase components. We report here that increased telomerase activity results in increased telomere length that eventually reaches a plateau, accompanied by the generation of telomere length heterogeneity and the accumulation of extrachromosomal telomeric repeat DNA, principally in the form of telomeric circles (t-circles). Telomeric DNA was observed in promyelocytic leukemia bodies, but no intertelomeric copying or telomere exchange events were identified, and there was no increase in telomere dysfunction-induced foci. These data indicate that human cells possess a mechanism to negatively regulate telomere length by trimming telomeric DNA from the chromosome ends, most likely by t-loop resolution to form t-circles. Additionally, these results indicate that some phenotypic characteristics attributed to alternative lengthening of telomeres (ALT) result from increased mean telomere length, rather than from the ALT mechanism itself.


Assuntos
Telômero/química , Telômero/metabolismo , Linhagem Celular Tumoral , DNA Circular/metabolismo , Células HeLa , Humanos , Leucemia Promielocítica Aguda/metabolismo , Telomerase/metabolismo
15.
EMBO Rep ; 13(1): 52-9, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22157895

RESUMO

Replicative senescence is accompanied by a telomere-specific DNA damage response (DDR). We found that DDR+ telomeres occur spontaneously in early-passage normal human cells and increase in number with increasing cumulative cell divisions. DDR+ telomeres at replicative senescence retain TRF2 and RAP1 proteins, are not associated with end-to-end fusions and mostly result from strand-independent, postreplicative dysfunction. On the basis of the calculated number of DDR+ telomeres in G1-phase cells just before senescence and after bypassing senescence by inactivation of wild-type p53 function, we conclude that the accrual of five telomeres in G1 that are DDR+ but nonfusogenic is associated with p53-dependent senescence.


Assuntos
Senescência Celular/genética , Telômero/metabolismo , Células Cultivadas , Dano ao DNA , Humanos , Homeostase do Telômero
16.
Cell Chem Biol ; 30(12): 1652-1665.e6, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38065101

RESUMO

The TRF2 shelterin component is an essential regulator of telomere homeostasis and genomic stability. Mutations in the TRF2TRFH domain physically impair t-loop formation and prevent the recruitment of several factors that promote efficient telomere replication, causing telomeric DNA damage. Here, we design, synthesize, and biologically test covalent cyclic peptides that irreversibly target the TRF2TRFH domain. We identify APOD53 as our most promising compound, as it consistently induces a telomeric DNA damage response in cancer cell lines. APOD53 forms a covalent adduct with a reactive cysteine residue present in the TRF2TRFH domain and induces phenotypes consistent with TRF2TRFH domain mutants. These include induction of a telomeric DNA damage response, increased telomeric replication stress, and impaired recruitment of RTEL1 and SLX4 to telomeres. We demonstrate that APOD53 impairs cancer cell growth and find that co-treatment with APOD53 can exacerbate telomere replication stress caused by the G4 stabilizer RHPS4 and low dose aphidicolin (APH).


Assuntos
Peptídeos Cíclicos , Proteína 2 de Ligação a Repetições Teloméricas , Dano ao DNA , Peptídeos Cíclicos/farmacologia , Telômero , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/genética , Domínios Proteicos , Linhagem Celular Tumoral
17.
Nucleic Acids Res ; 38(1): 182-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19858100

RESUMO

Some human cancers maintain their telomeres using the alternative lengthening of telomeres (ALT) mechanism; a process thought to involve recombination. Different types of recombinational telomere elongation pathways have been identified in yeasts. In senescing yeast telomerase deletion (ter1-Delta) mutants with very short telomeres, it has been hypothesized that copying a tiny telomeric circle (t-circle) by a rolling circle mechanism is the key event in telomere elongation. In other cases more closely resembling ALT cells, such as the stn1-M1 mutant of Kluyveromyces lactis, the telomeres appear to be continuously unstable and routinely reach very large sizes. By employing two-dimensional gel electrophoresis and electron microscopy, we show that stn1-M1 cells contain abundant double stranded t-circles ranging from approximately 100 to 30,000 bp in size. We also observed small single-stranded t-circles, specifically composed of the G-rich telomeric strand and tailed circles resembling rolling circle replication intermediates. The t-circles most likely arose from recombination events that also resulted in telomere truncations. The findings strengthen the possibility that t-circles contribute to telomere maintenance in stn1-M1 and ALT cells.


Assuntos
DNA Circular/ultraestrutura , Recombinação Genética , Telômero/química , DNA Circular/análise , Eletroforese em Gel Bidimensional , Kluyveromyces/genética , Mutação , Telômero/ultraestrutura
18.
Trends Cell Biol ; 31(10): 843-855, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34183232

RESUMO

The nucleus is a dynamic environment containing chromatin, membraneless organelles, and specialized molecular structures at the nuclear membrane. Within the spectrum of DNA repair activities are observations of increased mobility of damaged chromatin and the displacement of DNA lesions to specific nuclear environments. Here, we focus on the role that nuclear-specific filamentous actin plays in mobilizing damaged chromatin in response to DNA double-strand breaks and replication stress. We also examine nuclear pore complexes and promyelocytic leukemia-nuclear bodies as specialized platforms for homology-directed repair. The literature suggests an emerging model where specific types of DNA lesions are subjected to nuclear-derived forces that mobilize damaged chromatin and promote interaction with repair hubs to facilitate specialized repair reactions.


Assuntos
Condensados Biomoleculares , Cromatina , Cromatina/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA , Humanos , Corpos Nucleares
19.
Clin Epigenetics ; 13(1): 37, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596994

RESUMO

BACKGROUND: BRG1 (encoded by SMARCA4) is a catalytic component of the SWI/SNF chromatin remodelling complex, with key roles in modulating DNA accessibility. Dysregulation of BRG1 is observed, but functionally uncharacterised, in a wide range of malignancies. We have probed the functions of BRG1 on a background of prostate cancer to investigate how BRG1 controls gene expression programmes and cancer cell behaviour. RESULTS: Our investigation of SMARCA4 revealed that BRG1 is over-expressed in the majority of the 486 tumours from The Cancer Genome Atlas prostate cohort, as well as in a complementary panel of 21 prostate cell lines. Next, we utilised a temporal model of BRG1 depletion to investigate the molecular effects on global transcription programmes. Depleting BRG1 had no impact on alternative splicing and conferred only modest effect on global expression. However, of the transcriptional changes that occurred, most manifested as down-regulated expression. Deeper examination found the common thread linking down-regulated genes was involvement in proliferation, including several known to increase prostate cancer proliferation (KLK2, PCAT1 and VAV3). Interestingly, the promoters of genes driving proliferation were bound by BRG1 as well as the transcription factors, AR and FOXA1. We also noted that BRG1 depletion repressed genes involved in cell cycle progression and DNA replication, but intriguingly, these pathways operated independently of AR and FOXA1. In agreement with transcriptional changes, depleting BRG1 conferred G1 arrest. CONCLUSIONS: Our data have revealed that BRG1 promotes cell cycle progression and DNA replication, consistent with the increased cell proliferation associated with oncogenesis.


Assuntos
Proliferação de Células/genética , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Neoplasias da Próstata/genética , Fatores de Transcrição/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Replicação do DNA/genética , Regulação para Baixo , Expressão Gênica , Humanos , Masculino , Regiões Promotoras Genéticas , Transcrição Gênica/genética
20.
Clin Cancer Res ; 27(15): 4338-4352, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33994371

RESUMO

PURPOSE: We investigated whether targeting chromatin stability through a combination of the curaxin CBL0137 with the histone deacetylase (HDAC) inhibitor, panobinostat, constitutes an effective multimodal treatment for high-risk neuroblastoma. EXPERIMENTAL DESIGN: The effects of the drug combination on cancer growth were examined in vitro and in animal models of MYCN-amplified neuroblastoma. The molecular mechanisms of action were analyzed by multiple techniques including whole transcriptome profiling, immune deconvolution analysis, immunofluorescence, flow cytometry, pulsed-field gel electrophoresis, assays to assess cell growth and apoptosis, and a range of cell-based reporter systems to examine histone eviction, heterochromatin transcription, and chromatin compaction. RESULTS: The combination of CBL0137 and panobinostat enhanced nucleosome destabilization, induced an IFN response, inhibited DNA damage repair, and synergistically suppressed cancer cell growth. Similar synergistic effects were observed when combining CBL0137 with other HDAC inhibitors. The CBL0137/panobinostat combination significantly delayed cancer progression in xenograft models of poor outcome high-risk neuroblastoma. Complete tumor regression was achieved in the transgenic Th-MYCN neuroblastoma model which was accompanied by induction of a type I IFN and immune response. Tumor transplantation experiments further confirmed that the presence of a competent adaptive immune system component allowed the exploitation of the full potential of the drug combination. CONCLUSIONS: The combination of CBL0137 and panobinostat is effective and well-tolerated in preclinical models of aggressive high-risk neuroblastoma, warranting further preclinical and clinical investigation in other pediatric cancers. On the basis of its potential to boost IFN and immune responses in cancer models, the drug combination holds promising potential for addition to immunotherapies.


Assuntos
Carbazóis/administração & dosagem , Carbazóis/farmacologia , Cromatina/efeitos dos fármacos , Inibidores de Histona Desacetilases/administração & dosagem , Inibidores de Histona Desacetilases/farmacologia , Neuroblastoma/tratamento farmacológico , Panobinostat/administração & dosagem , Panobinostat/farmacologia , Animais , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos , Camundongos , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA