Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 149: 109560, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615702

RESUMO

The JAK (Janus kinase)-STAT (Signal transducer and activator of transcription) is a well-known functional signaling pathway that plays a key role in several important biological activities such as apoptosis, cell proliferation, differentiation, and immunity. However, limited studies have explored the functions of STAT genes in invertebrates. In the present study, the gene sequences of two STAT genes from the Pacific oyster (Crassostrea gigas), termed CgSTAT-Like-1 (CgSTAT-L1) and CgSTAT-Like-2 (CgSTAT-L2), were obtained using polymerase chain reaction (PCR) amplification and cloning. Multiple sequence comparisons revealed that the sequences of crucial domains of these proteins were conserved, and the similarity with the protein sequence of other molluscan STAT is close to 90 %. The phylogenetic analyses indicated that CgSTAT-L1 and CgSTAT-L2 are novel members of the mollusk STAT family. Quantitative real-time PCR results implied that CgSTAT-L1 and CgSTAT-L2 mRNA expression was found in all tissues, and significantly induced after challenge with lipopolysaccharide (LPS), peptidoglycan (PGN), or poly(I:C). After that, dual-luciferase reporter assays denoted that overexpression of CgSTAT-L1 and CgSTAT-L2 significantly activated the NF-κB signaling, and, interestingly, the overexpressed CgSTAT proteins potentiated LPS-induced NF-κB activation. These results contributed a preliminary analysis of the immune-related function of STAT genes in oysters, laying the foundation for deeper understanding of the function of invertebrate STAT genes.


Assuntos
Sequência de Aminoácidos , Crassostrea , Filogenia , Fatores de Transcrição STAT , Alinhamento de Sequência , Animais , Crassostrea/genética , Crassostrea/imunologia , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Alinhamento de Sequência/veterinária , Lipopolissacarídeos/farmacologia , Imunidade Inata/genética , Peptidoglicano/farmacologia , Poli I-C/farmacologia , Sequência de Bases , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , DNA Complementar/genética , Clonagem Molecular , Transdução de Sinais
2.
Fish Shellfish Immunol ; 151: 109697, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871139

RESUMO

Myeloid differentiation factor-88 (MyD88) is a key adaptor of the toll-like receptor (TLR) signaling pathway and plays a crucial role in innate immune signal transduction in animals. However, the MyD88-mediated signal transduction mechanism in shellfish has not been well studied. In this study, a new MyD88 gene, CfMyD88-2, was identified in the Zhikong scallop, Chlamys farreri. The 1779 bp long open reading frame encodes 592 amino acids. The N-terminus of CfMyD88-2 contains a conserved death domain (DD), followed by a TIR (TLR/Interleukin-1 Receptor) domain. The results of the multi-sequence comparison showed that the TIR domain sequences were highly conserved. Phylogenetic analysis revealed that CfMyD88-2 was first associated with Mizuhopecten yessoensis MyD88-4 and Argopecten irradians MyD88-4. CfMyD88-2 mRNA was expressed in all scallop tissues, as detected by qRT-PCR, and the expression level was the highest in the mantle and hepatopancreas. In addition, CfMyD88-2 mRNA expression significantly increased after pathogen-associated molecular patterns (PAMPs, such as lipopolysaccharide, peptidoglycan, or polyinosinic-polycytidylic acid) stimulation. The results of the co-immunoprecipitation experiments in HEK293T cells showed that both CfMyD88-1 and CfMyD88-2 interacted with the TLR protein of scallops, suggesting the existence of more than one functional TLR-MyD88 signaling axis in scallops. Dual luciferase reporter gene assays indicated that the overexpressed CfMyD88-2 in HEK293T cells activated interferon (IFN) α, IFN-ß, IFN-γ, and NF-κB reporter genes, indicating that the protein has multiple functions. The results of the subcellular localization experiment uncovered that CfMyD88-2 was mainly localized in the cytoplasm of human cells. In summary, the novel identified CfMyD88-2 can respond to the challenge of PAMPs, participate in TLR immune signaling, and may activate downstream effector genes such as NF-κB gene. These research results will be useful in advancing the theory of innate immunity in invertebrates and provide a reference for the selection of disease-resistant scallops in the future.


Assuntos
Sequência de Aminoácidos , Regulação da Expressão Gênica , Imunidade Inata , Fator 88 de Diferenciação Mieloide , Pectinidae , Filogenia , Alinhamento de Sequência , Receptores Toll-Like , Animais , Imunidade Inata/genética , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Pectinidae/imunologia , Pectinidae/genética , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia , Receptores Toll-Like/química , Alinhamento de Sequência/veterinária , Regulação da Expressão Gênica/imunologia , Perfilação da Expressão Gênica/veterinária , Transdução de Sinais/imunologia , Humanos , Células HEK293 , Sequência de Bases
3.
Fish Shellfish Immunol ; 152: 109764, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002558

RESUMO

NF-κB (Nuclear factor-kappa B) family proteins are versatile transcription factors that play crucial regulatory roles in cell development, growth, apoptosis, inflammation, and immune response. However, there is limited research on the function of these key genes in echinoderms. In this study, an NF-κB family gene (SiRel) was identified in sea urchin Strongylocentrotus intermedius. The gene has an open reading frame length of 1809 bp and encodes for 602 amino acids. Domain prediction results revealed that the N-terminal of SiRel protein encodes a conserved Rel homology domain (RHD), including the RHD-DNA binding domain and the RHD-dimerization domain. Multiple sequence comparison results showed that the protein sequences of these two domains were conserved. Phylogenetic analysis indicated that SiRel clustered with Strongylocentrotus purpuratus p65 protein and Rel protein of other echinoderms. Results from quantitative real-time PCR demonstrated detectable SiRel mRNA expression in all tested sea urchin tissues, with the highest expression level found in the gills. And SiRel mRNA expression levels were significantly induced after LPS (Lipopolysaccharide) and poly(I:C) (Polyinosinic:polycytidylic acid) stimulation. In addition, SiRel protein expression can be found in cytoplasm and nucleus of HEK293T cells. Co-immunoprecipitation results showed that SiRel could interact with sea urchin IκB (Inhibitor of NF-κB) protein. Western blotting and dual-luciferase reporter gene assay results indicated that overexpression of SiRel in HEK293T cells could impact the phosphorylation levels of JNK (c-Jun N-terminal kinase) and Erk1/2 (Extracellular signal-regulated kinases1/2) and activate interleukin-6 (IL-6), activating protein 1 (AP-1), interferon (IFN)α/ß/γ, and signal transducer and activator of transcription 3 (STAT3) reporter genes in HEK293T cells. In conclusion, this study reveals that SiRel plays an important role in the innate immune response of sea urchins and enriches our understanding of comparative immunology theory.


Assuntos
Sequência de Aminoácidos , Regulação da Expressão Gênica , Imunidade Inata , Lipopolissacarídeos , Filogenia , Poli I-C , Alinhamento de Sequência , Strongylocentrotus , Animais , Imunidade Inata/genética , Poli I-C/farmacologia , Lipopolissacarídeos/farmacologia , Strongylocentrotus/genética , Strongylocentrotus/imunologia , Alinhamento de Sequência/veterinária , Regulação da Expressão Gênica/imunologia , Clonagem Molecular , Perfilação da Expressão Gênica/veterinária , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/imunologia , Sequência de Bases , Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Proto-Oncogênicas c-rel/metabolismo , Células HEK293
4.
Rapid Commun Mass Spectrom ; 37(15): e9536, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37160630

RESUMO

RATIONALE: The high sensitivity of the miniature mass spectrometer plays an irreplaceable role in rapid on-site detection. However, its analysis accuracy and stability should be improved due to the influence of sample pretreatment and use environment. The present study investigates the processing effects of ensemble empirical mode decomposition (EEMD) feature enhancement methods on the determination coefficient (R2 ) and relative standard deviation (RSD) of caffeine mass spectrometry (MS) signals. METHODS: This paper employs the EEMD method combined with polynomial curve fitting to enhance the characteristics of seven caffeine mass spectrum signals with different concentrations and 15 groups of caffeine mass spectrum signals with the same concentration, and the wavelet analysis method was used for comparative verification. The determination coefficient and RSD of the two methods were compared. RESULTS: We found the EEMD method's capability in adaptively decomposing caffeine mass spectrum signals is better than wavelet analysis method. The determination coefficient of the EEMD enhanced feature is better than 0.999, and the RSD is better than 2%, and both are better than wavelet analysis methods. CONCLUSIONS: The feature enhancement processing using the EEMD method has significantly improved the determination coefficient and RSD of the sample curve, improving the accuracy and stability of the data and providing a new way for miniature mass spectrometer signal processing.

5.
Fish Shellfish Immunol ; 132: 108497, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36539167

RESUMO

The interferon regulatory factor (IRF) family, a class of transcription factors with key functions, are important in host innate immune defense and stress response. However, further research is required to determine the functions of IRFs in invertebrates. In this study, the coding sequence of an IRF gene was obtained from the Zhikong scallop (Chlamys farreri) and named CfIRF8-like. The open reading frame of CfIRF8-like was 1371 bp long and encoded 456 amino acids. Protein domain prediction revealed a typical IRF domain in the N-terminus of the CfIRF8-like protein and a typical IRF3 domain in the C-terminus. Multiple sequence alignment confirmed the conservation of the amino acid sequences of these two functional protein domains. Phylogenetic analysis showed that CfIRF8-like clustered with mollusk IRF8 proteins and then clustered with vertebrate IRF3, IRF4, and IRF5 subfamily proteins. Quantitative real-time PCR detected CfIRF8-like mRNA in all tested scallop tissues, with the highest expression in the gills. Simultaneously, the expression of CfIRF8-like transcripts in gills was significantly induced by polyinosinic-polycytidylic acid challenge. The results of protein interaction experiments showed that CfIRF8-like could directly bind the TBK1/IKKε family protein of scallop (CfIKK2) via its N-terminal IRF domain, revealing the presence of an ancient functional TBK1/IKKε-IRF signaling axis in scallops. Finally, dual-luciferase reporter assay results showed that the overexpression of CfIRF8-like in human embryonic kidney 293T cells could specifically activate the interferon ß promoter of mammals and the interferon-stimulated response element promoter in dose-dependent manners. The findings of this preliminary analysis of the signal transduction and immune functions of scallop CfIRF8-like protein lay a foundation for an in-depth understanding of the innate immune function of invertebrate IRFs and the development of comparative immunology. The experimental results also provide theoretical support for the breeding of scallop disease-resistant strains.


Assuntos
Antivirais , Quinase I-kappa B , Animais , Humanos , Quinase I-kappa B/genética , Filogenia , Imunidade Inata/genética , Transdução de Sinais , Mamíferos/metabolismo , Proteínas Serina-Treonina Quinases/genética
6.
Fish Shellfish Immunol ; 143: 109188, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890738

RESUMO

Members of the nuclear factor-kappa B (NF-κB) family are crucial regulators of physiological processes such as apoptosis, inflammation, and the immune response, acting as vital transcription factors to perform their function. In this study, we identified a NF-κB homologous gene (CfRel1) in Zhikong scallops. The 3006-bp-long open reading frame encodes 1001 amino acids. The N-terminus of the CfRel1 protein harbors a conserved Rel homology domain (RHD) that contains a DNA-binding domain and a dimerization domain. According to the multiple sequence alignment results, both the DNA-binding and dimerization domains are highly conserved. Phylogenetic analysis indicated that CfRel1 is closely related to both the Dorsal protein of Pinctada fucata and the Rel2 protein of Crassostrea gigas. CfRel1 mRNA was expressed in all tissues tested in the quantitative reverse transcription PCR experiments, with hepatopancreatic tissue expressing the highest levels. Furthermore, after stimulation with lipopolysaccharide, peptidoglycan, or polyinosinic:polycytidylic acid, the mRNA expression level of CfRel1 was markedly increased. The co-immunoprecipitation test results showed that CfRel1 interacted with scallop IκB protein through its RHD DNA-binding domain, suggesting that IκB may regulate the activity of Rel1 by binding to this domain. Dual-luciferase reporter gene assays revealed that CfRel1 overexpression in HEK293T cells activated the activator protein 1 (AP-1), NF-κB, interferon (IFN)α, IFNß, and IFNγ reporter genes, indicating the diverse functions of the protein. In summary, CfRel1 is capable of responding to attacks from pathogen-associated molecular patterns, participating in immune signaling, and activating NF-κB and IFN reporter genes. Our findings contribute to the advancement of invertebrate innate immunity theory, enrich the theory of comparative immunology, and serve as a reference for the future screening of disease-resistant strains in scallops.


Assuntos
Crassostrea , Pectinidae , Humanos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Filogenia , Células HEK293 , DNA , RNA Mensageiro/metabolismo
7.
Mem Cognit ; 51(6): 1388-1403, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36853480

RESUMO

In daily life, we often need to inhibit a certain behavior or thought; however, sometimes we need to remove inhibition (deinhibition). Numerous studies have examined inhibition control, but it is unclear how deinhibition functions. In Experiment 1, we adopted a modified stop-signal task in which participants were instructed to immediately stop the prepared response to a stimulus appended by an accidental signal. The results showed that when the preceding trial was a stop-signal trial and participants successfully inhibited the action to the stimulus, the reaction time (RT) for the repeated stimuli in the current trial was significantly longer than that of the switched stimuli, reflecting the cost of deinhibition. Deinhibition ability is correlated with inhibitory control and cognitive flexibility. In Experiment 2, we manipulated stimulus onset asynchrony (SOA) between presentation of the stimuli and the stopping signals to exclude the interference of the signal preparation effect on the deinhibition cost. These findings suggest that an individual's deinhibition ability, as a previously ignored subcomponent of cognitive control, may play an important role in human adaptive behavior.


Assuntos
Cognição , Inibição Psicológica , Humanos , Tempo de Reação/fisiologia , Desempenho Psicomotor/fisiologia
8.
Altern Ther Health Med ; 29(8): 918-923, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37773650

RESUMO

Background: Isolated pulmonary nodules (SPNs) are small, circular lesions within lung tissue, often challenging to diagnose due to their size and lack of typical imaging features. Timely diagnosis is crucial for treatment decisions. However, the difficulty in qualitative diagnosis necessitates clinical biopsies. Objective: This study aimed to assess the diagnostic accuracy of CT-guided percutaneous lung biopsy for SPNs and identify potential risk factors for malignancy. Methods: We conducted a retrospective analysis of 112 patients with SPNs who underwent CT-guided core needle biopsy (CT-CNB) between June 2020 and June 2022. Histological and cytological results were obtained for all patients, and clinical data and imaging characteristics were compared between benign and malignant SPN groups. Binary logistic regression was used to analyze risk factors for malignancy, and complications were observed. Results: Cytological and histological specimens were successfully obtained for all patients. The cohort consisted of 43 patients with benign SPNs and 69 with malignant SPNs. Among the malignant SPN group, 67 cases were confirmed via CT-CNB and 2 through surgery, resulting in a sensitivity of 97.10% and specificity of 100.00%. The malignant nodules comprised 45 adenocarcinomas, 14 squamous cell carcinomas, 8 metastatic tumors, and 2 small cell carcinomas. Notably, 2 initially diagnosed as malignant cases were found to have chronic inflammation on preoperative biopsy but revealed adenocarcinoma and squamous cell carcinoma post-surgery. The benign nodules encompassed 20 granulomatous inflammation cases, 15 chronic inflammation, 3 fungal granulomas, 2 hamartomas, and 1 fibrous tissue. Cytological smears exhibited a sensitivity of 81.3% and a specificity of 100.0% for malignancy. Significantly, age ≥60, elevated tumor markers, and specific imaging signs (burr, foliation, pleural pull) were identified as risk factors for malignant SPNs using Binary Logistic regression (all P < .05). Conclusions: CT-guided percutaneous lung biopsy demonstrates excellent diagnostic efficacy and safety for distinguishing benign and malignant SPNs.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , Nódulo Pulmonar Solitário , Humanos , Nódulo Pulmonar Solitário/diagnóstico por imagem , Nódulo Pulmonar Solitário/patologia , Estudos Retrospectivos , Neoplasias Pulmonares/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Biópsia , Adenocarcinoma/patologia , Inflamação
9.
Curr Psychol ; : 1-12, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37359575

RESUMO

It has been traditionally thought that children can obtain resources that promote their academic performance through their parents' involvement. However, in reality, parents' involvement in their children's education may threaten children with an excessive academic burden. This study argues that parental involvement is both empowering and burdensome for children and proposes a model in which parental involvement is a double-edged sword. The model entails two paths, one in which learning constitutes a burden and another in which learning leads to empowerment. Based on a survey of 647 adolescents, a structural equation model is used to test this hypothesis. The results suggest that parental involvement can negatively impact academic performance because children feel more stressed as a result of the increase in academic expectations; parental involvement also has a positively impact on academic performance because of an increase in children's engagement in learning. The above results provide some practical guidance for parents' involvement in their children's education. Supplementary Information: The online version contains supplementary material available at 10.1007/s12144-023-04589-y.

10.
Fish Shellfish Immunol ; 124: 490-496, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35487402

RESUMO

Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are a class of pattern recognition receptors located in the cytoplasm that play a key role in antiviral innate immunity in animals. However, few studies have been conducted on the function of RLR proteins in invertebrates. In this study, the complete coding sequence of the RLR gene of the Zhikong scallop, Chlamys farreri, was obtained and named CfRLR1 with an aim to study the response of CfRLR1 to polyinosinic:polycytidylic acid [poly (I:C)] stimulation and the interaction between the CfRLR1 and C. farreri mitochondrial antiviral signaling (MAVS) protein. Sequence analysis revealed that CfRLR1 encodes 1161 amino acids, and the encoded protein covers two tandem caspase activation and recruitment domains (CARDs), a helicase domain, and a C-terminal regulatory domain. Phylogenetic analysis revealed that CfRLR1 belongs to the RLR family of mollusks. Quantitative real-time polymerase chain reaction showed that CfRLR1 mRNA was expressed in all tested tissues, with its highest expression observed in feet and gill tissues. Furthermore, CfRLR1 expression in the gill tissues was significantly induced after the poly (I:C) challenge. Finally, the results of co-immunoprecipitation and yeast two-hybrid assays revealed that CfRLR1 can bind to the CfMAVS protein via CARD-CARD interactions. Overall, our results elucidate the immune function of invertebrate RLR proteins and provide valuable information on viral disease control for scallop farming.


Assuntos
Pectinidae , Animais , Antivirais/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Imunidade Inata/genética , Filogenia , Poli I-C/farmacologia , Proteínas/genética
11.
Fish Shellfish Immunol ; 123: 290-297, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35306177

RESUMO

Nonylphenol (NP) is an endocrine disruptor and environmental hormone representing alkylphenol compounds. Marine mollusks are an important source of protein for people worldwide. Many researchers have begun to study the effect of NP on marine mollusks immune system in view of its toxicity; however, the underlying molecular mechanisms require in-depth analysis. In this study, we focused on the transcriptional expression change of immune-related genes and antioxidant enzymes activities variation after NP exposure in a marine bivalve mollusk, Chlamys farreri, to explore the immunomodulatory capacity of NP in marine mollusks. We identified MAVS (Mitochondrial antiviral signaling protein), a key adaptor molecule in the RLR (RIG-I like receptor) pathway, and studied the expression of multiple immune-related genes in response to different concentrations of NP. The key genes involved in RLR/TLR (Toll like receptor) innate immune pathway, apoptosis, and cellular antioxidation mechanism were investigated. Changes in the enzymatic activities of scallop antioxidant enzymes after NP exposure were also examined. The results revealed that the genes expression and the antioxidant enzymes activities show significant changes, thus proving that NP stimulation affects the scallop immune system. Our research results demonstrate the immunomodulatory capacity of NP in marine bivalve mollusks and lay the foundation for further in-depth analysis of the molecular mechanism of NP toxicity.


Assuntos
Antioxidantes , Pectinidae , Animais , Sistema Imunitário , Imunidade Inata/genética , Pectinidae/genética , Fenóis/toxicidade
12.
Fish Shellfish Immunol ; 128: 238-245, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35940537

RESUMO

The LGP2 (Laboratory of Genetics and Physiology 2) protein is a member of the retinoic acid-inducible gene I (RIG-I)-like receptor (RLRs) family, which is a class of antiviral pattern recognition receptors located in the cytoplasm. However, few studies have investigated the function of LGP2 in invertebrates. In this study, the complete coding sequence of the LGP2 gene of the Pacific oyster, Crassostrea gigas, was obtained and named CgLGP2-like. Sequence analysis revealed that CgLGP2-like encodes 803 amino acids, and the encoded protein contains a DEXDc, HELICc, and C-terminal regulatory domains. Multiple sequence alignment demonstrated that the sequences of these key protein functional domains were relatively conserved. Phylogenetic analysis revealed that CgLGP2-like was a new member of the animal LGP2 family. Quantitative real-time PCR results showed that CgLGP2-like mRNA was expressed in all tested oyster tissues, with the highest expression observed in the labial palpus and digestive glands. CgLGP2-like expression in gill tissues was significantly induced after the poly(I:C) challenge. Furthermore, multiple IRF and NF-κB binding sites were identified in the CgLGP2-like promoter region, which may be one of the reasons why CgLGP2-like responds to poly(I:C) stimulation. Finally, the results of dual-luciferase reporter gene assays revealed that overexpression of CgLGP2-like may have a regulatory effect on the human IFN, AP-1, and oyster CgIL-17 genes in HEK293T cells. Overall, our results preliminarily elucidate the immune functions of invertebrate LGP2 protein and provide valuable information for the development of comparative immunology.


Assuntos
Crassostrea , RNA Helicases/genética , Aminoácidos/metabolismo , Animais , Regulação da Expressão Gênica , Células HEK293 , Humanos , Imunidade Inata , Luciferases/metabolismo , NF-kappa B/metabolismo , Filogenia , Poli I-C/farmacologia , RNA Helicases/química , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Receptores de Reconhecimento de Padrão/genética , Fator de Transcrição AP-1/genética , Tretinoína/metabolismo
13.
Guang Pu Xue Yu Guang Pu Fen Xi ; 34(8): 2238-43, 2014 Aug.
Artigo em Zh | MEDLINE | ID: mdl-25474969

RESUMO

In the present paper, apparatus and theory of surface analysis is introduced, and the progress in the application of laser ablation ICP-MS to microanalysis in ferrous, nonferrous and semiconductor field is reviewed in detail. Compared with traditional surface analytical tools, such as SEM/EDS (scanning electron microscopy/energy dispersive spectrum), EPMA (electron probe microanalysis analysis), AES (auger energy spectrum), etc. the advantage is little or no sample preparation, adjustable spatial resolution according to analytical demand, multi-element analysis and high sensitivity. It is now a powerful complementary method to traditional surface analytical tool. With the development of LA-ICP-MS technology maturing, more and more analytical workers will use this powerful tool in the future, and LA-ICP-MS will be a super star in elemental analysis field just like LIBS (Laser-induced breakdown spectroscopy).

14.
Anal Methods ; 16(30): 5328-5334, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39028309

RESUMO

Protein content in food is an important indicator of nutritional value and food safety. Therefore, it is of great significance to accurately detect protein content in food. In this work, a combustion furnace and novel hollow-electrode glow discharge ion source-quadrupole mass spectrometry (HGD-MS) were designed, which were used to construct a "combustion furnace + mass spectrometry" experimental platform to detect the protein content in food. Five food standard samples were selected for the analysis. The food samples were combusted in the combustion furnace at a high temperature (1300 °C) in an oxygen-rich environment. The gas products were passed into the novel hollow electrode glow discharge ion source-quadrupole mass spectrometer. A standard curve of y = 635.06x + 11 082, R2 = 0.9994 was plotted by detecting the NO+ ion intensity at a relative standard deviation (RSD) of 1.8% to 5.7%. Using the same method, food samples no. 6 and 7 were combusted and NO+ ion intensity was measured to verify the accuracy of the quantitation curve. Subsequently, the protein content was determined using a nitrogen-to-protein conversion factor of 6.25. This method provides a rapid, accurate, and environmentally friendly approach for determining protein content in food.


Assuntos
Eletrodos , Análise de Alimentos , Espectrometria de Massas , Proteínas , Análise de Alimentos/métodos , Espectrometria de Massas/métodos , Proteínas/análise
15.
ACS Nano ; 18(29): 19190-19199, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38989607

RESUMO

Lewis base molecules bind the undercoordinated lead atoms at interfaces and grain boundaries, leading to the high efficiency and stability of flexible perovskite solar cells (PSCs). We demonstrated a highly efficient, stable, and flexible PSC via interface passivation using a Lewis base of tri(o-tolyl)phosphine (TTP). It not only induced an intimate interface contact and a complete deposition of the perovskite thin layers on hole transport layers (HTLs) but also led to a better perovskite with a raised crystallinity, fewer defects, and a better morphology, including fewer gullies, high uniformity, and low roughness. Furthermore, the TTP treatments induced a good alignment of energy levels among the perovskites, HTLs, and C60. The resultant flexible inverted PSCs exhibited a high power conversion efficiency (PCE) of 23.81%, which is one of the highest PCEs among these flexible inverted PSCs. Moreover, the optimized flexible PSCs exhibited high storage stability, superior operation stability, and enhanced mechanical flexibility. This study presents an effective method to substantially raise the PCE, stability, and mechanical flexibility of the flexible inverted perovskite photovoltaics.

16.
Nanoscale ; 16(30): 14469-14476, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39016026

RESUMO

Semitransparent perovskite solar cells (ST-PSCs) have great potential in building integrated photovoltaics. However, semitransparent devices suffer from a low electron mobility and an imbalanced charge-carrier transport, leading to an unsatisfactory power conversion efficiency (PCE) and limited stability. Herein, we report a high-performance ST-PSC via the incorporation of a special Lewis base. A better perovskite with an improved crystallinity and less defects was achieved, and a matched energy level alignment between the perovskite and [6,6]-phenyl-C61-butyric acid methyl ester was also induced, thereby leading to a high electron mobility and an exceptional balance of hole and electron mobility approaching 1 : 1. The prepared ST-PSC exhibited a PCE of 20.22% at average visible transmittance (AVT) of 4.93%, 18.32% at AVT of 14.38%, and 15.00% at AVT of 25.65%. These PCEs are the highest values among those ST-PSCs based on top metallic electrodes at a close AVT. The ST-PSCs maintained 92% of the initial PCE in storage for 1000 h, and they held 84% of the initial PCE under the continuous maximum power point tracking measurement for 530 hours. The work paves the way to realize ST-PSCs with a high PCE, high light utilization efficiency and substantially enhanced stability.

17.
Int J Biol Macromol ; 256(Pt 1): 128319, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000607

RESUMO

Interferon regulatory factor (IRF) family proteins are key transcription factors involved in vital physiological processes such as immune defense. However, the function of IRF in invertebrates, especially in marine shellfish is not clear. In this study, a new IRF gene (CfIRF2) was identified in the Zhikong scallop, Chlamys farreri, and its immune function was analyzed. CfIRF2 has an open reading frame of 1107 bp encoding 368 amino acids. The N-terminus of CfIRF2 consists of a typical IRF domain, with conserved amino acid sequences. Phylogenetic analysis suggested close evolutionary relationship with shellfish IRF1 subfamily proteins. Expression pattern analysis showed that CfIRF2 mRNA was expressed in all tissues, with the highest expression in the hepatopancreas and gills. CfIRF2 gene expression was substantially enhanced by a pathogenic virus (such as acute viral necrosis virus) and poly(I:C) challenge. Co-immunoprecipitation assay identified CfIRF2 interaction with the IKKα/ß family protein CfIKK1 of C. farreri, demonstrating a unique signal transduction mechanism in marine mollusks. Moreover, CfIRF2 interacted with itself to form homologous dimers. Overexpression of CfIRF2 in HEK293T cells activated reporter genes containing interferon stimulated response elements and NF-κB genes in a dose-dependent manner and promoted the phosphorylation of protein kinases (JNK, Erk1/2, and P38). Our results provide insights into the functions of IRF in mollusks innate immunity and also provide valuable information for enriching comparative immunological theory for the prevention of diseases in scallop farming.


Assuntos
NF-kappa B , Pectinidae , Humanos , Animais , NF-kappa B/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Filogenia , Células HEK293 , Pectinidae/genética , Imunidade Inata/genética
18.
RSC Adv ; 14(35): 25247-25255, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39139241

RESUMO

Photocatalytic CO2 reduction into value-added chemical fuels using sunlight as the energy input has been a thorny, challenging and long-term project in the environment/energy fields because of to its low efficiency. Herein, a series of CdS/Co-BDC composite photocatalysts were constructed by incorporating CdS nanoparticles into Co-BDC using a dual-solvent in situ growth strategy for improving photocatalytic CO2 reduction efficiency. The composites were characterized through XRD, SEM, TEM, XPS, DRS and EPR techniques in detail. 18% CdS/Co-BDC composites showed superior performance for the photocatalytic CO2 reduction to CO, which was 8.9 and 19.6 times higher than that showed by the pure CdS and Co-BDC, respectively. The mechanism of enhanced photocatalytic CO2 reduction performance was analyzed. The CdS/Co-BDC composites showed better adsorption for CO2. Detailed analysis of XPS, transient photocurrent responses, and electrochemical impedance spectroscopy (EIS) shows the existence of strong charge interaction between CdS and Co-BDC and the photo-electrons of CdS can be transferred to Co-BDC. Additionally, Co-oxo of Co-BDC plays the role of a redox-active site and promotes the reduction performance via the method of valence transition of Co(ii)/Co(iii) redox.

19.
Int J Biol Macromol ; 275(Pt 1): 133645, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964686

RESUMO

Fas-associated protein with death domain (FADD) was initially identified as a crucial adaptor protein in the apoptotic pathway mediated by death receptor (DR). Subsequently, many studies have confirmed that FADD plays a vital role in innate immunity and inflammatory responses in animals. However, the function of this pleiotropic molecule in mollusk species has not been well explored. In this study, we successfully verified the gene sequence of FADD in the Zhikong scallop (Chlamys farreri) and designated it as CfFADD. The CfFADD protein contains a conserved death effector and death domains. Phylogenetic analysis showed that CfFADD is a novel addition to the molluscan FADD family with a close evolutionary relationship with molluscan FADD subfamily proteins. CfFADD mRNA expression in various scallop tissues was significantly induced by challenge with pathogen-associated molecular patterns (lipopolysaccharide, peptidoglycan, and poly(I:C)), suggesting its role in innate immunity in scallops. Co-immunoprecipitation showed that CfFADD interacted with the scallop DR (tumor necrosis factor receptor) and a signaling molecule involved in the Toll-like receptor pathway (interleukin-1 receptor-associated kinase), confirming that CfFADD may be involved in DR-mediated apoptosis and innate immune signaling pathways. Further studies showed that CfFADD interacted with CfCaspase-8 and activated caspase-3. HEK293T cells exhibited distinct apoptotic features after transfection with a CfFADD-expression plasmid, suggesting a functional DR-FADD-caspase apoptotic pathway in scallops. Overexpression of CfFADD led to a significant dose-dependent activation of interferon ß and nuclear factor-κB reporter genes, demonstrating the key role of CfFADD in innate immunity. In summary, our research has confirmed the critical roles of CfFADD in innate immunity and apoptosis and provides valuable information for developing comparative immunology theories.


Assuntos
Apoptose , Proteína de Domínio de Morte Associada a Fas , Imunidade Inata , Transdução de Sinais , Animais , Humanos , Sequência de Aminoácidos , Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/genética , Regulação da Expressão Gênica , Moluscos/imunologia , Moluscos/genética , Pectinidae/imunologia , Pectinidae/genética , Filogenia
20.
Int J Biol Macromol ; 259(Pt 2): 129184, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218284

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide, with a high incidence in squamous epithelium. The E3 ubiquitin ligase DTL is a component of the CRL4A complex and is widely involved in tumor progression. We aimed to analyze the role of DTL in HNSCC and to explore its mechanism of action. Through clinical analysis, we found that DTL is upregulated in HNSCC tissues and is associated with the tumor microenvironment and poor survival in patients. Through gain-of-function and loss-of-function assays, we showed that DTL promotes cell proliferation and migration in vitro and tumor growth in vivo. Mass spectrometry analysis and immunoprecipitation assays showed that DTL interacts with ARGLU1 to promote K11-linked ubiquitination-mediated degradation of ARGLU1, thereby promoting the activation of the CSL-dependent Notch signaling pathway. Furthermore, siARGLU1 blocks the inhibitory effects of DTL knockdown on HNSCC cells. In this study, we showed that DTL promotes HNSCC progression through K11-linked ubiquitination of ARGLU1 to activate the CSL-dependent Notch pathway. These findings identify a promising therapeutic target for HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/genética , Transdução de Sinais , Proliferação de Células , Linhagem Celular Tumoral , Microambiente Tumoral , Proteínas Nucleares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA