Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nano Lett ; 20(9): 6344-6350, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32816490

RESUMO

In this paper, we propose a polarization-selective color filter that can generate two different color informations simultaneously depending on the polarization direction. The proposed color filter is mainly composed of the etalon structure to generate the color by the structural resonance properties while the upper layer of the etalon is made of plasmonic nanogratings to promote polarization-dependent color properties. When the duty ratio of the silver nanogratings is fixed, the proposed color filter can maintain identical optical properties for orthogonal polarization, while the etalon structure of the proposed color filter can manipulate different color information depending on the cavity height for the horizontal polarization. Finally, we experimentally confirm that polarization-dependent security images can be generated using the proposed color filters with a fixed duty ratio of various nanograting arrays.

2.
Nano Lett ; 19(10): 7464-7469, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31448923

RESUMO

Coherent light-matter interaction can transiently modulate the quantum states of matter under nonresonant laser excitation. This phenomenon, called the optical Stark effect, is one of the promising candidates for realizing ultrafast optical switches. However, the ultrafast modulations induced by the coherent light-matter interactions usually involve unwanted incoherent responses, significantly reducing the overall operation speed. Here, by using ultrafast pump-probe spectroscopy, we suppress the incoherent response and modulate the coherent-to-incoherent ratio in the two-dimensional semiconductor ReS2. We selectively convert the coherent and incoherent responses of an anisotropic exciton state by solely using photon polarizations, improving the control ratio by 3 orders of magnitude. The efficient modulation was enabled by transient superpositions of differential spectra from two nondegenerate exciton states due to the light polarization dependencies. This work provides a valuable contribution toward realizing ideal ultrafast optical switches.

3.
Nano Lett ; 18(2): 734-739, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29347815

RESUMO

Understanding the mutual interaction between electronic excitations and lattice vibrations is key for understanding electronic transport and optoelectronic phenomena. Dynamic manipulation of such interaction is elusive because it requires varying the material composition on the atomic level. In turn, recent studies on topological insulators (TIs) have revealed the coexistence of a strong phonon resonance and topologically protected Dirac plasmon, both in the terahertz (THz) frequency range. Here, using these intrinsic characteristics of TIs, we demonstrate a new methodology for controlling electron-phonon interaction by lithographically engineered Dirac surface plasmons in the Bi2Se3 TI. Through a series of time-domain and time-resolved ultrafast THz measurements, we show that, when the Dirac plasmon energy is less than the TI phonon energy, the electron-phonon coupling is trivial, exhibiting phonon broadening associated with Landau damping. In contrast, when the Dirac plasmon energy exceeds that of the phonon resonance, we observe suppressed electron-phonon interaction leading to unexpected phonon stiffening. Time-dependent analysis of the Dirac plasmon behavior, phonon broadening, and phonon stiffening reveals a transition between the distinct dynamics corresponding to the two regimes as the Dirac plasmon resonance moves across the TI phonon resonance, which demonstrates the capability of Dirac plasmon control. Our results suggest that the engineering of Dirac plasmons provides a new alternative for controlling the dynamic interaction between Dirac carriers and phonons.

4.
Nano Lett ; 14(12): 6942-8, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25375958

RESUMO

The anomalous piezoresistance (a-PZR) effects, including giant PZR (GPZR) with large magnitude and inverse PZR of opposite, have exciting technological potentials for their integration into novel nanoelectromechanical systems. However, the nature of a-PZR effect and the associated kinetics have not been clearly determined yet. Even further, there are intense research debates whether the a-PZR effect actually exists or not; although numerous investigations have been conducted, the origin of the effect has not been clearly understood. This paper shows the existence of a-PZR and provides direct experimental evidence through the performance of well-established electrical measurements and terahertz spectroscopy on silicon nanomembranes (Si NMs). The clear inverse PZR behavior was observed in the Si NMs when the thickness was less than 40 nm and the magnitude of the PZR response linearly increased with the decreasing thickness. Observations combined with electrical and optical measurements strongly corroborate that the a-PZR effect originates from the carrier concentration changes via charge carrier trapping into strain-induced defect states.

5.
Cell Biol Int ; 38(2): 164-71, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23955895

RESUMO

The feasibility of using the modified-cut standard straw (M-CSS) method for the vitrification of immature mouse oocytes has been tested. The effects of different vitrification methods on oocyte survival, cytoskeletal organization, the distribution of cortical granules (CGs), and apoptosis have also been compared. Immature mouse oocytes were vitrified-thawed using electron microscope grid or M-CSS method, and cultured to meiosis II (MII) stage. Oocyte development, cytoskeletal organization, CG distribution, and the expression of apoptosis-related genes were evaluated. Rates of recovery (91.7 vs. 74.9%) and survival (89.0 vs. 62.6%) were significantly higher in M-CSS group than in EM grid group. The number of oocytes with normal chromosome alignment at the spindle and spindle morphology were similar in both groups. However, the actin cap was significantly degraded in EM grid groups (52.6 vs. 35.1%, respectively). Abnormal release of CGs also frequently occurred in EM grid groups (42.6 vs. 32.7%, respectively). Pro-apoptosis-related gene expression levels of Bax, caspase 3 were expressed lower than control in MII stage oocytes derived from M-CSS group; anti apoptosis-related genes, survivin and heat shock factor-1 (Hsf-1) were slightly increased. However, all genes expression was significantly increased in MII stage oocytes derived from EM grid groups. Vitrification reduces the survival rate of immature mouse oocytes, alters cytoskeletal organization and CG distribution, and promotes apoptosis. However, these effects are less pronounced in vitrified oocytes generated by M-CSS than in those generated by EM grid method. Therefore, the novel M-CSS is a feasible approach for the cryopreservation of immature mouse oocytes.


Assuntos
Criopreservação/métodos , Camundongos , Oócitos/citologia , Vitrificação , Animais , Sobrevivência Celular , Células Cultivadas , Citoesqueleto/ultraestrutura , Feminino , Regulação da Expressão Gênica , Camundongos/fisiologia , Oócitos/metabolismo , Oócitos/ultraestrutura , Oogênese
6.
Nat Commun ; 15(1): 3312, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632336

RESUMO

Moiré superlattices of transition metal dichalcogenides offer a unique platform to explore correlated exciton physics with optical spectroscopy. Whereas the spatially modulated potentials evoke that the exciton resonances are distinct depending on a site in a moiré supercell, there have been no clear demonstration how the moiré excitons trapped in different sites dynamically interact with the doped carriers; so far the exciton-electron dynamic interactions were presumed to be site-dependent. Thus, the transient emergence of nonequilibrium correlations are open questions, but existing studies are limited to steady-state optical measurements. Here we report experimental fingerprints of site-dependent exciton correlations under continuous-wave as well as ultrashort optical excitations. In near-zero angle-aligned WSe2/WS2 heterobilayers, we observe intriguing polarization switching and strongly enhanced Pauli blocking near the Mott insulating state, dictating the dominant correlation-driven effects. When the twist angle is near 60°, no such correlations are observed, suggesting the strong dependence of atomic registry in moiré supercell configuration. Our studies open the door to largely unexplored nonequilibrium correlations of excitons in moiré superlattices.

7.
Opt Express ; 21(14): 16975-9, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23938546

RESUMO

Interplay between adjacent dipoles is an experimental priori for designing artificially-engineered structure because the dipole coupling is one critical factor for determining the electromagnetic response in metamaterials. Although numerous investigations have been performed to study the coupling effect of the split-ring resonator (SRR), the interlayer dipole coupling of its complementary SRR, called C-SRR, has been largely unexplored. Here, we present experimental and theoretical investigations on the electromagnetic coupling effect in the two stacks of layered C-SRR structures. By adjusting the relative lateral distance between the two-dimensionally stacked meta-structures, we observe that the confined magnetic dipole plays an important role in determining the resonance frequency and the bandwidth broadening of the C-SRR, exhibiting an exactly opposite behavior to the SRR structure. Our investigation provides experimental basis for developing frequency tunable three-dimensional metamaterial devices.


Assuntos
Campos Eletromagnéticos , Manufaturas/análise , Modelos Teóricos , Radiação Terahertz , Simulação por Computador , Teste de Materiais , Espalhamento de Radiação
8.
Mol Reprod Dev ; 80(12): 1035-47, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24150974

RESUMO

Human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) secrete bioactive materials that are beneficial for tissue repair and regeneration. In this study, we characterized human hAT-MSC bioactive material (hAT-MSC-BM), and examined the effect of hAT-MSC-BM on porcine embryo development. hAT-MSC-BM was enriched with several growth factors and cytokines, including fibroblast growth factor 2 (FGF2), vascular endothelial growth factor A (VEGFA), and interleukin 6 (IL6). Among the various concentrations and days of treatment tested, 10% hAT-MSC-BM treatment beginning on culture Day 4 provided the best environment for the in vitro growth of parthenogenetic porcine embryos. While the addition of 10% fetal bovine serum (FBS) increased the hatching rate and the total cell number of parthenogenetic porcine embryos compared with the control and hAT-MSC culture medium group, the best results were from the group cultured with 10% hAT-MSC-BM. Mitochondrial activity was also higher in the 10% hAT-MSC-BM-treated group. Moreover, the relative mRNA expression levels of development and anti-apoptosis genes were significantly higher in the 10% hAT-MSC-BM-treated group than in control, hAT-MSC culture medium, or 10% FBS groups, whereas the transcript abundance of an apoptosis gene was slightly lower. Treatment with 10% hAT-MSC-BM starting on Day 4 also improved the development rate and the total cell number of in vitro-fertilized embryos. This is the first report on the benefits of hAT-MSC-BM in a porcine embryo in vitro culture system. We conclude that hAT-MSC-BM is a new, alternative supplement that can improve the development of porcine embryos during both parthenogenesis and fertilization in vitro.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Embrião de Mamíferos , Desenvolvimento Embrionário/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Proteínas/farmacologia , Suínos/embriologia , Tecido Adiposo/citologia , Animais , Apoptose/genética , Técnicas de Cultura de Células , Células Cultivadas , Meios de Cultura , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Partenogênese , RNA Mensageiro/biossíntese , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia
9.
Nano Lett ; 12(2): 551-5, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22214292

RESUMO

We present terahertz spectroscopic measurements of Dirac fermion dynamics from a large-scale graphene that was grown by chemical vapor deposition and on which carrier density was modulated by electrostatic and chemical doping. The measured frequency-dependent optical sheet conductivity of graphene shows electron-density-dependence characteristics, which can be understood by a simple Drude model. In a low carrier density regime, the optical sheet conductivity of graphene is constant regardless of the applied gate voltage, but in a high carrier density regime, it has nonlinear behavior with respect to the applied gate voltage. Chemical doping using viologen was found to be efficient in controlling the equilibrium Fermi level without sacrificing the unique carrier dynamics of graphene.


Assuntos
Grafite/química , Espectroscopia Terahertz , Transistores Eletrônicos , Condutividade Elétrica , Gases/química , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo , Volatilização
10.
Nat Commun ; 14(1): 1801, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002230

RESUMO

Higher-order topological insulators are recently discovered quantum materials exhibiting distinct topological phases with the generalized bulk-boundary correspondence. Td-WTe2 is a promising candidate to reveal topological hinge excitation in an atomically thin regime. However, with initial theories and experiments focusing on localized one-dimensional conductance only, no experimental reports exist on how the spin orientations are distributed over the helical hinges-this is critical, yet one missing puzzle. Here, we employ the magneto-optic Kerr effect to visualize the spinful characteristics of the hinge states in a few-layer Td-WTe2. By examining the spin polarization of electrons injected from WTe2 to graphene under external electric and magnetic fields, we conclude that WTe2 hosts a spinful and helical topological hinge state protected by the time-reversal symmetry. Our experiment provides a fertile diagnosis to investigate the topologically protected gapless hinge states, and may call for new theoretical studies to extend the previous spinless model.

11.
Mol Reprod Dev ; 79(5): 356-66, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22407942

RESUMO

Mammalian target of rapamycin (mTOR) is central to the control of cell proliferation, growth, and survival in mammalian cells. Prolonged treatment with rapamycin inhibits mTOR complex 2 (mTORC2) activity, and both the mTORC1-mediated S6K1 and 4E-BP1/eIF4E pathways are essential for TORC2-mediated RhoA, Cdc42, and Rac1 expression during cell motility and F-actin reorganization. The functions of mTOR in the mouse oocyte remain unclear, however. The present study shows that rapamycin affects mTOR expression and cytoskeleton reorganization during meiotic maturation of mouse oocytes. mTOR mRNA was expressed in germinal vesicles (GV) until metaphase I (MI), and increased during metaphase II (MII). Immunostaining showed that mTOR localized around the spindle and in the cytoplasm of oocytes. Treatment of oocytes with rapamycin decreased mTOR at the RNA and protein level, and altered asymmetric division. Formation of the actin cap and the cortical granule-free domain were also disrupted after rapamycin treatment, indicating the failure of spindle migration. Injection of an anti-mTOR antibody yielded results consistent with those obtained for rapamycin treatment, further confirming the involvement of mTOR in oocyte polarity. Furthermore, rapamycin treatment reduced the mRNA expression of small GTPases (RhoA, Cdc42, and Rac1), which are crucial regulatory factors for cytoskeleton reorganization. Taken together, these results suggest that rapamycin inhibits spindle migration and asymmetric division during mouse oocyte maturation via mTOR-mediated small GTPase signaling pathways.


Assuntos
Citocinese , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Oócitos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Capeamento de Actina/biossíntese , Animais , Proliferação de Células , Citocinese/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Metáfase/fisiologia , Camundongos , RNA Mensageiro/biossíntese , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Proteína cdc42 de Ligação ao GTP/biossíntese , Proteínas rac1 de Ligação ao GTP/biossíntese , Proteína rhoA de Ligação ao GTP/biossíntese
12.
Light Sci Appl ; 11(1): 313, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302746

RESUMO

Collective oscillations of massless particles in two-dimensional (2D) Dirac materials offer an innovative route toward implementing atomically thin devices based on low-energy quasiparticle interactions. Strong confinement of near-field distribution on the 2D surface is essential to demonstrate extraordinary optoelectronic functions, providing means to shape the spectral response at the mid-infrared (IR) wavelength. Although the dynamic polarization from the linear response theory has successfully accounted for a range of experimental observations, a unified perspective was still elusive, connecting the state-of-the-art developments based on the 2D Dirac plasmon-polaritons. Here, we review recent works on graphene and three-dimensional (3D) topological insulator (TI) plasmon-polariton, where the mid-IR and terahertz (THz) radiation experiences prominent confinement into a deep-subwavelength scale in a novel optoelectronic structure. After presenting general light-matter interactions between 2D Dirac plasmon and subwavelength quasiparticle excitations, we introduce various experimental techniques to couple the plasmon-polaritons with electromagnetic radiations. Electrical and optical controls over the plasmonic excitations reveal the hybridized plasmon modes in graphene and 3D TI, demonstrating an intense near-field interaction of 2D Dirac plasmon within the highly-compressed volume. These findings can further be applied to invent optoelectronic bio-molecular sensors, atomically thin photodetectors, and laser-driven light sources.

13.
Vaccines (Basel) ; 10(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36146581

RESUMO

Pigs are promising donors of biological materials for xenotransplantation; however, cell surface carbohydrate antigens, including galactose-alpha-1,3-galactose (α-Gal), N-glycolylneuraminic acid (Neu5Gc), and Sd blood group antigens, play a significant role in porcine xenograft rejection. Inactivating swine endogenous genes, including GGTA1, CMAH, and B4GALNT2, decreases the binding ratio of human IgG/IgM in peripheral blood mononuclear cells and erythrocytes and impedes the effectiveness of α-Gal, Neu5Gc, and Sd, thereby successfully preventing hyperacute rejection. Therefore, in this study, an effective transgenic system was developed to target GGTA1, CMAH, and B4GALNT2 using CRISPR-CAS9 and develop triple-knockout pigs. The findings revealed that all three antigens (α-Gal, Neu5Gc, and Sd) were not expressed in the heart, lungs, or liver of the triple-knockout Jeju Native Pigs (JNPs), and poor expression of α-Gal and Neu5G was confirmed in the kidneys. Compared with the kidney, heart, and lung tissues from wild-type JNPs, those from GGTA1/CMAH/ B4GALNT2 knockout-recipient JNPs exhibited reduced human IgM and IgG binding and expression of each immunological rejection component. Hence, reducing the expression of swine xenogeneic antigens identifiable by human immunoglobulins can lessen the immunological rejection against xenotransplantation. The findings support the possibility of employing knockout JNP organs for xenogeneic transplantation to minimize or completely eradicate rejection using multiple gene-editing methods.

14.
Nat Commun ; 12(1): 1635, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712572

RESUMO

The valley Hall effect (VHE) in two-dimensional (2D) van der Waals (vdW) crystals is a promising approach to study the valley pseudospin. Most experiments so far have used bound electron-hole pairs (excitons) through local photoexcitation. However, the valley depolarization of such excitons is fast, so that several challenges remain to be resolved. We address this issue by exploiting a unipolar VHE using a heterobilayer made of monolayer MoS2/WTe2 to exhibit a long valley-polarized lifetime due to the absence of electron-hole exchange interaction. The unipolar VHE is manifested by reduced photoluminescence at the MoS2 A exciton energy. Furthermore, we provide quantitative information on the time-dependent valley Hall dynamics by performing the spatially-resolved ultrafast Kerr-rotation microscopy; we find that the valley-polarized electrons persist for more than 4 nanoseconds and the valley Hall mobility exceeds 4.49 × 103 cm2/Vs, which is orders of magnitude larger than previous reports.

15.
Nat Nanotechnol ; 16(10): 1092-1098, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34267369

RESUMO

A broad range of transition metal dichalcogenide (TMDC) semiconductors are available as monolayer (ML) crystals, so the precise integration of each kind into van der Waals (vdW) superlattices (SLs) could enable the realization of novel structures with previously unexplored functionalities. Here we report the atomic layer-by-layer epitaxial growth of vdW SLs with programmable stacking periodicities, composed of more than two kinds of dissimilar TMDC MLs, such as MoS2, WS2 and WSe2. Using kinetics-controlled vdW epitaxy in the near-equilibrium limit by metal-organic chemical vapour depositions, we achieved precise ML-by-ML stacking, free of interlayer atomic mixing, which resulted in tunable two-dimensional vdW electronic systems. As an example, by exploiting the series of type II band alignments at coherent two-dimensional vdW heterointerfaces, we demonstrated valley-polarized carrier excitations-one of the most distinctive electronic features in vdW ML semiconductors-which scale with the stack numbers n in our (MoS2/WS2)n SLs on optical excitations.

16.
Nat Commun ; 11(1): 805, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041949

RESUMO

Photolithography is the prevalent microfabrication technology. It needs to meet resolution and yield demands at a cost that makes it economically viable. However, conventional far-field photolithography has reached the diffraction limit, which imposes complex optics and short-wavelength beam source to achieve high resolution at the expense of cost efficiency. Here, we present a cost-effective near-field optical printing approach that uses metal patterns embedded in a flexible elastomer photomask with mechanical robustness. This technique generates sub-diffraction patterns that are smaller than 1/10th of the wavelength of the incoming light. It can be integrated into existing hardware and standard mercury lamp, and used for a variety of surfaces, such as curved, rough and defect surfaces. This method offers a higher resolution than common light-based printing systems, while enabling parallel-writing. We anticipate that it will be widely used in academic and industrial productions.

17.
Nat Commun ; 10(1): 5488, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792222

RESUMO

Carrier multiplication (CM) is a process in which high-energy free carriers relax by generation of additional electron-hole pairs rather than by heat dissipation. CM is promising disruptive improvements in photovoltaic energy conversion and light detection technologies. Current state-of-the-art nanomaterials including quantum dots and carbon nanotubes have demonstrated CM, but are not satisfactory owing to high-energy-loss and inherent difficulties with carrier extraction. Here, we report CM in van der Waals (vdW) MoTe2 and WSe2 films, and find characteristics, commencing close to the energy conservation limit and reaching up to 99% CM conversion efficiency with the standard model. This is demonstrated by ultrafast optical spectroscopy with independent approaches, photo-induced absorption, photo-induced bleach, and carrier population dynamics. Combined with a high lateral conductivity and an optimal bandgap below 1 eV, these superior CM characteristics identify vdW materials as an attractive candidate material for highly efficient and mechanically flexible solar cells in the future.

18.
Adv Mater ; 31(2): e1804422, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30411825

RESUMO

2D transition metal dichalcogenides (TMDCs) have emerged as promising candidates for post-silicon nanoelectronics owing to their unique and outstanding semiconducting properties. However, contact engineering for these materials to create high-performance devices while adapting for large-area fabrication is still in its nascent stages. In this study, graphene/Ag contacts are introduced into MoS2 devices, for which a graphene film synthesized by chemical vapor deposition (CVD) is inserted between a CVD-grown MoS2 film and a Ag electrode as an interfacial layer. The MoS2 field-effect transistors with graphene/Ag contacts show improved electrical and photoelectrical properties, achieving a field-effect mobility of 35 cm2 V-1 s-1 , an on/off current ratio of 4 × 108 , and a photoresponsivity of 2160 A W-1 , compared to those of devices with conventional Ti/Au contacts. These improvements are attributed to the low work function of Ag and the tunability of graphene Fermi level; the n-doping of Ag in graphene decreases its Fermi level, thereby reducing the Schottky barrier height and contact resistance between the MoS2 and electrodes. This demonstration of contact interface engineering with CVD-grown MoS2 and graphene is a key step toward the practical application of atomically thin TMDC-based devices with low-resistance contacts for high-performance large-area electronics and optoelectronics.

19.
ACS Appl Mater Interfaces ; 11(18): 16804-16814, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30964978

RESUMO

Reduced graphene oxide (RGO) obtained from graphene oxide has received much attention because of its simple and cost-effective manufacturing process. Previous studies have demonstrated the scalable production of RGO with relatively high quality; however, irreducible defects on RGO deteriorate the unique intrinsic physical properties of graphene, such as high-mobility electrical charge transport, limiting its potential applicability. Using the enhanced chemical reactivity of such defects, atomic layer deposition (ALD) can be a useful method to selectively passivate the defect sites. Herein, we analyzed the selective formation of Pt by ALD on the defect sites of RGO and investigated the effect of Pt formation on the electrical properties of RGO by using ultrafast terahertz (THz) laser spectroscopy. Time-resolved THz measurements directly corroborated that the degree of the defect-recovering property of ALD Pt-treated RGO appearing as Auger-type sub-picosecond relaxation, which is otherwise absent in pristine RGO. In addition, the conductivity improvement of Pt-recovered RGO was theoretically explained by density functional theory calculations. The ALD Pt-passivated RGO yielded a superior platform for the fabrication of a highly conductive and transparent graphene heater. By using the ALD Pt/RGO heater embedded underneath scratched self-healing polymer materials, we also demonstrated the effective recovery property of self-healing polymers with high-performance heating capability. Our work is expected to result in significant advances toward practical applications for RGO-based flexible and transparent electronics.

20.
ACS Nano ; 12(11): 11088-11097, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30358980

RESUMO

Solar-energy conversion by photoelectrochemical (PEC) devices is driven by the separation and transfer of photogenerated charge carriers. Thus, understanding carrier dynamics in a PEC device is essential to realizing efficient solar-energy conversion. Here, we investigate time-resolved carrier dynamics in emerging low-cost Sb2Se3 nanostructure photocathodes for PEC water splitting. Using terahertz spectroscopy, we observed an initial mobility loss within tens of picoseconds due to carrier localization and attributed the origin of carrier localization to the rich surface of Sb2Se3 nanostructures. In addition, a possible recombination at the interface between Sb2Se3 and the back contact is elucidated by time-resolved photoluminescence analysis. We also demonstrated the dual role of the RuO x co-catalyst in reducing surface recombination and enhancing charge transfer in full devices using intensity-modulated spectroscopy. The relatively low onset potential of the Sb2Se3 photocathode is attributed to the sluggish charge transfer at a low applied bias rather than to fast surface recombination. We believe that our insights on carrier dynamics would be an important step toward achieving highly efficient Sb2Se3 photocathodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA