Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(13): 3187-3193, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906094

RESUMO

In the rapidly moving field of stem cell and embryo research, research questions often sit at the intersection of scientific inquiry and ethical considerations. The International Society for Stem Cell Research (ISSCR) produces guidelines to help navigate decisions in this area. For Cell's 50th Anniversary Focus on Developmental Biology, scientific editor Sarah Geisler discussed the importance of the ISSCR guidelines on stem cell and embryo research for both the stem cell community and the broader public with Amander Clark, Robin Lovell-Badge, and Janet Rossant, who have been involved in the ongoing evolution of the guidelines. A lightly edited transcript of their conversation is shared here.


Assuntos
Pesquisas com Embriões , Sociedades Científicas , Pesquisa com Células-Tronco , Humanos , Pesquisa com Células-Tronco/ética , Pesquisas com Embriões/ética , Guias como Assunto
2.
Cell ; 168(1-2): 210-223.e11, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-28086092

RESUMO

Transcriptional control requires epigenetic changes directed by mitochondrial tricarboxylic acid (TCA) cycle metabolites. In the mouse embryo, global epigenetic changes occur during zygotic genome activation (ZGA) at the 2-cell stage. Pyruvate is essential for development beyond this stage, which is at odds with the low activity of mitochondria in this period. We now show that a number of enzymatically active mitochondrial enzymes associated with the TCA cycle are essential for epigenetic remodeling and are transiently and partially localized to the nucleus. Pyruvate is essential for this nuclear localization, and a failure of TCA cycle enzymes to enter the nucleus correlates with loss of specific histone modifications and a block in ZGA. At later stages, however, these enzymes are exclusively mitochondrial. In humans, the enzyme pyruvate dehydrogenase is transiently nuclear at the 4/8-cell stage coincident with timing of human embryonic genome activation, suggesting a conserved metabolic control mechanism underlying early pre-implantation development.


Assuntos
Ciclo do Ácido Cítrico , Genoma , Zigoto/metabolismo , Animais , Blastocisto/metabolismo , Núcleo Celular/metabolismo , Epigênese Genética , Glicosilação , Histonas/metabolismo , Cetona Oxirredutases/metabolismo , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Ácido Pirúvico/metabolismo
3.
Cell ; 161(6): 1425-36, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26004067

RESUMO

Global DNA demethylation in humans is a fundamental process that occurs in pre-implantation embryos and reversion to naive ground state pluripotent stem cells (PSCs). However, the extent of DNA methylation reprogramming in human germline cells is unknown. Here, we performed whole-genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq) of human prenatal germline cells from 53 to 137 days of development. We discovered that the transcriptome and methylome of human germline is distinct from both human PSCs and the inner cell mass (ICM) of human blastocysts. Using this resource to monitor the outcome of global DNA demethylation with reversion of primed PSCs to the naive ground state, we uncovered hotspots of ultralow methylation at transposons that are protected from demethylation in the germline and ICM. Taken together, the human germline serves as a valuable in vivo tool for monitoring the epigenome of cells that have emerged from a global DNA demethylation event.


Assuntos
Blastocisto/metabolismo , Metilação de DNA , Embrião de Mamíferos/metabolismo , Células Germinativas/metabolismo , Massa Celular Interna do Blastocisto , Células-Tronco Embrionárias/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino
4.
Nature ; 591(7851): 627-632, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33731926

RESUMO

Human pluripotent and trophoblast stem cells have been essential alternatives to blastocysts for understanding early human development1-4. However, these simple culture systems lack the complexity to adequately model the spatiotemporal cellular and molecular dynamics that occur during early embryonic development. Here we describe the reprogramming of fibroblasts into in vitro three-dimensional models of the human blastocyst, termed iBlastoids. Characterization of iBlastoids shows that they model the overall architecture of blastocysts, presenting an inner cell mass-like structure, with epiblast- and primitive endoderm-like cells, a blastocoel-like cavity and a trophectoderm-like outer layer of cells. Single-cell transcriptomics further confirmed the presence of epiblast-, primitive endoderm-, and trophectoderm-like cells. Moreover, iBlastoids can give rise to pluripotent and trophoblast stem cells and are capable of modelling, in vitro, several aspects of the early stage of implantation. In summary, we have developed a scalable and tractable system to model human blastocyst biology; we envision that this will facilitate the study of early human development and the effects of gene mutations and toxins during early embryogenesis, as well as aiding in the development of new therapies associated with in vitro fertilization.


Assuntos
Blastocisto/citologia , Blastocisto/metabolismo , Técnicas de Cultura de Células , Reprogramação Celular , Fibroblastos/citologia , Modelos Biológicos , Transcriptoma , Feminino , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Trofoblastos/citologia
5.
Nature ; 586(7827): 101-107, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32939092

RESUMO

The reprogramming of human somatic cells to primed or naive induced pluripotent stem cells recapitulates the stages of early embryonic development1-6. The molecular mechanism that underpins these reprogramming processes remains largely unexplored, which impedes our understanding and limits rational improvements to reprogramming protocols. Here, to address these issues, we reconstruct molecular reprogramming trajectories of human dermal fibroblasts using single-cell transcriptomics. This revealed that reprogramming into primed and naive pluripotency follows diverging and distinct trajectories. Moreover, genome-wide analyses of accessible chromatin showed key changes in the regulatory elements of core pluripotency genes, and orchestrated global changes in chromatin accessibility over time. Integrated analysis of these datasets revealed a role for transcription factors associated with the trophectoderm lineage, and the existence of a subpopulation of cells that enter a trophectoderm-like state during reprogramming. Furthermore, this trophectoderm-like state could be captured, which enabled the derivation of induced trophoblast stem cells. Induced trophoblast stem cells are molecularly and functionally similar to trophoblast stem cells derived from human blastocysts or first-trimester placentas7. Our results provide a high-resolution roadmap for the transcription-factor-mediated reprogramming of human somatic cells, indicate a role for the trophectoderm-lineage-specific regulatory program during this process, and facilitate the direct reprogramming of somatic cells into induced trophoblast stem cells.


Assuntos
Reprogramação Celular/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Adulto , Cromatina/genética , Cromatina/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Transcrição Gênica
6.
Development ; 148(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722957

RESUMO

The peri-implantation window of mammalian development is the crucial window for primordial germ cell (PGC) specification. Whereas pre-implantation dynamics are relatively conserved between species, the implantation window marks a stage of developmental divergence between key model organisms, and thus potential variance in the cell and molecular mechanisms for PGC specification. In humans, PGC specification is very difficult to study in vivo To address this, the combined use of human and nonhuman primate embryos, and stem cell-based embryo models are essential for determining the origin of PGCs, as are comparative analyses to the equivalent stages of mouse development. Understanding the origin of PGCs in the peri-implantation embryo is crucial not only for accurate modeling of this essential process using stem cells, but also in determining the role of global epigenetic reprogramming upon which sex-specific differentiation into gametes relies.


Assuntos
Células Germinativas/metabolismo , Animais , Diferenciação Celular , Metilação de DNA , Desenvolvimento Embrionário , Células-Tronco Embrionárias/classificação , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Germinativas/classificação , Células Germinativas/citologia , Humanos , Modelos Biológicos , Cromossomo X/genética , Cromossomo X/metabolismo
8.
EMBO J ; 34(8): 975-7, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25787856

RESUMO

Understanding the molecular events of reproduction requires a system to differentiate human pluripotent stem cells to germline cells (gametes) in vitro. Such a system is not only critical to unlock the secrets of germline development; it may also allow screening for environmental agents that affect gametogenesis. Two recent papers, one in this issue of TheEMBO Journal, have developed complementary approaches for generating human germline cells with unprecedented efficiency from pluripotent stem cells(Sugawa et al, 2015; Irie et al, 2015). This work illustrates the power and limitations of extrapolating molecular pathways for lineage differentiation from mice to humans and illuminates the importance of using human cell-based models to study reproductive health.


Assuntos
Diferenciação Celular , Células Germinativas/citologia , Fatores de Transcrição SOXF/metabolismo , Animais , Humanos
9.
EMBO J ; 34(6): 748-58, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25519955

RESUMO

PRMT5 is a type II protein arginine methyltransferase with roles in stem cell biology, reprograming, cancer and neurogenesis. During embryogenesis in the mouse, it was hypothesized that PRMT5 functions with the master germline determinant BLIMP1 to promote primordial germ cell (PGC) specification. Using a Blimp1-Cre germline conditional knockout, we discovered that Prmt5 has no major role in murine germline specification, or the first global epigenetic reprograming event involving depletion of cytosine methylation from DNA and histone H3 lysine 9 dimethylation from chromatin. Instead, we discovered that PRMT5 functions at the conclusion of PGC reprograming I to promote proliferation, survival and expression of the gonadal germline program as marked by MVH. We show that PRMT5 regulates gene expression by promoting methylation of the Sm spliceosomal proteins and significantly altering the spliced repertoire of RNAs in mammalian embryonic cells and primordial cells.


Assuntos
Diferenciação Celular/fisiologia , Epigênese Genética/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Germinativas/citologia , Proteínas Metiltransferases/metabolismo , Fatores de Transcrição/genética , Animais , Western Blotting , Biologia Computacional , Metilação de DNA , Primers do DNA/genética , Citometria de Fluxo , Imunofluorescência , Técnicas de Inativação de Genes , Genótipo , Células Germinativas/enzimologia , Camundongos , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteína-Arginina N-Metiltransferases , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Spliceossomos/metabolismo
10.
Proc Natl Acad Sci U S A ; 113(35): E5108-16, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27528681

RESUMO

Microrchidia (MORC) proteins are GHKL (gyrase, heat-shock protein 90, histidine kinase, MutL) ATPases that function in gene regulation in multiple organisms. Animal MORCs also contain CW-type zinc finger domains, which are known to bind to modified histones. We solved the crystal structure of the murine MORC3 ATPase-CW domain bound to the nucleotide analog AMPPNP (phosphoaminophosphonic acid-adenylate ester) and in complex with a trimethylated histone H3 lysine 4 (H3K4) peptide (H3K4me3). We observed that the MORC3 N-terminal ATPase domain forms a dimer when bound to AMPPNP. We used native mass spectrometry to show that dimerization is ATP-dependent, and that dimer formation is enhanced in the presence of nonhydrolyzable ATP analogs. The CW domain uses an aromatic cage to bind trimethylated Lys4 and forms extensive hydrogen bonds with the H3 tail. We found that MORC3 localizes to promoters marked by H3K4me3 throughout the genome, consistent with its binding to H3K4me3 in vitro. Our work sheds light on aspects of the molecular dynamics and function of MORC3.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Animais , Cromatina/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Histonas/química , Histonas/genética , Lisina/química , Lisina/genética , Metilação , Camundongos , Modelos Moleculares , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Dedos de Zinco
11.
Stem Cells ; 35(3): 626-640, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28009074

RESUMO

The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well-characterized monoclonal antibodies (mAbs) detecting cell-surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA-160 and SSEA-4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow-derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells 2017;35:626-640.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas de Membrana/imunologia , Células-Tronco Pluripotentes/metabolismo , Animais , Antígenos de Superfície/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Autorrenovação Celular , Regulação para Baixo/genética , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Fator 3 de Transcrição de Octâmero/metabolismo
12.
Biol Reprod ; 97(6): 850-861, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29091993

RESUMO

In humans, germline competency and the specification of primordial germ cells (PGCs) are thought to occur in a restricted developmental window during early embryogenesis. Despite the importance of specifying the appropriate number of PGCs for human reproduction, the molecular mechanisms governing PGC formation remain largely unexplored. Here, we compared PGC-like cell (PGCLC) differentiation from 18 independently derived human embryonic stem cell (hESC) lines, and discovered that the expression of primitive streak genes were positively associated with hESC germline competency. Furthermore, we show that chemical inhibition of TGFß and WNT signaling, which are required for primitive streak formation and CRISPR/Cas9 deletion of Eomesodermin (EOMES), significantly impacts PGCLC differentiation from hESCs. Taken together, our results suggest that human PGC formation involves signaling and transcriptional programs associated with somatic germ layer induction and expression of EOMES.


Assuntos
Diferenciação Celular , Células Germinativas/citologia , Células-Tronco Embrionárias Humanas/citologia , Transdução de Sinais , Sistemas CRISPR-Cas , Linhagem Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Análise de Sequência de RNA , Proteínas com Domínio T/fisiologia
13.
Mol Cell ; 33(4): 417-27, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19250903

RESUMO

Lysine 56 acetylation in the helical core of histone H3 opens yeast chromatin and enables histone gene transcription, DNA replication, and DNA repair and prevents epigenetic silencing. While K56Ac is globally abundant in yeast and flies, its presence has been uncertain in mammals. We show here using mass spectrometry and genome-wide analyses that K56Ac is present in human embryonic stem cells (hESCs), overlapping strongly at active and inactive promoters with the binding of the key regulators of pluripotency, NANOG, SOX2, and OCT4. This includes also the canonical histone gene promoters and those for the hESC-specific microRNAs. K56Ac then relocates to developmental genes upon cellular differentiation. Thus the K56Ac state more accurately reflects the epigenetic differences between hESCs and somatic cells than other active histone marks such as H3 K4 trimethylation and K9 acetylation. These results suggest that K56Ac is involved in the human core transcriptional network of pluripotency.


Assuntos
Células-Tronco Embrionárias/metabolismo , Redes Reguladoras de Genes , Histonas/metabolismo , Lisina/metabolismo , Acetilação , Animais , Imunoprecipitação da Cromatina , Células-Tronco Embrionárias/citologia , Genoma Humano , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Lisina/química , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Processamento de Proteína Pós-Traducional/genética , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
14.
Nature ; 466(7304): 388-92, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20512117

RESUMO

Nucleosomes compact and regulate access to DNA in the nucleus, and are composed of approximately 147 bases of DNA wrapped around a histone octamer. Here we report a genome-wide nucleosome positioning analysis of Arabidopsis thaliana using massively parallel sequencing of mononucleosomes. By combining this data with profiles of DNA methylation at single base resolution, we identified 10-base periodicities in the DNA methylation status of nucleosome-bound DNA and found that nucleosomal DNA was more highly methylated than flanking DNA. These results indicate that nucleosome positioning influences DNA methylation patterning throughout the genome and that DNA methyltransferases preferentially target nucleosome-bound DNA. We also observed similar trends in human nucleosomal DNA, indicating that the relationships between nucleosomes and DNA methyltransferases are conserved. Finally, as has been observed in animals, nucleosomes were highly enriched on exons, and preferentially positioned at intron-exon and exon-intron boundaries. RNA polymerase II (Pol II) was also enriched on exons relative to introns, consistent with the hypothesis that nucleosome positioning regulates Pol II processivity. DNA methylation is also enriched on exons, consistent with the targeting of DNA methylation to nucleosomes, and suggesting a role for DNA methylation in exon definition.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina/fisiologia , Metilação de DNA/fisiologia , Nucleossomos/metabolismo , Arabidopsis/enzimologia , Montagem e Desmontagem da Cromatina/genética , Imunoprecipitação da Cromatina , Metilação de DNA/genética , DNA Polimerase II/análise , DNA Polimerase II/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Éxons/genética , Genes de Plantas/genética , Genoma de Planta/genética , Humanos , Nuclease do Micrococo/metabolismo , Nucleossomos/genética , Análise de Sequência de DNA
15.
Proc Natl Acad Sci U S A ; 109(20): 7630-5, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22547795

RESUMO

Cell state is often assayed through measurement of biochemical and biophysical markers. Although biochemical markers have been widely used, intrinsic biophysical markers, such as the ability to mechanically deform under a load, are advantageous in that they do not require costly labeling or sample preparation. However, current techniques that assay cell mechanical properties have had limited adoption in clinical and cell biology research applications. Here, we demonstrate an automated microfluidic technology capable of probing single-cell deformability at approximately 2,000 cells/s. The method uses inertial focusing to uniformly deliver cells to a stretching extensional flow where cells are deformed at high strain rates, imaged with a high-speed camera, and computationally analyzed to extract quantitative parameters. This approach allows us to analyze cells at throughputs orders of magnitude faster than previously reported biophysical flow cytometers and single-cell mechanics tools, while creating easily observable larger strains and limiting user time commitment and bias through automation. Using this approach we rapidly assay the deformability of native populations of leukocytes and malignant cells in pleural effusions and accurately predict disease state in patients with cancer and immune activation with a sensitivity of 91% and a specificity of 86%. As a tool for biological research, we show the deformability we measure is an early biomarker for pluripotent stem cell differentiation and is likely linked to nuclear structural changes. Microfluidic deformability cytometry brings the statistical accuracy of traditional flow cytometric techniques to label-free biophysical biomarkers, enabling applications in clinical diagnostics, stem cell characterization, and single-cell biophysics.


Assuntos
Elasticidade/fisiologia , Células-Tronco Embrionárias/citologia , Células HeLa/citologia , Imunofenotipagem/métodos , Leucócitos Mononucleares/citologia , Animais , Biomarcadores , Fenômenos Biomecânicos , Western Blotting , Técnicas de Cultura de Células , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/fisiologia , Células HeLa/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Leucócitos Mononucleares/fisiologia , Camundongos , Técnicas Analíticas Microfluídicas , Células NIH 3T3 , Sensibilidade e Especificidade , Estatísticas não Paramétricas
16.
J Biol Chem ; 288(52): 37010-25, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24247247

RESUMO

The mammalian protein arginine methyltransferase 7 (PRMT7) has been implicated in roles of transcriptional regulation, DNA damage repair, RNA splicing, cell differentiation, and metastasis. However, the type of reaction that it catalyzes and its substrate specificity remain controversial. In this study, we purified a recombinant mouse PRMT7 expressed in insect cells that demonstrates a robust methyltransferase activity. Using a variety of substrates, we demonstrate that the enzyme only catalyzes the formation of ω-monomethylarginine residues, and we confirm its activity as the prototype type III protein arginine methyltransferase. This enzyme is active on all recombinant human core histones, but histone H2B is a highly preferred substrate. Analysis of the specific methylation sites within intact histone H2B and within H2B and H4 peptides revealed novel post-translational modification sites and a unique specificity of PRMT7 for methylating arginine residues in lysine- and arginine-rich regions. We demonstrate that a prominent substrate recognition motif consists of a pair of arginine residues separated by one residue (RXR motif). These findings will significantly accelerate substrate profile analysis, biological function study, and inhibitor discovery for PRMT7.


Assuntos
Histonas/química , Processamento de Proteína Pós-Traducional/fisiologia , Proteína-Arginina N-Metiltransferases/química , Motivos de Aminoácidos , Animais , Arginina/química , Arginina/genética , Arginina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/química , Lisina/genética , Lisina/metabolismo , Metilação , Camundongos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Especificidade por Substrato
17.
Hum Mol Genet ; 21(4): 751-64, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22058289

RESUMO

Human embryonic stem cells (hESCs) are pluripotent cell types derived from the inner cell mass of human blastocysts. Recent data indicate that the majority of established female XX hESC lines have undergone X chromosome inactivation (XCI) prior to differentiation, and XCI of hESCs can be either XIST-dependent (class II) or XIST-independent (class III). XCI of female hESCs precludes the use of XX hESCs as a cell-based model for examining mechanisms of XCI, and will be a challenge for studying X-linked diseases unless strategies are developed to reactivate the inactive X. In order to recover nuclei with two active X chromosomes (class I), we developed a reprogramming strategy by supplementing hESC media with the small molecules sodium butyrate and 3-deazaneplanocin A (DZNep). Our data demonstrate that successful reprogramming can occur from the XIST-dependent class II nuclear state but not class III nuclear state. To determine whether these small molecules prevent XCI, we derived six new hESC lines under normoxic conditions (UCLA1-UCLA6). We show that class I nuclei are present within the first 20 passages of hESC derivation prior to cryopreservation, and that supplementation with either sodium butyrate or DZNep preserve class I nuclei in the self-renewing state. Together, our data demonstrate that self-renewal and survival of class I nuclei are compatible with normoxic hESC derivation, and that chemical supplementation after derivation provides a strategy to prevent epigenetic progression and retain nuclei with two active X chromosomes in the self-renewing state.


Assuntos
Cromatina/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia , Butiratos/farmacologia , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem Celular , Reprogramação Celular/efeitos dos fármacos , Reprogramação Celular/genética , Cromatina/química , Cromatina/metabolismo , Cromossomos Humanos X/genética , Células-Tronco Embrionárias/efeitos dos fármacos , Feminino , Humanos , RNA Longo não Codificante , RNA não Traduzido/genética
18.
Nat Commun ; 15(1): 167, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167821

RESUMO

Primordial germ cells (PGCs) are the embryonic precursors of sperm and eggs. They transmit genetic and epigenetic information across generations. Given the prominent role of germline defects in diseases such as infertility, detailed understanding of human PGC (hPGC) development has important implications in reproductive medicine and studying human evolution. Yet, hPGC specification remains an elusive process. Here, we report the induction of hPGC-like cells (hPGCLCs) in a bioengineered human pluripotent stem cell (hPSC) culture that mimics peri-implantation human development. In this culture, amniotic ectoderm-like cells (AMLCs), derived from hPSCs, induce hPGCLC specification from hPSCs through paracrine signaling downstream of ISL1. Our data further show functional roles of NODAL, WNT, and BMP signaling in hPGCLC induction. hPGCLCs are successfully derived from eight non-obstructive azoospermia (NOA) participant-derived hPSC lines using this biomimetic platform, demonstrating its promise for screening applications.


Assuntos
Células-Tronco Pluripotentes , Sêmen , Humanos , Masculino , Células Germinativas/metabolismo , Linhagem Celular , Transdução de Sinais , Diferenciação Celular
19.
Curr Opin Genet Dev ; 81: 102086, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37441874

RESUMO

Transposable elements (TEs), long discounted as 'selfish genomic elements,' are increasingly appreciated as the drivers of genomic evolution, genome organization, and gene regulation. TEs are particularly important in early embryo development, where advances in stem cell technologies, in tandem with improved computational and next-generation sequencing approaches, have provided an unprecedented opportunity to study the contribution of TEs to early mammalian development. Here, we summarize advances in our understanding of TEs in early human development and expand on how new stem cell-based embryo models can be leveraged to augment this understanding.


Assuntos
Elementos de DNA Transponíveis , Genômica , Animais , Humanos , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica , Células-Tronco , Mamíferos/genética , Evolução Molecular
20.
Cell Stem Cell ; 30(10): 1290-1293, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37802034

RESUMO

Embryo models are potentially highly impactful for human health research because their development recapitulates otherwise inaccessible events in a poorly understood area of biology, the first few weeks of human life. Casual reference to these models as "synthetic embryos" is misleading and should be approached with care and deliberation.


Assuntos
Células-Tronco Pluripotentes , Humanos , Embrião de Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA