Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2402540121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38758698

RESUMO

All respiratory viruses establish primary infections in the nasal epithelium, where efficient innate immune induction may prevent dissemination to the lower airway and thus minimize pathogenesis. Human coronaviruses (HCoVs) cause a range of pathologies, but the host and viral determinants of disease during common cold versus lethal HCoV infections are poorly understood. We model the initial site of infection using primary nasal epithelial cells cultured at an air-liquid interface (ALI). HCoV-229E, HCoV-NL63, and human rhinovirus-16 are common cold-associated viruses that exhibit unique features in this model: early induction of antiviral interferon (IFN) signaling, IFN-mediated viral clearance, and preferential replication at nasal airway temperature (33 °C) which confers muted host IFN responses. In contrast, lethal SARS-CoV-2 and MERS-CoV encode antagonist proteins that prevent IFN-mediated clearance in nasal cultures. Our study identifies features shared among common cold-associated viruses, highlighting nasal innate immune responses as predictive of infection outcomes and nasally directed IFNs as potential therapeutics.


Assuntos
Resfriado Comum , Imunidade Inata , Interferons , Mucosa Nasal , SARS-CoV-2 , Transdução de Sinais , Humanos , Mucosa Nasal/virologia , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Interferons/metabolismo , Interferons/imunologia , Resfriado Comum/imunologia , Resfriado Comum/virologia , Transdução de Sinais/imunologia , SARS-CoV-2/imunologia , Replicação Viral , Rhinovirus/imunologia , Coronavirus Humano 229E/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Células Epiteliais/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavirus Humano NL63/imunologia
2.
Proc Natl Acad Sci U S A ; 121(15): e2320194121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568967

RESUMO

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has caused millions of deaths since its emergence in 2019. Innate immune antagonism by lethal CoVs such as SARS-CoV-2 is crucial for optimal replication and pathogenesis. The conserved nonstructural protein 15 (nsp15) endoribonuclease (EndoU) limits activation of double-stranded (ds)RNA-induced pathways, including interferon (IFN) signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L) during diverse CoV infections including murine coronavirus and Middle East respiratory syndrome (MERS)-CoV. To determine how nsp15 functions during SARS-CoV-2 infection, we constructed a recombinant SARS-CoV-2 (nsp15mut) expressing catalytically inactivated nsp15, which we show promoted increased dsRNA accumulation. Infection with SARS-CoV-2 nsp15mut led to increased activation of the IFN signaling and PKR pathways in lung-derived epithelial cell lines and primary nasal epithelial air-liquid interface (ALI) cultures as well as significant attenuation of replication in ALI cultures compared to wild-type virus. This replication defect was rescued when IFN signaling was inhibited with the Janus activated kinase (JAK) inhibitor ruxolitinib. Finally, to assess nsp15 function in the context of minimal (MERS-CoV) or moderate (SARS-CoV-2) innate immune induction, we compared infections with SARS-CoV-2 nsp15mut and previously described MERS-CoV nsp15 mutants. Inactivation of nsp15 had a more dramatic impact on MERS-CoV replication than SARS-CoV-2 in both Calu3 cells and nasal ALI cultures suggesting that SARS-CoV-2 can better tolerate innate immune responses. Taken together, SARS-CoV-2 nsp15 is a potent inhibitor of dsRNA-induced innate immune response and its antagonism of IFN signaling is necessary for optimal viral replication in primary nasal ALI cultures.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Endorribonucleases/metabolismo , Transdução de Sinais , Antivirais
3.
Proc Natl Acad Sci U S A ; 120(15): e2218083120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023127

RESUMO

The nasal epithelium is the initial entry portal and primary barrier to infection by all human coronaviruses (HCoVs). We utilize primary human nasal epithelial cells grown at air-liquid interface, which recapitulate the heterogeneous cellular population as well as mucociliary clearance functions of the in vivo nasal epithelium, to compare lethal [Severe acute respiratory syndrome (SARS)-CoV-2 and Middle East respiratory syndrome-CoV (MERS-CoV)] and seasonal (HCoV-NL63 and HCoV-229E) HCoVs. All four HCoVs replicate productively in nasal cultures, though replication is differentially modulated by temperature. Infections conducted at 33 °C vs. 37 °C (reflective of temperatures in the upper and lower airway, respectively) revealed that replication of both seasonal HCoVs (HCoV-NL63 and -229E) is significantly attenuated at 37 °C. In contrast, SARS-CoV-2 and MERS-CoV replicate at both temperatures, though SARS-CoV-2 replication is enhanced at 33 °C late in infection. These HCoVs also diverge significantly in terms of cytotoxicity induced following infection, as the seasonal HCoVs as well as SARS-CoV-2 cause cellular cytotoxicity as well as epithelial barrier disruption, while MERS-CoV does not. Treatment of nasal cultures with type 2 cytokine IL-13 to mimic asthmatic airways differentially impacts HCoV receptor availability as well as replication. MERS-CoV receptor DPP4 expression increases with IL-13 treatment, whereas ACE2, the receptor used by SARS-CoV-2 and HCoV-NL63, is down-regulated. IL-13 treatment enhances MERS-CoV and HCoV-229E replication but reduces that of SARS-CoV-2 and HCoV-NL63, reflecting the impact of IL-13 on HCoV receptor availability. This study highlights diversity among HCoVs during infection of the nasal epithelium, which is likely to influence downstream infection outcomes such as disease severity and transmissibility.


Assuntos
COVID-19 , Coronaviridae , Coronavirus Humano 229E , Humanos , Interleucina-13/metabolismo , Estações do Ano , SARS-CoV-2 , Células Epiteliais
4.
Proc Natl Acad Sci U S A ; 119(21): e2123208119, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35594398

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be, in part, because MERS-CoV is adept at antagonizing early innate immune pathways­interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L)­activated in response to viral double-stranded RNA (dsRNA) generated during genome replication. This is in contrast to severe acute respiratory syndrome CoV-2 (SARS-CoV-2), which we recently reported to activate PKR and RNase L and, to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of dsRNA-induced innate immune pathways. This resulted in at least tenfold attenuation of replication in human lung­derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of wild-type MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication.


Assuntos
COVID-19 , Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Infecções por Coronavirus/imunologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células Epiteliais/metabolismo , Humanos , Imunidade Inata , Pulmão/metabolismo , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Mucosa Nasal , SARS-CoV-2/patogenicidade , Endorribonucleases Específicas de Uridilato
5.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33811184

RESUMO

Coronaviruses are adept at evading host antiviral pathways induced by viral double-stranded RNA, including interferon (IFN) signaling, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR). While dysregulated or inadequate IFN responses have been associated with severe coronavirus infection, the extent to which the recently emerged SARS-CoV-2 activates or antagonizes these pathways is relatively unknown. We found that SARS-CoV-2 infects patient-derived nasal epithelial cells, present at the initial site of infection; induced pluripotent stem cell-derived alveolar type 2 cells (iAT2), the major cell type infected in the lung; and cardiomyocytes (iCM), consistent with cardiovascular consequences of COVID-19 disease. Robust activation of IFN or OAS-RNase L is not observed in these cell types, whereas PKR activation is evident in iAT2 and iCM. In SARS-CoV-2-infected Calu-3 and A549ACE2 lung-derived cell lines, IFN induction remains relatively weak; however, activation of OAS-RNase L and PKR is observed. This is in contrast to Middle East respiratory syndrome (MERS)-CoV, which effectively inhibits IFN signaling and OAS-RNase L and PKR pathways, but is similar to mutant MERS-CoV lacking innate immune antagonists. Remarkably, OAS-RNase L and PKR are activated in MAVS knockout A549ACE2 cells, demonstrating that SARS-CoV-2 can induce these host antiviral pathways despite minimal IFN production. Moreover, increased replication and cytopathic effect in RNASEL knockout A549ACE2 cells implicates OAS-RNase L in restricting SARS-CoV-2. Finally, while SARS-CoV-2 fails to antagonize these host defense pathways, which contrasts with other coronaviruses, the IFN signaling response is generally weak. These host-virus interactions may contribute to the unique pathogenesis of SARS-CoV-2.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/virologia , Imunidade Inata , Pulmão/patologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/virologia , RNA de Cadeia Dupla/metabolismo , SARS-CoV-2/imunologia , Células A549 , Endorribonucleases/metabolismo , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Nariz/virologia , Replicação Viral , eIF-2 Quinase
6.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396738

RESUMO

The emergence and mutation of pathogenic viruses have been occurring at an unprecedented rate in recent decades. The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global public health crisis due to extensive viral transmission. In situ RNA mapping has revealed angiotensin-converting enzyme 2 (ACE2) expression to be highest in the nose and lower in the lung, pointing to nasal susceptibility as a predominant route for infection and the cause of subsequent pulmonary effects. By blocking viral attachment and entry at the nasal airway using a cyclodextrin-based formulation, a preventative therapy can be developed to reduce viral infection at the site of entry. Here, we assess the safety and antiviral efficacy of cyclodextrin-based formulations. From these studies, hydroxypropyl beta-cyclodextrin (HPBCD) and hydroxypropyl gamma-cyclodextrin (HPGCD) were then further evaluated for antiviral effects using SARS-CoV-2 pseudotypes. Efficacy findings were confirmed with SARS-CoV-2 Delta variant infection of Calu-3 cells and using a K18-hACE2 murine model. Intranasal pre-treatment with HPBCD-based formulations reduced viral load and inflammatory signaling in the lung. In vitro efficacy studies were further conducted using lentiviruses, murine hepatitis virus (MHV), and influenza A virus subtype H1N1. These findings suggest HPBCD may be used as an agnostic barrier against transmissible pathogens, including but not limited to SARS-CoV-2.


Assuntos
Ciclodextrinas , Vírus da Influenza A Subtipo H1N1 , Viroses , beta-Ciclodextrinas , Humanos , Camundongos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , beta-Ciclodextrinas/farmacologia
7.
Am J Respir Cell Mol Biol ; 66(3): 252-259, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34784491

RESUMO

Tissue damage in the upper and lower airways caused by mechanical abrasion, noxious chemicals, or pathogenic organisms must be followed by rapid restorative processes; otherwise, persistent immunopathology and disease may ensue. This review will discuss evidence for the important role served by trefoil factor (TFF) family members in healthy and diseased airways of humans and rodents. Collectively, these peptides serve to both maintain and restore homeostasis through their regulation of the mucous layer and their control of cell motility, cell differentiation, and immune function in the upper and lower airways. We will also discuss important differences in which trefoil member tracks with homeostasis and disease between humans and mice, which poses a challenge for research in this area. Moreover, we discuss new evidence supporting newly identified receptor binding partners in the leucine-rich repeat and immunoglobulin-like domain-containing NoGo (LINGO) family in mediating the biological effects of TFF proteins in mouse models of epithelial repair and infection. Recent advances in our knowledge regarding TFF peptides suggest that they may be reasonable therapeutic targets in the treatment of upper and lower airway diseases of diverse etiologies. Further work understanding their role in airway homeostasis, repair, and inflammation will benefit from these newly uncovered receptor-ligand interactions.


Assuntos
Fatores Trefoil , Animais , Pulmão/metabolismo , Camundongos , Peptídeos/metabolismo , Proteínas , Fator Trefoil-2
8.
Ann Allergy Asthma Immunol ; 129(2): 160-168, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35398492

RESUMO

OBJECTIVE: Treatment for chronic rhinosinusitis with nasal polyps (CRSwNP) generally involves intranasal corticosteroids (INCS) and saline irrigation, followed by short courses of systemic corticosteroids (SCS) or surgery with postoperative medical therapy for patients who do not respond to INCS. However, both SCS use and surgery are associated with a range of adverse effects or complications, have a high recurrence rate, and are unsuitable for some patients. Biologics targeting the underlying pathophysiology are promising treatment alternatives for these patients. Dupilumab, omalizumab, and mepolizumab are approved for use in patients with severe, uncontrolled CRSwNP. However, the lack of a consistent definition of severe CRSwNP makes the decision to initiate biologic treatment particularly complex. Furthermore, the position of each biologic in the overall management of CRSwNP remains to be clarified. DATA SOURCES: Publications reporting results of phase III trials of dupilumab, omalizumab, mepolizumab, and benralizumab in the treatment of CRSwNP. STUDY SELECTIONS: Randomized, controlled phase III trials of biologics approved for CRSwNP. RESULTS: These trials all used different enrollment criteria. We discuss the complexities of assessing CRSwNP disease severity and highlight how these impact comparisons of the populations and outcomes of the phase III biologic trials. CONCLUSION: To position biologic agents appropriately within the existing CRSwNP treatment paradigm, future trials will need to include comparable patient populations and standardized outcome measures. Such trials will help to ensure that biologic treatment is targeted appropriately to support optimal clinical outcomes.


Assuntos
Produtos Biológicos , Pólipos Nasais , Rinite , Sinusite , Corticosteroides/uso terapêutico , Produtos Biológicos/uso terapêutico , Doença Crônica , Humanos , Pólipos Nasais/complicações , Omalizumab/uso terapêutico , Rinite/complicações , Sinusite/complicações
9.
Respir Res ; 22(1): 31, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33509163

RESUMO

BACKGROUND: Epithelial solitary chemosensory cell (tuft cell) bitter taste signal transduction occurs through G protein coupled receptors and calcium-dependent signaling pathways. Type II taste cells, which utilize the same bitter taste signal transduction pathways, may also utilize cyclic adenosine monophosphate (cAMP) as an independent signaling messenger in addition to calcium. METHODS: In this work we utilized specific pharmacologic inhibitors to interrogate the short circuit current (Isc) of polarized nasal epithelial cells mounted in Ussing chambers to assess the electrophysiologic changes associated with bitter agonist (denatonium) treatment. We also assessed release of human ß-defensin-2 from polarized nasal epithelial cultures following treatment with denatonium benzoate and/or potassium channel inhibitors. RESULTS: We demonstrate that the bitter taste receptor agonist, denatonium, decreases human respiratory epithelial two-pore potassium (K2P) current in polarized nasal epithelial cells mounted in Ussing chambers. Our data further suggest that this occurs via a cAMP-dependent signaling pathway. We also demonstrate that this decrease in potassium current lowers the threshold for denatonium to stimulate human ß-defensin-2 release. CONCLUSIONS: These data thus demonstrate that, in addition to taste transducing calcium-dependent signaling, bitter taste receptor agonists can also activate cAMP-dependent respiratory epithelial signaling pathways to modulate K2P currents. Bitter-agonist regulation of potassium currents may therefore serve as a means of rapid regional epithelial signaling, and further study of these pathways may provide new insights into regulation of mucosal ionic composition and innate mechanisms of epithelial defense.


Assuntos
AMP Cíclico/metabolismo , Canais de Potássio/metabolismo , Compostos de Amônio Quaternário/farmacologia , Mucosa Respiratória/metabolismo , Papilas Gustativas/metabolismo , Paladar/fisiologia , Agentes Aversivos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Humanos , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Paladar/efeitos dos fármacos , Papilas Gustativas/efeitos dos fármacos
10.
Ann Allergy Asthma Immunol ; 126(2): 143-151, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33122124

RESUMO

OBJECTIVE: To review the latest discoveries regarding the role of tuft cells in the pathogenesis of chronic rhinosinusitis (CRS) with nasal polyposis and asthma. DATA SOURCES: Reviews and primary research manuscripts were identified from PubMed, Google, and bioRxiv using the search words airway epithelium, nasal polyposis, CRS or asthma and chemoreceptor cell, solitary chemosensory cell, brush cell, microvillus cell, and tuft cell. STUDY SELECTIONS: Studies were selected on the basis of novelty and likely relevance to the functions of tuft cells in chronic inflammatory diseases in the upper and lower airways. RESULTS: Tuft cells coordinate a variety of immune responses throughout the body. After the activation of bitter-taste receptors, tuft cells coordinate the secretion of antimicrobial products by adjacent epithelial cells and initiate the calcium-dependent release of acetylcholine resulting in neurogenic inflammation, including mast cell degranulation and plasma extravasation. Tuft cells are also the dominant source of interleukin-25 and a significant source of cysteinyl leukotrienes that play a role in initiating inflammatory processes in the airway. Tuft cells have also been found to seem de novo in the distal airway after a viral infection, implicating these cells in dysplastic remodeling in the distal lung in the pathogenesis of asthma. CONCLUSION: Tuft cells bridge innate and adaptive immunes responses and play an upstream role in initiating type 2 inflammation in the upper and possibly the lower airway. The role of tuft cells in respiratory pathophysiology must be further investigated, because tuft cells are putative high-value therapeutic targets for novel therapeutics in CRS with nasal polyps and asthma.


Assuntos
Asma/imunologia , Células Epiteliais/imunologia , Pólipos Nasais/imunologia , Sistema Respiratório/citologia , Rinite/imunologia , Sinusite/imunologia , Acetilcolina/imunologia , Animais , Doença Crônica , Eicosanoides/imunologia , Humanos , Interleucina-17/imunologia , Sistema Respiratório/imunologia
11.
Scand J Gastroenterol ; 56(7): 791-805, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33941035

RESUMO

Aim: Recovery of damaged mucosal surfaces following inflammatory insult requires diverse regenerative mechanisms that remain poorly defined. Previously, we demonstrated that the reparative actions of Trefoil Factor 3 (TFF3) depend upon the enigmatic receptor, leucine rich repeat and immunoglobulin-like domain containing nogo receptor 2 (LINGO2). This study examined the related orphan receptor LINGO3 in the context of intestinal tissue damage to determine whether LINGO family members are generally important for mucosal wound healing and maintenance of the intestinal stem cell (ISC) compartment needed for turnover of mucosal epithelium.Methods and Results: We find that LINGO3 is broadly expressed on human enterocytes and sparsely on discrete cells within the crypt niche, that contains ISCs. Loss of function studies indicate that LINGO3 is involved in recovery of normal intestinal architecture following dextran sodium sulfate (DSS)-induced colitis, and that LINGO3 is needed for therapeutic action of the long acting TFF2 fusion protein (TFF2-Fc), including a number of signaling pathways critical for cell proliferation and wound repair. LINGO3-TFF2 protein-protein interactions were relatively weak however and LINGO3 was only partially responsible for TFF2 induced MAPK signaling suggesting additional un-identified components of a receptor complex. However, deficiency in either TFF2 or LINGO3 abrogated budding/growth of intestinal organoids and reduced expression of the intestinal ISC gene leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5), indicating homologous roles for these proteins in tissue regeneration, possibly via regulation of ISCs in the crypt niche.Conclusion: We propose that LINGO3 serves a previously unappreciated role in promoting mucosal wound healing.


Assuntos
Colite , Mucosa Intestinal , Humanos , Organoides , Fator Trefoil-2 , Cicatrização
12.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1141-L1149, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30908939

RESUMO

H1N1 influenza virus infection induces dramatic and permanent alveolar remodeling mediated by p63+ progenitor cell expansion in both mice and some patients with acute respiratory distress syndrome. This persistent lung epithelial dysplasia is accompanied by chronic inflammation, but the driver(s) of this pathology are unknown. This work identified de novo appearance of solitary chemosensory cells (SCCs), as defined by the tuft cell marker doublecortin-like kinase 1, in post-influenza lungs, arising in close proximity with the dysplastic epithelium, whereas uninjured lungs are devoid of SCCs. Interestingly, fate mapping demonstrated that these cells are derived from p63-expressing lineage-negative progenitors, the same cell of origin as the dysplastic epithelium. Direct activation of SCCs with denatonium + succinate increased plasma extravasation specifically in post-influenza virus-injured lungs. Thus we demonstrate the previously unrecognized development and activity of SCCs in the lung following influenza virus infection, implicating SCCs as a central feature of dysplastic remodeling.


Assuntos
Lesão Pulmonar Aguda/patologia , Vírus da Influenza A Subtipo H1N1/metabolismo , Influenza Humana/patologia , Síndrome do Desconforto Respiratório/patologia , Mucosa Respiratória/patologia , Lesão Pulmonar Aguda/virologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Células Cultivadas , Quinases Semelhantes a Duplacortina , Células Epiteliais/patologia , Feminino , Humanos , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Pulmão/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Mucosa Respiratória/virologia
13.
Am J Pathol ; 188(5): 1161-1170, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29458008

RESUMO

Trefoil factors (TFFs) are small secreted proteins that regulate tissue integrity and repair at mucosal surfaces, particularly in the gastrointestinal tract. However, their relative contribution(s) to controlling baseline lung function or the extent of infection-induced lung injury are unknown issues. With the use of irradiation bone marrow chimeras, we found that TFF2 produced from both hematopoietic- and nonhematopoietic-derived cells is essential for host protection, proliferation of alveolar type 2 cells, and restoration of pulmonary gas exchange after infection with the hookworm parasite Nippostrongylus brasiliensis. In the absence of TFF2, lung epithelia were unable to proliferate and expressed reduced lung mRNA transcript levels for type 2 response-inducing IL-25 and IL-33 after infectious injury. Strikingly, even in the absence of infection or irradiation, TFF2 deficiency compromised lung structure and function, as characterized by distended alveoli and reduced blood oxygen levels relative to wild-type control mice. Taken together, we show a previously unappreciated role for TFF2, produced by either hematopoietic or nonhematopoietic sources, as a pro-proliferative factor for lung epithelial cells under steady-state and infectious injury conditions.


Assuntos
Células Epiteliais/metabolismo , Pulmão/metabolismo , Alvéolos Pulmonares/metabolismo , Infecções por Strongylida/metabolismo , Fator Trefoil-2/metabolismo , Animais , Proliferação de Células , Células Epiteliais/parasitologia , Células Epiteliais/patologia , Pulmão/parasitologia , Pulmão/patologia , Camundongos , Camundongos Transgênicos , Nippostrongylus , Alvéolos Pulmonares/parasitologia , Alvéolos Pulmonares/patologia , Infecções por Strongylida/imunologia , Infecções por Strongylida/patologia
15.
Chem Senses ; 44(1): 33-40, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351347

RESUMO

TAS2R38 is a human bitter receptor gene with a common but inactive allele; people homozygous for the inactive form cannot perceive low concentrations of certain bitter compounds. The frequency of the inactive and active forms of this receptor is nearly equal in many human populations, and heterozygotes with 1 copy of the active form and 1 copy of the inactive form have the most common diplotype. However, even though they have the same genotype, heterozygotes differ markedly in their perception of bitterness, perhaps in part because of differences in TAS2R38 mRNA expression. Other tissues express this receptor too, including the nasal sinuses, where it contributes to pathogen defense. We, therefore, wondered whether heterozygous people had a similar wide range of TAS2R38 mRNA in sinonasal tissue and whether those with higher TAS2R38 mRNA expression in taste tissue were similarly high expressers in nasal tissue. To that end, we measured gene expression by quantitative PCR in taste and sinonasal tissue and found that expression abundance in one tissue was not related to the other. We confirmed the independence of expression in other tissue pairs expressing TAS2R38 mRNA, such as pancreas and small intestine, using autopsy data from the Genotype-Tissue Expression project (although people with high expression of TAS2R38 mRNA in colon also tended to have higher expression in the small intestine). Thus, taste tissue TAS2R38 mRNA expression among heterozygotes is unlikely to predict expression in other tissues, perhaps reflecting tissue-dependent function, and hence regulation, of this protein.


Assuntos
RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Adulto , Alelos , Feminino , Expressão Gênica , Genótipo , Heterozigoto , Humanos , Masculino , Cavidade Nasal/metabolismo , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/genética , Paladar/fisiologia , Língua/metabolismo
16.
J Allergy Clin Immunol ; 142(2): 460-469.e7, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29778504

RESUMO

BACKGROUND: IL-25 can function as an early signal for the respiratory type 2 response characteristic of allergic asthma and chronic rhinosinusitis with nasal polyps (CRSwNP). In the mouse gut, tuft cells are the epithelial source of IL-25. However, the source of human airway epithelial IL-25 has remained elusive. OBJECTIVE: In this study we sought to determine whether the solitary chemosensory cell (SCC) is the predominant source of IL-25 in the sinonasal epithelium. METHOD: Flow cytometry and immunofluorescence for SCCs and IL-25 were used to interrogate polyp and turbinate tissue from patients with CRSwNP. Mucus was collected during acute inflammatory exacerbations from patients with CRSwNP or chronic rhinosinusitis without nasal polyps and IL-25 levels determined by using ELISA. Lastly, sinonasal epithelial cultures derived from polyp and turbinate tissue were stimulated with IL-13 and analyzed for SCC proliferation and IL-25 production. RESULTS: This study demonstrates that a discrete cell type, likely an SCC, characterized by expression of the taste-associated G protein gustducin and the intestinal tuft cell marker doublecortin-like kinase 1, is the predominant source of IL-25 in the human upper airway. Additionally, we show that patients with CRSwNP have increased numbers of SCCs in nasal polyp tissue and that in vitro IL-13 exposure both increased proliferation and induced apical secretion of IL-25 into the mucosal layer. CONCLUSIONS: Inflammatory sinus polyps but not adjacent turbinate tissue show expansion of the SCC population, which is the source of epithelial IL-25.


Assuntos
Células Quimiorreceptoras/fisiologia , Interleucina-17/metabolismo , Pólipos Nasais/imunologia , Seios Paranasais/patologia , Mucosa Respiratória/fisiologia , Rinite/imunologia , Sinusite/imunologia , Animais , Células Cultivadas , Doença Crônica , Quinases Semelhantes a Duplacortina , Citometria de Fluxo , Humanos , Interleucina-13/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Paladar/fisiologia , Transducina/metabolismo
18.
Int J Mol Sci ; 18(2)2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28218655

RESUMO

The bitter taste receptor T2R38 has been shown to play a role in the pathogenesis of chronic rhinosinusitis (CRS), where the receptor functions to enhance upper respiratory innate immunity through a triad of beneficial immune responses. Individuals with a functional version of T2R38 are tasters for the bitter compound phenylthiocarbamide (PTC) and exhibit an anti-microbial response in the upper airway to certain invading pathogens, while those individuals with a non-functional version of the receptor are PTC non-tasters and lack this beneficial response. The clinical ramifications are significant, with the non-taster genotype being an independent risk factor for CRS requiring surgery, poor quality-of-life (QOL) improvements post-operatively, and decreased rhinologic QOL in patients with cystic fibrosis. Furthermore, indirect evidence suggests that non-tasters also have a larger burden of biofilm formation. This new data may influence the clinical management of patients with infectious conditions affecting the upper respiratory tract and possibly at other mucosal sites throughout the body.


Assuntos
Imunidade Inata , Seios Paranasais/imunologia , Doenças Respiratórias/imunologia , Papilas Gustativas/metabolismo , Animais , Biofilmes , Variação Genética , Humanos , Doenças Respiratórias/genética
19.
Infect Immun ; 84(12): 3575-3583, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27736775

RESUMO

Approximately 20% of the population is persistently colonized by Staphylococcus aureus in the nares. Th17-like immune responses mediated by the interleukin-17 (IL-17) family of cytokines and neutrophils are becoming recognized as relevant host defense mechanisms for resolution of S. aureus mucocutaneous infections. Since antimicrobial peptides are regulated by the IL-17 cytokines, we sought to determine the role of IL-17 cytokines in production of antimicrobial peptides in a murine model of S. aureus nasal carriage. We discovered that nasal tissue supernatants have antistaphylococcal activity, and mice deficient in both IL-17A and IL-17F lost the ability to clear S. aureus nasal colonization. IL-17A was found to be sufficient for nasal mBD-3 production ex vivo and was required for CRAMP, mBD-3, and mBD-14 expression in response to S. aureus colonization in vivo These data were confirmed in a clinical study of nasal secretions in which elevated levels of the human forms of these antimicrobial peptides were found in nasal secretions from healthy human subjects when they were colonized with S. aureus but not in secretions from noncolonized subjects. Together, these data provide evidence for the importance of IL-17A regulation of antimicrobial peptides and IL-17F in the clearance of S. aureus nasal carriage.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Portador Sadio/imunologia , Interleucina-17/metabolismo , Nariz/microbiologia , Staphylococcus aureus , Adulto , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Interleucina-17/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regulação para Cima , beta-Defensinas
20.
Cell Mol Life Sci ; 72(2): 217-36, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25323130

RESUMO

Taste receptors were first identified on the tongue, where they initiate a signaling pathway that communicates information to the brain about the nutrient content or potential toxicity of ingested foods. However, recent research has shown that taste receptors are also expressed in a myriad of other tissues, from the airway and gastrointestinal epithelia to the pancreas and brain. The functions of many of these extraoral taste receptors remain unknown, but emerging evidence suggests that bitter and sweet taste receptors in the airway are important sentinels of innate immunity. This review discusses taste receptor signaling, focusing on the G-protein-coupled receptors that detect bitter, sweet, and savory tastes, followed by an overview of extraoral taste receptors and in-depth discussion of studies demonstrating the roles of taste receptors in airway innate immunity. Future research on extraoral taste receptors has significant potential for identification of novel immune mechanisms and insights into host-pathogen interactions.


Assuntos
Imunidade Inata/fisiologia , Modelos Imunológicos , Receptores Acoplados a Proteínas G/imunologia , Sistema Respiratório/metabolismo , Transdução de Sinais/imunologia , Humanos , Óxido Nítrico/biossíntese , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA