Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(15): 4043-4060.e30, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38878778

RESUMO

Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.


Assuntos
Inflamação , Proteínas de Membrana , Esclerose Múltipla , Neurônios , Animais , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Camundongos , Humanos , Inflamação/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Transdução de Sinais , Autofagia , Camundongos Endogâmicos C57BL , Ácido Glutâmico/metabolismo , Ferroptose , Modelos Animais de Doenças , Feminino , Masculino
2.
Nat Rev Mol Cell Biol ; 25(2): 133-155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37783783

RESUMO

In mammals, hundreds of proteins use iron in a multitude of cellular functions, including vital processes such as mitochondrial respiration, gene regulation and DNA synthesis or repair. Highly orchestrated regulatory systems control cellular and systemic iron fluxes ensuring sufficient iron delivery to target proteins is maintained, while limiting its potentially deleterious effects in iron-mediated oxidative cell damage and ferroptosis. In this Review, we discuss how cells acquire, traffick and export iron and how stored iron is mobilized for iron-sulfur cluster and haem biogenesis. Furthermore, we describe how these cellular processes are fine-tuned by the combination of various sensory and regulatory systems, such as the iron-regulatory protein (IRP)-iron-responsive element (IRE) network, the nuclear receptor co-activator 4 (NCOA4)-mediated ferritinophagy pathway, the prolyl hydroxylase domain (PHD)-hypoxia-inducible factor (HIF) axis or the nuclear factor erythroid 2-related factor 2 (NRF2) regulatory hub. We further describe how these pathways interact with systemic iron homeostasis control through the hepcidin-ferroportin axis to ensure appropriate iron fluxes. This knowledge is key for the identification of novel therapeutic opportunities to prevent diseases of cellular and/or systemic iron mismanagement.


Assuntos
Ferro , Fatores de Transcrição , Animais , Ferro/metabolismo , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Fatores de Transcrição/metabolismo , Homeostase/fisiologia , Estresse Oxidativo , Mamíferos/metabolismo
3.
Nat Rev Mol Cell Biol ; 22(4): 266-282, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33495651

RESUMO

The research field of ferroptosis has seen exponential growth over the past few years, since the term was coined in 2012. This unique modality of cell death, driven by iron-dependent phospholipid peroxidation, is regulated by multiple cellular metabolic pathways, including redox homeostasis, iron handling, mitochondrial activity and metabolism of amino acids, lipids and sugars, in addition to various signalling pathways relevant to disease. Numerous organ injuries and degenerative pathologies are driven by ferroptosis. Intriguingly, therapy-resistant cancer cells, particularly those in the mesenchymal state and prone to metastasis, are exquisitely vulnerable to ferroptosis. As such, pharmacological modulation of ferroptosis, via both its induction and its inhibition, holds great potential for the treatment of drug-resistant cancers, ischaemic organ injuries and other degenerative diseases linked to extensive lipid peroxidation. In this Review, we provide a critical analysis of the current molecular mechanisms and regulatory networks of ferroptosis, the potential physiological functions of ferroptosis in tumour suppression and immune surveillance, and its pathological roles, together with a potential for therapeutic targeting. Importantly, as in all rapidly evolving research areas, challenges exist due to misconceptions and inappropriate experimental methods. This Review also aims to address these issues and to provide practical guidelines for enhancing reproducibility and reliability in studies of ferroptosis. Finally, we discuss important concepts and pressing questions that should be the focus of future ferroptosis research.


Assuntos
Ferroptose/genética , Neoplasias/genética , Animais , Redes Reguladoras de Genes/genética , Humanos , Peroxidação de Lipídeos , Oxirredução , Reprodutibilidade dos Testes
4.
Cell ; 172(3): 409-422.e21, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29290465

RESUMO

Selenoproteins are rare proteins among all kingdoms of life containing the 21st amino acid, selenocysteine. Selenocysteine resembles cysteine, differing only by the substitution of selenium for sulfur. Yet the actual advantage of selenolate- versus thiolate-based catalysis has remained enigmatic, as most of the known selenoproteins also exist as cysteine-containing homologs. Here, we demonstrate that selenolate-based catalysis of the essential mammalian selenoprotein GPX4 is unexpectedly dispensable for normal embryogenesis. Yet the survival of a specific type of interneurons emerges to exclusively depend on selenocysteine-containing GPX4, thereby preventing fatal epileptic seizures. Mechanistically, selenocysteine utilization by GPX4 confers exquisite resistance to irreversible overoxidation as cells expressing a cysteine variant are highly sensitive toward peroxide-induced ferroptosis. Remarkably, concomitant deletion of all selenoproteins in Gpx4cys/cys cells revealed that selenoproteins are dispensable for cell viability provided partial GPX4 activity is retained. Conclusively, 200 years after its discovery, a specific and indispensable role for selenium is provided.


Assuntos
Apoptose , Glutationa Peroxidase/metabolismo , Convulsões/metabolismo , Selênio/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Feminino , Glutationa Peroxidase/genética , Células HEK293 , Humanos , Peróxido de Hidrogênio/toxicidade , Interneurônios/metabolismo , Peroxidação de Lipídeos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Convulsões/etiologia
5.
Cell ; 171(2): 273-285, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985560

RESUMO

Ferroptosis is a form of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides to lethal levels. Emerging evidence suggests that ferroptosis represents an ancient vulnerability caused by the incorporation of polyunsaturated fatty acids into cellular membranes, and cells have developed complex systems that exploit and defend against this vulnerability in different contexts. The sensitivity to ferroptosis is tightly linked to numerous biological processes, including amino acid, iron, and polyunsaturated fatty acid metabolism, and the biosynthesis of glutathione, phospholipids, NADPH, and coenzyme Q10. Ferroptosis has been implicated in the pathological cell death associated with degenerative diseases (i.e., Alzheimer's, Huntington's, and Parkinson's diseases), carcinogenesis, stroke, intracerebral hemorrhage, traumatic brain injury, ischemia-reperfusion injury, and kidney degeneration in mammals and is also implicated in heat stress in plants. Ferroptosis may also have a tumor-suppressor function that could be harnessed for cancer therapy. This Primer reviews the mechanisms underlying ferroptosis, highlights connections to other areas of biology and medicine, and recommends tools and guidelines for studying this emerging form of regulated cell death.


Assuntos
Morte Celular , Animais , Apoptose , Humanos , Ferro/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
7.
Nature ; 629(8011): 426-434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658764

RESUMO

Expansion of antigen-experienced CD8+ T cells is critical for the success of tumour-infiltrating lymphocyte (TIL)-adoptive cell therapy (ACT) in patients with cancer1. Interleukin-2 (IL-2) acts as a key regulator of CD8+ cytotoxic T lymphocyte functions by promoting expansion and cytotoxic capability2,3. Therefore, it is essential to comprehend mechanistic barriers to IL-2 sensing in the tumour microenvironment to implement strategies to reinvigorate IL-2 responsiveness and T cell antitumour responses. Here we report that prostaglandin E2 (PGE2), a known negative regulator of immune response in the tumour microenvironment4,5, is present at high concentrations in tumour tissue from patients and leads to impaired IL-2 sensing in human CD8+ TILs via the PGE2 receptors EP2 and EP4. Mechanistically, PGE2 inhibits IL-2 sensing in TILs by downregulating the IL-2Rγc chain, resulting in defective assembly of IL-2Rß-IL2Rγc membrane dimers. This results in impaired IL-2-mTOR adaptation and PGC1α transcriptional repression, causing oxidative stress and ferroptotic cell death in tumour-reactive TILs. Inhibition of PGE2 signalling to EP2 and EP4 during TIL expansion for ACT resulted in increased IL-2 sensing, leading to enhanced proliferation of tumour-reactive TILs and enhanced tumour control once the cells were transferred in vivo. Our study reveals fundamental features that underlie impairment of human TILs mediated by PGE2 in the tumour microenvironment. These findings have therapeutic implications for cancer immunotherapy and cell therapy, and enable the development of targeted strategies to enhance IL-2 sensing and amplify the IL-2 response in TILs, thereby promoting the expansion of effector T cells with enhanced therapeutic potential.


Assuntos
Linfócitos T CD8-Positivos , Proliferação de Células , Dinoprostona , Interleucina-2 , Linfócitos do Interstício Tumoral , Mitocôndrias , Transdução de Sinais , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Dinoprostona/metabolismo , Regulação para Baixo , Ferroptose , Subunidade gama Comum de Receptores de Interleucina/biossíntese , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Interleucina-2/antagonistas & inibidores , Interleucina-2/imunologia , Interleucina-2/metabolismo , Subunidade beta de Receptor de Interleucina-2/metabolismo , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP2/antagonistas & inibidores , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Receptores de Prostaglandina E Subtipo EP4/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Microambiente Tumoral/imunologia
8.
Nature ; 626(7998): 401-410, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297129

RESUMO

Ferroptosis is a form of cell death that has received considerable attention not only as a means to eradicate defined tumour entities but also because it provides unforeseen insights into the metabolic adaptation that tumours exploit to counteract phospholipid oxidation1,2. Here, we identify proferroptotic activity of 7-dehydrocholesterol reductase (DHCR7) and an unexpected prosurvival function of its substrate, 7-dehydrocholesterol (7-DHC). Although previous studies suggested that high concentrations of 7-DHC are cytotoxic to developing neurons by favouring lipid peroxidation3, we now show that 7-DHC accumulation confers a robust prosurvival function in cancer cells. Because of its far superior reactivity towards peroxyl radicals, 7-DHC effectively shields (phospho)lipids from autoxidation and subsequent fragmentation. We provide validation in neuroblastoma and Burkitt's lymphoma xenografts where we demonstrate that the accumulation of 7-DHC is capable of inducing a shift towards a ferroptosis-resistant state in these tumours ultimately resulting in a more aggressive phenotype. Conclusively, our findings provide compelling evidence of a yet-unrecognized antiferroptotic activity of 7-DHC as a cell-intrinsic mechanism that could be exploited by cancer cells to escape ferroptosis.


Assuntos
Linfoma de Burkitt , Desidrocolesteróis , Ferroptose , Neuroblastoma , Animais , Humanos , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Sobrevivência Celular , Desidrocolesteróis/metabolismo , Peroxidação de Lipídeos , Transplante de Neoplasias , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Oxirredução , Fenótipo , Reprodutibilidade dos Testes
9.
Mol Cell ; 82(4): 728-740, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34965379

RESUMO

Ferroptosis is a unique type of non-apoptotic cell death resulting from the unrestrained occurrence of peroxidized phospholipids, which are subject to iron-mediated production of lethal oxygen radicals. This cell death modality has been detected across many organisms, including in mammals, where it can be used as a defense mechanism against pathogens or even harnessed by T cells to sensitize tumor cells toward effective killing. Conversely, ferroptosis is considered one of the main cell death mechanisms promoting degenerative diseases. Emerging evidence suggests that ferroptosis represents a vulnerability in certain cancers. Here, we critically review recent advances linking ferroptosis vulnerabilities of dedifferentiating and persister cancer cells to the dependency of these cells on iron, a potential Achilles heel for small-molecule intervention. We provide a perspective on the mechanisms reliant on iron that contribute to the persister cancer cell state and how this dependency may be exploited for therapeutic benefits.


Assuntos
Ferroptose , Ferro/metabolismo , Peroxidação de Lipídeos , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antineoplásicos/uso terapêutico , Diferenciação Celular , Ferroptose/efeitos dos fármacos , Homeostase , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais
10.
Nature ; 619(7969): 371-377, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37380771

RESUMO

Ferroptosis is evolving as a highly promising approach to combat difficult-to-treat tumour entities including therapy-refractory and dedifferentiating cancers1-3. Recently, ferroptosis suppressor protein-1 (FSP1), along with extramitochondrial ubiquinone or exogenous vitamin K and NAD(P)H/H+ as an electron donor, has been identified as the second ferroptosis-suppressing system, which efficiently prevents lipid peroxidation independently of the cyst(e)ine-glutathione (GSH)-glutathione peroxidase 4 (GPX4) axis4-6. To develop FSP1 inhibitors as next-generation therapeutic ferroptosis inducers, here we performed a small molecule library screen and identified the compound class of 3-phenylquinazolinones (represented by icFSP1) as potent FSP1 inhibitors. We show that icFSP1, unlike iFSP1, the first described on-target FSP1 inhibitor5, does not competitively inhibit FSP1 enzyme activity, but instead triggers subcellular relocalization of FSP1 from the membrane and FSP1 condensation before ferroptosis induction, in synergism with GPX4 inhibition. icFSP1-induced FSP1 condensates show droplet-like properties consistent with phase separation, an emerging and widespread mechanism to modulate biological activity7. N-terminal myristoylation, distinct amino acid residues and intrinsically disordered, low-complexity regions in FSP1 were identified to be essential for FSP1-dependent phase separation in cells and in vitro. We further demonstrate that icFSP1 impairs tumour growth and induces FSP1 condensates in tumours in vivo. Hence, our results suggest that icFSP1 exhibits a unique mechanism of action and synergizes with ferroptosis-inducing agents to potentiate the ferroptotic cell death response, thus providing a rationale for targeting FSP1-dependent phase separation as an efficient anti-cancer therapy.


Assuntos
Proteínas Reguladoras de Apoptose , Ferroptose , Proteínas Mitocondriais , Humanos , Aminoácidos/metabolismo , Cisteína/metabolismo , Ferroptose/efeitos dos fármacos , Glutationa/metabolismo , NAD/metabolismo , NADP/metabolismo , Neoplasias/tratamento farmacológico , Quinazolinas/farmacologia , Bibliotecas de Moléculas Pequenas , Ubiquinona/metabolismo , Vitamina K/metabolismo , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo
11.
Nature ; 608(7924): 778-783, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922516

RESUMO

Ferroptosis, a non-apoptotic form of cell death marked by iron-dependent lipid peroxidation1, has a key role in organ injury, degenerative disease and vulnerability of therapy-resistant cancers2. Although substantial progress has been made in understanding the molecular processes relevant to ferroptosis, additional cell-extrinsic and cell-intrinsic processes that determine cell sensitivity toward ferroptosis remain unknown. Here we show that the fully reduced forms of vitamin K-a group of naphthoquinones that includes menaquinone and phylloquinone3-confer a strong anti-ferroptotic function, in addition to the conventional function linked to blood clotting by acting as a cofactor for γ-glutamyl carboxylase. Ferroptosis suppressor protein 1 (FSP1), a NAD(P)H-ubiquinone reductase and the second mainstay of ferroptosis control after glutathione peroxidase-44,5, was found to efficiently reduce vitamin K to its hydroquinone, a potent radical-trapping antioxidant and inhibitor of (phospho)lipid peroxidation. The FSP1-mediated reduction of vitamin K was also responsible for the antidotal effect of vitamin K against warfarin poisoning. It follows that FSP1 is the enzyme mediating warfarin-resistant vitamin K reduction in the canonical vitamin K cycle6. The FSP1-dependent non-canonical vitamin K cycle can act to protect cells against detrimental lipid peroxidation and ferroptosis.


Assuntos
Ferroptose , Vitamina K , Antídotos/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Carbono-Carbono Ligases/metabolismo , Coenzimas/metabolismo , Ferroptose/efeitos dos fármacos , Hidroquinonas/metabolismo , Hidroquinonas/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo , Vitamina K/metabolismo , Vitamina K/farmacologia , Varfarina/efeitos adversos
12.
Genes Dev ; 34(7-8): 526-543, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32079652

RESUMO

MDM2 and MDMX, negative regulators of the tumor suppressor p53, can work separately and as a heteromeric complex to restrain p53's functions. MDM2 also has pro-oncogenic roles in cells, tissues, and animals that are independent of p53. There is less information available about p53-independent roles of MDMX or the MDM2-MDMX complex. We found that MDM2 and MDMX facilitate ferroptosis in cells with or without p53. Using small molecules, RNA interference reagents, and mutant forms of MDMX, we found that MDM2 and MDMX, likely working in part as a complex, normally facilitate ferroptotic death. We observed that MDM2 and MDMX alter the lipid profile of cells to favor ferroptosis. Inhibition of MDM2 or MDMX leads to increased levels of FSP1 protein and a consequent increase in the levels of coenzyme Q10, an endogenous lipophilic antioxidant. This suggests that MDM2 and MDMX normally prevent cells from mounting an adequate defense against lipid peroxidation and thereby promote ferroptosis. Moreover, we found that PPARα activity is essential for MDM2 and MDMX to promote ferroptosis, suggesting that the MDM2-MDMX complex regulates lipids through altering PPARα activity. These findings reveal the complexity of cellular responses to MDM2 and MDMX and suggest that MDM2-MDMX inhibition might be useful for preventing degenerative diseases involving ferroptosis. Furthermore, they suggest that MDM2/MDMX amplification may predict sensitivity of some cancers to ferroptosis inducers.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ferroptose/genética , Metabolismo dos Lipídeos/genética , PPAR alfa/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Proteínas de Ciclo Celular/genética , Glioblastoma/fisiopatologia , Células HCT116 , Humanos , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/genética , Interferência de RNA , Ratos , Proteína Supressora de Tumor p53/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
13.
Genes Dev ; 32(9-10): 602-619, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29802123

RESUMO

Lipid peroxidation is the process by which oxygen combines with lipids to generate lipid hydroperoxides via intermediate formation of peroxyl radicals. Vitamin E and coenzyme Q10 react with peroxyl radicals to yield peroxides, and then these oxidized lipid species can be detoxified by glutathione and glutathione peroxidase 4 (GPX4) and other components of the cellular antioxidant defense network. Ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Here, we review the functions and regulation of lipid peroxidation, ferroptosis, and the antioxidant network in diverse species, including humans, other mammals and vertebrates, plants, invertebrates, yeast, bacteria, and archaea. We also discuss the potential evolutionary roles of lipid peroxidation and ferroptosis.


Assuntos
Antioxidantes/metabolismo , Evolução Biológica , Morte Celular/fisiologia , Ferro/metabolismo , Peroxidação de Lipídeos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
14.
Nature ; 575(7784): 693-698, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31634899

RESUMO

Ferroptosis is an iron-dependent form of necrotic cell death marked by oxidative damage to phospholipids1,2. To date, ferroptosis has been thought to be controlled only by the phospholipid hydroperoxide-reducing enzyme glutathione peroxidase 4 (GPX4)3,4 and radical-trapping antioxidants5,6. However, elucidation of the factors that underlie the sensitivity of a given cell type to ferroptosis7 is crucial to understand the pathophysiological role of ferroptosis and how it may be exploited for the treatment of cancer. Although metabolic constraints8 and phospholipid composition9,10 contribute to ferroptosis sensitivity, no cell-autonomous mechanisms have been identified that account for the resistance of cells to ferroptosis. Here we used an expression cloning approach to identify genes in human cancer cells that are able to complement the loss of GPX4. We found that the flavoprotein apoptosis-inducing factor mitochondria-associated 2 (AIFM2) is a previously unrecognized anti-ferroptotic gene. AIFM2, which we renamed ferroptosis suppressor protein 1 (FSP1) and which was initially described as a pro-apoptotic gene11, confers protection against ferroptosis elicited by GPX4 deletion. We further demonstrate that the suppression of ferroptosis by FSP1 is mediated by ubiquinone (also known as coenzyme Q10, CoQ10): the reduced form, ubiquinol, traps lipid peroxyl radicals that mediate lipid peroxidation, whereas FSP1 catalyses the regeneration of CoQ10 using NAD(P)H. Pharmacological targeting of FSP1 strongly synergizes with GPX4 inhibitors to trigger ferroptosis in a number of cancer entities. In conclusion, the FSP1-CoQ10-NAD(P)H pathway exists as a stand-alone parallel system, which co-operates with GPX4 and glutathione to suppress phospholipid peroxidation and ferroptosis.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Ferroptose/genética , Glutationa/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Peroxidação de Lipídeos/genética , Camundongos , Proteínas Mitocondriais/genética , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo
15.
Nat Chem Biol ; 18(1): 91-100, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34931062

RESUMO

Glutathione peroxidase 4 (GPX4), as the only enzyme in mammals capable of reducing esterified phospholipid hydroperoxides within a cellular context, protects cells from ferroptosis. We identified a homozygous point mutation in the GPX4 gene, resulting in an R152H coding mutation, in three patients with Sedaghatian-type spondylometaphyseal dysplasia. Using structure-based analyses and cell models, including patient fibroblasts, of this variant, we found that the missense variant destabilized a critical loop, which disrupted the active site and caused a substantial loss of enzymatic function. We also found that the R152H variant of GPX4 is less susceptible to degradation, revealing the degradation mechanism of the GPX4 protein. Proof-of-concept therapeutic treatments, which overcome the impaired R152H GPX4 activity, including selenium supplementation, selective antioxidants and a deuterated polyunsaturated fatty acid were identified. In addition to revealing a general approach to investigating rare genetic diseases, we demonstrate the biochemical foundations of therapeutic strategies targeting GPX4.


Assuntos
Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Medicina de Precisão , Humanos , Mutação Puntual , Estudo de Prova de Conceito
16.
Nephrol Dial Transplant ; 39(11): 1754-1761, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38684468

RESUMO

Ferroptosis is a regulated cell death modality triggered by iron-dependent lipid peroxidation. Ferroptosis plays a causal role in the pathophysiology of various diseases, making it a promising therapeutic target. Unlike all other cell death modalities dependent on distinct signaling cues, ferroptosis occurs when cellular antioxidative defense mechanisms fail to suppress the oxidative destruction of cellular membranes, eventually leading to cell membrane rupture. Physiologically, only two such surveillance systems are known to efficiently prevent the lipid peroxidation chain reaction by reducing (phospho)lipid hydroperoxides to their corresponding alcohols or by reducing radicals in phospholipid bilayers, thus maintaining the integrity of lipid membranes. Mechanistically, these two systems are linked to the reducing capacity of glutathione peroxidase 4 (GPX4) by consuming glutathione (GSH) on one hand and ferroptosis suppressor protein 1 (FSP1, formerly AIFM2) on the other. Notably, the importance of ferroptosis suppression in physiological contexts has been linked to a particular vulnerability of renal tissue. In fact, early work has shown that mice genetically lacking Gpx4 rapidly succumb to acute renal failure with pathohistological features of acute tubular necrosis. Promising research attempting to implicate ferroptosis in various renal disease entities, particularly those with proximal tubular involvement, has generated a wealth of knowledge with widespread potential for clinical translation. Here, we provide a brief overview of the involvement of ferroptosis in nephrology. Our goal is to introduce this expanding field for clinically versed nephrologists in the hope of spurring future efforts to prevent ferroptosis in the pathophysiological processes of the kidney.


Assuntos
Ferroptose , Nefropatias , Humanos , Animais , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/etiologia , Peroxidação de Lipídeos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
18.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33579817

RESUMO

The mitochondrial thioredoxin/peroxiredoxin system encompasses NADPH, thioredoxin reductase 2 (TrxR2), thioredoxin 2, and peroxiredoxins 3 and 5 (Prx3 and Prx5) and is crucial to regulate cell redox homeostasis via the efficient catabolism of peroxides (TrxR2 and Trxrd2 refer to the mitochondrial thioredoxin reductase protein and gene, respectively). Here, we report that endothelial TrxR2 controls both the steady-state concentration of peroxynitrite, the product of the reaction of superoxide radical and nitric oxide, and the integrity of the vascular system. Mice with endothelial deletion of the Trxrd2 gene develop increased vascular stiffness and hypertrophy of the vascular wall. Furthermore, they suffer from renal abnormalities, including thickening of the Bowman's capsule, glomerulosclerosis, and functional alterations. Mechanistically, we show that loss of Trxrd2 results in enhanced peroxynitrite steady-state levels in both vascular endothelial cells and vessels by using a highly sensitive redox probe, fluorescein-boronate. High steady-state peroxynitrite levels were further found to coincide with elevated protein tyrosine nitration in renal tissue and a substantial change of the redox state of Prx3 toward the oxidized protein, even though glutaredoxin 2 (Grx2) expression increased in parallel. Additional studies using a mitochondria-specific fluorescence probe (MitoPY1) in vessels revealed that enhanced peroxynitrite levels are indeed generated in mitochondria. Treatment with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin [Mn(III)TMPyP], a peroxynitrite-decomposition catalyst, blunted intravascular formation of peroxynitrite. Our data provide compelling evidence for a yet-unrecognized role of TrxR2 in balancing the nitric oxide/peroxynitrite ratio in endothelial cells in vivo and thus establish a link between enhanced mitochondrial peroxynitrite and disruption of vascular integrity.


Assuntos
Endotélio Vascular/metabolismo , Ácido Peroxinitroso/metabolismo , Tiorredoxina Redutase 2/metabolismo , Animais , Rim/irrigação sanguínea , Rim/metabolismo , Camundongos , Mitocôndrias/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo , Tiorredoxina Redutase 2/genética , Remodelação Vascular
19.
J Biol Chem ; 298(3): 101625, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35074430

RESUMO

Varicella-zoster virus (VZV) is a human pathogen from the α-subfamily of herpesviruses. The VZV Orf24-Orf27 complex represents the essential viral core nuclear egress complex (NEC) that orchestrates the egress of the preassembled virus capsids from the nucleus. While previous studies have primarily emphasized that the architecture of core NEC complexes is highly conserved among herpesviruses, the present report focuses on subfamily-specific structural and functional features that help explain the differences in the autologous versus nonautologous interaction patterns observed for NEC formation across herpesviruses. Here, we describe the crystal structure of the Orf24-Orf27 complex at 2.1 Å resolution. Coimmunoprecipitation and confocal imaging data show that Orf24-Orf27 complex formation displays some promiscuity in a herpesvirus subfamily-restricted manner. At the same time, analysis of thermodynamic parameters of NEC formation of three prototypical α-, ß-, and γ herpesviruses, i.e., VZV, human cytomegalovirus (HCMV), and Epstein-Barr virus (EBV), revealed highly similar binding affinities for the autologous interaction with specific differences in enthalpy and entropy. Computational alanine scanning, structural comparisons, and mutational data highlight intermolecular interactions shared among α-herpesviruses that are clearly distinct from those seen in ß- and γ-herpesviruses, including a salt bridge formed between Orf24-Arg167 and Orf27-Asp126. This interaction is located outside of the hook-into-groove interface and contributes significantly to the free energy of complex formation. Combined, these data explain distinct properties of specificity and permissivity so far observed in herpesviral NEC interactions. These findings will prove valuable in attempting to target multiple herpesvirus core NECs with selective or broad-acting drug candidates.


Assuntos
Herpesvirus Humano 3 , Membrana Nuclear , Proteínas Virais , Cristalografia por Raios X , Herpesvirus Humano 3/química , Herpesvirus Humano 3/genética , Humanos , Membrana Nuclear/química , Membrana Nuclear/genética , Proteínas Virais/química , Proteínas Virais/genética , Liberação de Vírus
20.
Clin Immunol ; 248: 109213, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36566913

RESUMO

Ferroptosis is a druggable, iron-dependent form of cell death that is characterized by lipid peroxidation but has received little attention in lupus nephritis. Kidneys of lupus nephritis patients and mice showed increased lipid peroxidation mainly in the tubular segments and an increase in Acyl-CoA synthetase long-chain family member 4, a pro-ferroptosis enzyme. Nephritic mice had an attenuated expression of SLC7A11, a cystine importer, an impaired glutathione synthesis pathway, and low expression of glutathione peroxidase 4, a ferroptosis inhibitor. Lipidomics of nephritic kidneys confirmed ferroptosis. Using nephrotoxic serum, we induced immune complex glomerulonephritis in congenic mice and demonstrate that impaired iron sequestration within the proximal tubules exacerbates ferroptosis. Lupus nephritis patient serum rendered human proximal tubular cells susceptibility to ferroptosis which was inhibited by Liproxstatin-2, a novel ferroptosis inhibitor. Collectively, our findings identify intra-renal ferroptosis as a pathological feature and contributor to tubular injury in human and murine lupus nephritis.


Assuntos
Ferroptose , Nefropatias , Nefrite Lúpica , Humanos , Camundongos , Animais , Ferro/metabolismo , Glomérulos Renais/metabolismo , Células Epiteliais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA