Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nature ; 545(7654): 355-359, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28489818

RESUMO

The heterogeneity of cellular states in cancer has been linked to drug resistance, cancer progression and the presence of cancer cells with properties of normal tissue stem cells. Secreted Wnt signals maintain stem cells in various epithelial tissues, including in lung development and regeneration. Here we show that mouse and human lung adenocarcinomas display hierarchical features with two distinct subpopulations, one with high Wnt signalling activity and another forming a niche that provides the Wnt ligand. The Wnt responder cells showed increased tumour propagation ability, suggesting that these cells have features of normal tissue stem cells. Genetic perturbation of Wnt production or signalling suppressed tumour progression. Small-molecule inhibitors targeting essential posttranslational modification of Wnt reduced tumour growth and markedly decreased the proliferative potential of lung cancer cells, leading to improved survival of tumour-bearing mice. These results indicate that strategies for disrupting pathways that maintain stem-like and niche cell phenotypes can translate into effective anti-cancer therapies.


Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Progressão da Doença , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nicho de Células-Tronco , Proteínas Wnt/biossíntese , Via de Sinalização Wnt , Adenocarcinoma de Pulmão , Animais , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Taxa de Sobrevida , Proteínas Wnt/química , Proteínas Wnt/metabolismo
2.
Proc Natl Acad Sci U S A ; 109(30): 12207-12, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22761317

RESUMO

Diseases such as osteoporosis are associated with reduced bone mass. Therapies to prevent bone loss exist, but there are few that stimulate bone formation and restore bone mass. Bone morphogenetic proteins (BMPs) are members of the TGFß superfamily, which act as pleiotropic regulators of skeletal organogenesis and bone homeostasis. Ablation of the BMPR1A receptor in osteoblasts increases bone mass, suggesting that inhibition of BMPR1A signaling may have therapeutic benefit. The aim of this study was to determine the skeletal effects of systemic administration of a soluble BMPR1A fusion protein (mBMPR1A-mFc) in vivo. mBMPR1A-mFc was shown to bind BMP2/4 specifically and with high affinity and prevent downstream signaling. mBMPR1A-mFc treatment of immature and mature mice increased bone mineral density, cortical thickness, trabecular bone volume, thickness and number, and decreased trabecular separation. The increase in bone mass was due to an early increase in osteoblast number and bone formation rate, mediated by a suppression of Dickkopf-1 expression. This was followed by a decrease in osteoclast number and eroded surface, which was associated with a decrease in receptor activator of NF-κB ligand (RANKL) production, an increase in osteoprotegerin expression, and a decrease in serum tartrate-resistant acid phosphatase (TRAP5b) concentration. mBMPR1A treatment also increased bone mass and strength in mice with bone loss due to estrogen deficiency. In conclusion, mBMPR1A-mFc stimulates osteoblastic bone formation and decreases bone resorption, which leads to an increase in bone mass, and offers a promising unique alternative for the treatment of bone-related disorders.


Assuntos
Doenças Ósseas Metabólicas/prevenção & controle , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Osso e Ossos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Análise de Variância , Animais , Western Blotting , Densidade Óssea/efeitos dos fármacos , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Reabsorção Óssea/tratamento farmacológico , Osso e Ossos/anatomia & histologia , Osso e Ossos/fisiologia , Cromatografia em Gel , Clonagem Molecular , Densitometria , Eletroforese em Gel de Poliacrilamida , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Luciferases , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/efeitos dos fármacos , Osteoclastos/fisiologia , Osteoprotegerina/metabolismo , Reação em Cadeia da Polimerase , Ligante RANK/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes de Fusão/administração & dosagem , Transdução de Sinais/fisiologia
3.
Commun Med (Lond) ; 3(1): 108, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558833

RESUMO

BACKGROUND: Genetically engineered mouse models (GEMMs) of cancer are powerful tools to study mechanisms of disease progression and therapy response, yet little is known about how these models respond to multimodality therapy used in patients. Radiation therapy (RT) is frequently used to treat localized cancers with curative intent, delay progression of oligometastases, and palliate symptoms of metastatic disease. METHODS: Here we report the development, testing, and validation of a platform to immobilize and target tumors in mice with stereotactic ablative RT (SART). Xenograft and autochthonous tumor models were treated with hypofractionated ablative doses of radiotherapy. RESULTS: We demonstrate that hypofractionated regimens used in clinical practice can be effectively delivered in mouse models. SART alters tumor stroma and the immune environment, improves survival in GEMMs of primary prostate and colorectal cancer, and synergizes with androgen deprivation in prostate cancer. Complete pathologic responses were achieved in xenograft models, but not in GEMMs. CONCLUSIONS: While SART is capable of fully ablating xenografts, it is unable to completely eradicate disease in GEMMs, arguing that resistance to potentially curative therapy can be modeled in GEMMs.


Mice can be used to model the types of cancer seen in people to investigate the effects of cancer therapies, such as radiation. Here, we apply radiation therapy treatments that are able to cure cancer in humans to mice that have cancer of the prostate or colorectum. We show that the mice do not experience many side effects and that the tumours reduce in size, but in some cases show progression after treatment. Our study demonstrates that mice can be used to better understand how human cancers respond to radiation treatment, which can lead to the development of improved treatments and treatment schedules.

4.
Proc Natl Acad Sci U S A ; 105(19): 7082-7, 2008 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-18460605

RESUMO

Diseases that affect the regulation of bone turnover can lead to skeletal fragility and increased fracture risk. Members of the TGF-beta superfamily have been shown to be involved in the regulation of bone mass. Activin A, a TGF-beta signaling ligand, is present at high levels in bone and may play a role in the regulation of bone metabolism. Here we demonstrate that pharmacological blockade of ligand signaling through the high affinity receptor for activin, type II activin receptor (ActRIIA), by administration of the soluble extracellular domain of ActRIIA fused to a murine IgG2a-Fc, increases bone formation, bone mass, and bone strength in normal mice and in ovariectomized mice with established bone loss. These observations support the development of this pharmacological strategy for the treatment of diseases with skeletal fragility.


Assuntos
Receptores de Activinas Tipo II/farmacologia , Osso e Ossos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Receptores de Activinas Tipo II/administração & dosagem , Receptores de Activinas Tipo II/isolamento & purificação , Animais , Fenômenos Biomecânicos , Reabsorção Óssea , Linhagem Celular , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/farmacologia , Vértebras Lombares/efeitos dos fármacos , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Ovariectomia , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Solubilidade/efeitos dos fármacos
5.
Radiat Res ; 184(4): 378-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26401594

RESUMO

To ensure reliability and reproducibility of radiobiological data, it is necessary to standardize dosimetry practices across all research institutions. The photoelectric effect predominates over other interactions at low energy and in high atomic number materials such as bone, which can lead to increased dose deposition in soft tissue adjacent to mineral bone due to secondary radiation particles. This may produce radiation effects that deviate from higher energy photon irradiation that best model exposure from clinical radiotherapy or nuclear incidences. Past theoretical considerations have indicated that this process should affect radiation exposure of neighboring bone marrow (BM) and account for reported differences in relative biological effectiveness (RBE) for hematopoietic failure in rodents. The studies described herein definitively estimate spatial dose distribution and biological effectiveness within the BM compartment for (137)Cs gamma rays and 320 kVp X rays at two levels of filtration: 1 and 4 mm Cu half-value layer (HVL). In these studies, we performed: 1. Monte Carlo simulations on a 5 µm resolution model of mouse vertebrae and femur derived from micro-CT images; 2. In vitro biological experiments irradiating BM cells plated directly on the surface of a bone-equivalent material (BEM); and 3. An in vivo study on BM cell survival in irradiated live mice. Simulation results showed that the relative dose increased in proximity to bone at the lower radiation energies and produced averaged values of relative dose over the entire BM volume within imaged trabecular bone of 1.17, 1.08 and 1.01 for beam qualities of 1 mm Cu HVL, 4 mm Cu HVL and (137)Cs, respectively. In accordance with Monte Carlo simulations, in vitro irradiation of BM cells located on BEM and in vivo whole-body irradiation at a prescribed dose to soft tissue of 6 Gy produced relative cell killing of hematopoietic progenitors (CFU-C) that significantly increased for the 1 mm Cu HVL X rays compared to radiation exposures of higher photon energies. Thus, we propose that X rays of the highest possible kVp and filtration be used to investigate radiation effects on the hematopoietic system, as this will allow for better comparisons with high-energy photon exposures applied in radiotherapy or as anticipated in a nuclear event.


Assuntos
Medula Óssea/efeitos da radiação , Fótons , Raios X , Animais , Morte Celular/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doses de Radiação
6.
Endocrinology ; 153(7): 3133-46, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22549226

RESUMO

Obesity results from disproportionately high energy intake relative to energy expenditure. Many therapeutic strategies have focused on the intake side of the equation, including pharmaceutical targeting of appetite and digestion. An alternative approach is to increase energy expenditure through physical activity or adaptive thermogenesis. A pharmacological way to increase muscle mass and hence exercise capacity is through inhibition of the activin receptor type IIB (ActRIIB). Muscle mass and strength is regulated, at least in part, by growth factors that signal via ActRIIB. Administration of a soluble ActRIIB protein comprised of a form of the extracellular domain of ActRIIB fused to a human Fc (ActRIIB-Fc) results in a substantial muscle mass increase in normal mice. However, ActRIIB is also present on and mediates the action of growth factors in adipose tissue, although the function of this system is poorly understood. In the current study, we report the effect of ActRIIB-Fc to suppress diet-induced obesity and linked metabolic dysfunctions in mice fed a high-fat diet. ActRIIB-Fc induced a brown fat-like thermogenic gene program in epididymal white fat, as shown by robustly increased expression of the thermogenic genes uncoupling protein 1 and peroxisomal proliferator-activated receptor-γ coactivator 1α. Finally, we identified multiple ligands capable of reducing thermogenesis that represent likely target ligands for the ActRIIB-Fc effects on the white fat depots. These data demonstrate that novel therapeutic ActRIIB-Fc improves obesity and obesity-linked metabolic disease by both increasing skeletal muscle mass and by inducing a gene program of thermogenesis in the white adipose tissues.


Assuntos
Receptores de Activinas Tipo II/metabolismo , Obesidade/metabolismo , Transativadores/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica/métodos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/citologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptores Ativados por Proliferador de Peroxissomo , Ressonância de Plasmônio de Superfície , Termogênese , Tomografia Computadorizada por Raios X/métodos , Fatores de Transcrição
7.
Endocrinology ; 151(9): 4289-300, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20573726

RESUMO

Androgen deprivation, a consequence of hypogonadism, certain cancer treatments, or normal aging in men, leads to loss of muscle mass, increased adiposity, and osteoporosis. In the present study, using a soluble chimeric form of activin receptor type IIB (ActRIIB) we sought to offset the adverse effects of androgen deprivation on muscle, adipose tissue, and bone. Castrated (ORX) or sham-operated (SHAM) mice received either TBS [vehicle-treated (VEH)] or systemic administration of ActRIIB-mFc, a soluble fusion protein comprised of a form of the extracellular domain of ActRIIB fused to a murine IgG2aFc subunit. In vivo body composition imaging demonstrated that ActRIIB-mFc treatment results in increased lean tissue mass of 23% in SHAM mice [19.02 +/- 0.42 g (VEH) versus 23.43 +/- 0.35 g (ActRIIB-mFc), P < 0.00001] and 26% in ORX mice [15.59 +/- 0.26 g (VEH) versus 19.78 +/- 0.26 g (ActRIIB-mFc), P < 0.00001]. Treatment also caused a decrease in adiposity of 30% in SHAM mice [5.03 +/- 0.48 g (VEH) versus 3.53 +/- 0.19 g (ActRIIB-mFc), NS] and 36% in ORX mice [7.12 +/- 0.53 g (VEH) versus 4.57 +/- 0.28 g (ActRIIB-mFc), P < 0.001]. These changes were also accompanied by altered serum levels of leptin, adiponectin, and insulin, as well as by prevention of steatosis (fatty liver) in ActRIIB-mFc-treated ORX mice. Finally, ActRIIB-mFc prevented loss of bone mass in ORX mice as assessed by whole body dual x-ray absorptiometry and micro-computed tomography of proximal tibias. The data demonstrate that treatment with ActRIIB-mFc restored muscle mass, adiposity, and bone quality to normal levels in a mouse model of androgen deprivation, thereby alleviating multiple adverse consequences of such therapy.


Assuntos
Receptores de Activinas Tipo II/farmacologia , Antagonistas de Androgênios/farmacologia , Composição Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Receptores de Activinas Tipo II/genética , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Análise de Variância , Animais , Peso Corporal/efeitos dos fármacos , Linhagem Celular , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Leptina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/sangue , Obesidade/prevenção & controle , Orquiectomia , Distribuição Aleatória , Proteínas Recombinantes de Fusão/farmacologia , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA