Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Risk Anal ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501447

RESUMO

The Wells-Riley model has been widely used to estimate airborne infection risk, typically from a deterministic point of view (i.e., focusing on the average number of infections) or in terms of a per capita probability of infection. Some of its main limitations relate to considering well-mixed air, steady-state concentration of pathogen in the air, a particular amount of time for the indoor interaction, and that all individuals are homogeneous and behave equally. Here, we revisit the Wells-Riley model, providing a mathematical formalism for its stochastic version, where the number of infected individuals follows a Binomial distribution. Then, we extend the Wells-Riley methodology to consider transient behaviours, randomness, and population heterogeneity. In particular, we provide analytical solutions for the number of infections and the per capita probability of infection when: (i) susceptible individuals remain in the room after the infector leaves, (ii) the duration of the indoor interaction is random/unknown, and (iii) infectors have heterogeneous quanta production rates (or the quanta production rate of the infector is random/unknown). We illustrate the applicability of our new formulations through two case studies: infection risk due to an infectious healthcare worker (HCW) visiting a patient, and exposure during lunch for uncertain meal times in different dining settings. Our results highlight that infection risk to a susceptible who remains in the space after the infector leaves can be nonnegligible, and highlight the importance of incorporating uncertainty in the duration of the indoor interaction and the infectivity of the infector when estimating risk.

2.
Analyst ; 147(15): 3558-3569, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35801578

RESUMO

Antibiotic resistance is a major global challenge. Although microfluidic antibiotic susceptibility tests (AST) offer great potential for rapid and portable testing to inform correct antibiotic selection, the impact of miniaturisation on broth microdilution (BMD) is not fully understood. We developed a 10-plex microcapillary based broth microdilution using resazurin as a colorimetric indicator for bacterial growth. Each capillary had a 1 microlitre capillary volume, 100 times smaller than microplate broth microdilution. The microcapillary BMD was compared to an in-house standard microplate AST and commercial Vitek 2 system. When tested with 25 uropathogenic isolates (20 Escherichia coli and 5 Klebsiella pneumoniae) and 2 reference E. coli, these devices gave 96.1% (441/459 isolate/antibiotic combinations) categorical agreement, across 17 therapeutically beneficial antibiotics, compared to in-house microplate BMD with resazurin. A further 99 (50 E. coli and 49 K. pneumoniae) clinical isolates were tested against 10 antibiotics and showed 92.3% categorical agreement (914/990 isolate/antibiotic combinations) compared to the Vitek 2 measurements. These microcapillary tests showed excellent analytical agreement with existing AST methods. Furthermore, the small size and simple colour change can be recorded using a smartphone camera or it is feasible to follow growth kinetics using very simple, low-cost readers. The test strips used here are produced in large batches, allowing hundreds of multiplex tests to be made and tested rapidly. Demonstrating performance of miniaturised broth microdilution with clinical isolates paves the way for wider use of microfluidic AST.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana
3.
Sleep Breath ; 23(4): 1133-1139, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30729406

RESUMO

PURPOSE: This study aims to obtain consensus statements required for the development of clinical guidelines for the use of benzodiazepines (BZDs) and Z-drugs for the management of primary insomnia in adults in Saudi Arabia. METHODS: Three rounds of the e-Delphi technique using a Bristol Online Survey (BOS) were conducted between May and August 2018. The Director of the Saudi Sleep Medicine Group helped recruit the country's sleep medicine experts. Snowballing was used to forward invitation emails, information sheets, and the survey to known sleep medicine experts and physicians deemed to be interested in the field. All participants' details were anonymised except to the researcher. RESULTS: Fifteen experts from four different regions and specialities in Saudi Arabia participated in Round 1. Twenty-one statements originated from participants' responses. In Round 2, there were 17 respondents and 16 of the statements obtained the required consensus of 70% or higher. Eleven experts participated in Round 3 and eight statements received 100% agreement, two received 91%, and six received 82%. Having obtained the required consensus of 80% or higher in Round 3, these 16 statements fulfilled the criteria to be included in future guidelines. The five statements that failed to attain the required consensus were rejected as inappropriate for inclusion in Saudi Arabian clinical guidelines. CONCLUSIONS: The items that achieved the required consensus can be included in future guidelines for the use of BZDs and Z-drugs in the treatment of primary insomnia in adults to standardize best practices in sleep medicine in Saudi Arabia.


Assuntos
Benzodiazepinas/uso terapêutico , Medicamentos Indutores do Sono/uso terapêutico , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Adulto , Consenso , Técnica Delphi , Feminino , Guias como Assunto , Humanos , Masculino , Guias de Prática Clínica como Assunto , Arábia Saudita
4.
Horm Behav ; 97: 56-66, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29080670

RESUMO

Ghrelin, a hormone produced primarily by the stomach, has been associated with motivational processes that include reward-seeking behaviors. In male laboratory mice, elevation of ghrelin levels enhances some aspects of sexual motivation and behavior, whereas in other experiments with male mice, rats, and other species, ghrelin treatment or food deprivation decreases sexual motivation and/or behavior. The present tested the hypothesis that stimulation of ghrelin receptors in different brain regions have opposite effects on male sexual motivation and behavior. To do this we examined appetitive and consummatory sex behaviors of male rats with a truncated ghrelin receptor (FHH-GHSRm1/Mcwi), and that of their WT (FHH) littermates. We also examined the effects of ghrelin or the ghrelin antagonist D-Lys-GHRP6 delivered into the VTA or the MPOA on appetitive and consummatory sex behaviors in male Long Evans rats. Results demonstrate that rats with a truncated ghrelin receptor, or rats that are food deprived, show deficits in anticipatory sex. Furthermore, although ghrelin does not further stimulate sex anticipation in rats when infused into the VTA, intra-VTA infusions of D-Lys-GHRP6 into the VTA further decreases in sex anticipation in food deprived rats. In contrast, ghrelin delivery into the mPOA decreased sex anticipation compared to saline or D-Lys-GHRP6 infused rats. Overall, these data suggest that ghrelin receptor signalling is important for full expression of appetitive sex behaviors. Within the VTA, ghrelin may act to enhance sex motivation, while acting on the mPOA to decrease sex motivation and promote foraging.


Assuntos
Grelina/farmacologia , Motivação/efeitos dos fármacos , Área Pré-Óptica/efeitos dos fármacos , Receptores de Grelina/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Privação de Alimentos , Masculino , Motivação/fisiologia , Oligopeptídeos/farmacologia , Área Pré-Óptica/metabolismo , Ratos , Ratos Long-Evans , Receptores de Grelina/antagonistas & inibidores , Receptores de Grelina/genética , Recompensa , Comportamento Sexual Animal/fisiologia , Área Tegmentar Ventral/metabolismo
5.
Thorax ; 72(10): 946-949, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28159773

RESUMO

The impact of immunosuppression on interferon-γ release assays and novel cytokine biomarkers of TB infection, mycobacteria-specific IL-2, IP-10 and TNF-α responses was investigated in an ex vivo model. Cytokine responses in standard QuantiFERON-TB Gold in-Tube (QFT-GIT) assays were compared with duplicate assays containing dexamethasone or infliximab. Dexamethasone converted QFT-GIT results from positive to negative in 30% of participants. Antigen-stimulated interferon-γ, IL-2 and TNF-α responses were markedly reduced, but IP-10 responses were preserved. Infliximab caused QFT-GIT result conversion in up to 30% of participants and substantial reductions in all cytokine responses. Therefore, corticosteroids and anti-TNF-α agents significantly impair interferon-γ release assay performance. IP-10 may be a more robust TB biomarker than interferon-γ in patients receiving corticosteroids.


Assuntos
Corticosteroides/farmacologia , Antirreumáticos/farmacologia , Infliximab/farmacologia , Testes de Liberação de Interferon-gama , Tuberculose Latente/diagnóstico , Adulto , Idoso , Dexametasona/farmacologia , Feminino , Humanos , Interferon gama/metabolismo , Interleucina-2/metabolismo , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/metabolismo
6.
Analyst ; 142(6): 959-968, 2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-28232992

RESUMO

This study reports for the first time the sensitive colorimetric and fluorescence detection of clinically relevant protein biomarkers by sandwich immunoassays using the covalent immobilisation of antibodies onto the fluoropolymer surface inside Teflon®-FEP microfluidic devices. Teflon®-FEP has outstanding optical transparency ideal for high-sensitivity colorimetric and fluorescence bioassays, however this thermoplastic is regarded as chemically inert and very hydrophobic. Covalent immobilisation can offer benefits over passive adsorption to plastic surfaces by allowing better control over antibody density, orientation and analyte binding capacity, and so we tested a range of different and novel covalent immobilisation strategies. We first functionalised the inner surface of a 10-bore, 200 µm internal diameter FEP microcapillary film with high-molecular weight polyvinyl alcohol (PVOH) without changing the outstanding optical transparency of the device delivered by the matched refractive index of FEP and water. Glutaraldehyde immobilisation was compared with the use of photoactivated linkers and NHS-ester crosslinkers for covalently immobilising capture antibodies onto PVOH. Three clinically relevant sandwich ELISAs were tested against the cytokine IL-1ß, the myocardial infarct marker cardiac troponin I (cTnI), and the chronic heart failure marker brain natriuretic peptide (BNP). Overall, glutaraldehyde immobilisation was effective for BNP assays, but yielded unacceptable background for IL-1ß and cTnI assays caused by direct binding of the biotinylated detection antibody to the modified PVOH surface. We found NHS-ester groups reacted with APTES-treated PVOH coated fluoropolymers. This facilitated a novel method for capture antibody immobilisation onto fluoropolymer devices using a bifunctional NHS-maleimide crosslinker. The density of covalently immobilised capture antibodies achieved using PVOH/APTES/NHS/maleimide approached levels seen with passive adsorption, and sensitive and quantitative assay performance was achieved using this method. Overall, the PVOH coating provided an excellent surface for controlled covalent antibody immobilisation onto Teflon®-FEP for performing high-sensitivity immunoassays.


Assuntos
Anticorpos Imobilizados/química , Biomarcadores/análise , Imunoensaio , Dispositivos Lab-On-A-Chip , Politetrafluoretileno , Colorimetria , Humanos , Interleucina-1beta/análise , Peptídeo Natriurético Encefálico/análise , Troponina I/análise
7.
Int J Mol Sci ; 18(4)2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28422060

RESUMO

Ghrelin is a hormone predominantly produced in and secreted from the stomach. Ghrelin is involved in many physiological processes including feeding, the stress response, and in modulating learning, memory and motivational processes. Ghrelin does this by binding to its receptor, the growth hormone secretagogue receptor (GHSR), a receptor found in relatively high concentrations in hypothalamic and mesolimbic brain regions. While the feeding and metabolic effects of ghrelin can be explained by the effects of this hormone on regions of the brain that have a more permeable blood brain barrier (BBB), ghrelin produced within the periphery demonstrates a limited ability to reach extrahypothalamic regions where GHSRs are expressed. Therefore, one of the most pressing unanswered questions plaguing ghrelin research is how GHSRs, distributed in brain regions protected by the BBB, are activated despite ghrelin's predominant peripheral production and poor ability to transverse the BBB. This manuscript will describe how peripheral ghrelin activates central GHSRs to encourage feeding, and how central ghrelin synthesis and ghrelin independent activation of GHSRs may also contribute to the modulation of feeding behaviours.


Assuntos
Encéfalo/fisiologia , Comportamento Alimentar/fisiologia , Grelina/metabolismo , Receptores de Grelina/metabolismo , Animais , Apetite , Barreira Hematoencefálica/metabolismo , Órgãos Circunventriculares/fisiologia , Hormônio do Crescimento/metabolismo , Humanos , Hipotálamo/fisiologia , Ligantes , Permeabilidade , Multimerização Proteica , Receptores de Grelina/química
8.
Bioconjug Chem ; 26(8): 1743-52, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26133029

RESUMO

Therapeutic activation of Toll-like receptors (TLR) has potential for cancer immunotherapy, for augmenting the activity of antitumor monoclonal antibodies (mAbs), and for improved vaccine adjuvants. A previous attempt to specifically target TLR agonists to dendritic cells (DC) using mAbs failed because conjugation led to nonspecific binding and mAbs lost specificity. We demonstrate here for the first time the successful conjugation of a small molecule TLR7 agonist to an antitumor mAb (the anti-hCD20 rituximab) without compromising antigen specificity. The TLR7 agonist UC-1V150 was conjugated to rituximab using two conjugation methods, and yield, molecular substitution ratio, retention of TLR7 activity, and specificity of antigen binding were compared. Both conjugation methods produced rituximab-UC-1V150 conjugates with UC-1V150: rituximab ratio ranging from 1:1 to 3:1 with drug loading quantified by UV spectroscopy and drug substitution ratio verified by MALDI TOF mass spectroscopy. The yield of purified conjugates varied with conjugation method and dropped as low as 31% using a method previously described for conjugating UC-1V150 to proteins, where a bifunctional cross-linker was first reacted with rituximab and second to the TLR7 agonist. We therefore developed a direct conjugation method by producing an amine-reactive UV active version of UC-1V150, termed NHS:UC-1V150. Direct conjugation with NHS:UC-1V150 was quick and simple and gave improved conjugate yields of 65-78%. Rituximab-UC-1V150 conjugates had the expected pro-inflammatory activity in vitro (EC50 28-53 nM) with a significantly increased activity over unconjugated UC-1V150 (EC50 547 nM). Antigen binding and specificity of the rituxuimab-UC-1V150 conjugates was retained, and after incubation with human peripheral blood leukocytes, all conjugates bound strongly only to CD20-expressing B cells while no nonspecific binding to CD20-negative cells was observed. Selective targeting of Toll-like receptor activation directly within tumors or to DC is now feasible.


Assuntos
Fatores Imunológicos/imunologia , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Rituximab/imunologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/metabolismo , Adjuvantes Imunológicos , Animais , Especificidade de Anticorpos , Células Cultivadas , Humanos , Imunoconjugados/química , Fatores Imunológicos/farmacologia , Imunoterapia , Leucócitos Mononucleares/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Camundongos , Rituximab/farmacologia , Receptor 7 Toll-Like/imunologia
9.
Analyst ; 140(16): 5609-18, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26120601

RESUMO

Sensitive quantitation of multiple cytokines can provide important diagnostic information during infection, inflammation and immunopathology. In this study sensitive immunoassay detection of human cytokines IL-1ß, IL-6, IL-12p70 and TNFα is shown for singleplex and multiplex formats using a novel miniaturized ELISA platform. The platform uses a disposable plastic multi-syringe aspirator (MSA) integrating 8 disposable fluoropolymer microfluidic test strips, each containing an array of ten 200 µm mean i.d. microcapillaries coated with a set of monoclonal antibodies. Each MSA device thus performs 10 tests on 8 samples, delivering 80 measurements. Unprecedented levels of sensitivity were obtained with the novel fluoropolymer microfluidic material and simple colorimetric detection in a flatbed scanner. The limit of detection for singleplex detection ranged from 2.0 to 15.0 pg ml(-1), i.e. 35 and 713 femtomolar for singleplex cytokine detection, and the intra- and inter-assay coefficient of variation (CV) remained within 10%. In addition, a triplex immunoassay was developed for measuring IL-1ß, IL-12p70 and TNFα simultaneously from a given sample in the pg ml(-1) range. These assays permit high sensitivity measurement with rapid <15 min assay or detection from undiluted blood serum. The portability, speed and low-cost of this system are highly suited to point-of-care testing and field diagnostics applications.


Assuntos
Análise Química do Sangue/métodos , Citocinas/sangue , Polímeros/química , Colorimetria , Ensaio de Imunoadsorção Enzimática , Flúor/química , Humanos , Limite de Detecção , Propriedades de Superfície , Fatores de Tempo
10.
Biomacromolecules ; 14(2): 387-93, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23301617

RESUMO

If acid-sensitive drugs or cells are administered orally, there is often a reduction in efficacy associated with gastric passage. Formulation into a polymer matrix is a potential method to improve their stability. The visualization of pH within these materials may help better understand the action of these polymer systems and allow comparison of different formulations. We herein describe the development of a novel confocal laser-scanning microscopy (CLSM) method for visualizing pH changes within polymer matrices and demonstrate its applicability to an enteric formulation based on chitosan-coated alginate gels. The system in question is first shown to protect an acid-sensitive bacterial strain to low pH, before being studied by our technique. Prior to this study, it has been claimed that protection by these materials is a result of buffering, but this has not been demonstrated. The visualization of pH within these matrices during exposure to a pH 2.0 simulated gastric solution showed an encroachment of acid from the periphery of the capsule, and a persistence of pHs above 2.0 within the matrix. This implies that the protective effect of the alginate-chitosan matrices is most likely due to a combination of buffering of acid as it enters the polymer matrix and the slowing of acid penetration.


Assuntos
Alginatos/química , Bifidobacterium/efeitos dos fármacos , Cápsulas/química , Quitosana/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Trato Gastrointestinal/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Microscopia Confocal/métodos , Polímeros/química
11.
Biosensors (Basel) ; 13(10)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887141

RESUMO

The integration of Raspberry Pi miniature computer systems with microfluidics has revolutionised the development of low-cost and customizable analytical systems in life science laboratories. This review explores the applications of Raspberry Pi in microfluidics, with a focus on imaging, including microscopy and automated image capture. By leveraging the low cost, flexibility and accessibility of Raspberry Pi components, high-resolution imaging and analysis have been achieved in direct mammalian and bacterial cellular imaging and a plethora of image-based biochemical and molecular assays, from immunoassays, through microbial growth, to nucleic acid methods such as real-time-qPCR. The control of image capture permitted by Raspberry Pi hardware can also be combined with onboard image analysis. Open-source hardware offers an opportunity to develop complex laboratory instrumentation systems at a fraction of the cost of commercial equipment and, importantly, offers an opportunity for complete customisation to meet the users' needs. However, these benefits come with a trade-off: challenges remain for those wishing to incorporate open-source hardware equipment in their own work, including requirements for construction and operator skill, the need for good documentation and the availability of rapid prototyping such as 3D printing plus other components. These advances in open-source hardware have the potential to improve the efficiency, accessibility, and cost-effectiveness of microfluidic-based experiments and applications.


Assuntos
Disciplinas das Ciências Biológicas , Microfluídica , Animais , Laboratórios , Computadores , Impressão Tridimensional , Mamíferos
12.
Antibiotics (Basel) ; 12(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37760660

RESUMO

The time-consuming nature of current methods for detecting antimicrobial resistance (AMR) to guide mastitis treatment and for surveillance, drives innovation towards faster, easier, and more portable technology. Rapid on-farm testing could guide antibiotic selection, reducing misuse that contributes to resistance. We identify challenges that arise when developing miniaturized antibiotic susceptibility tests (AST) for rapid on-farm use directly in milk. We experimentally studied three factors: sample matrix (specifically milk or spoiled milk); the commensal bacteria found in fresh bovine milk; and result time on the performance of miniaturised AST. Microfluidic "dip-and-test" devices made from microcapillary film (MCF) were able to monitor Gram-negative bacterial growth colourimetrically even in the presence of milk and yoghurt (used to simulate spoiled milk samples), as long as this sample matrix was diluted 1:5 or more in growth medium. Growth detection kinetics using resazurin was not changed by milk at final concentrations of 20% or lower, but a significant delay was seen with yoghurt above 10%. The minimum inhibitory concentration (MIC) for ciprofloxacin and gentamicin was increased in the presence of higher concentrations of milk and yoghurt. When diluted to 1% all observed MIC were within range, indicating dilution may be sufficient to avoid milk matrix interfering with microfluidic AST. We found a median commensal cell count of 6 × 105 CFU/mL across 40 healthy milk samples and tested if these bacteria could alter microfluidic AST. We found that false susceptibility may be observed at early endpoint times if testing some pathogen and commensal mixtures. However, such errors are only expected to occur when a susceptible commensal organism is present at higher cell density relative to the resistant pathogen, and this can be avoided by reading at later endpoints, leading to a trade-off between accuracy and time-to-result. We conclude that with further optimisation, and additional studies of Gram-positive organisms, it should be possible to obtain rapid results for microfluidic AST, but a trade-off is needed between time-to-result, sample dilution, and accuracy.

13.
Front Health Serv ; 3: 1302653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38235389

RESUMO

The purpose of this mixed methods feasibility study was to gain insights into unmet clinical needs, stakeholder preferences and potential barriers and enablers to adoption for planning the implementation of point-of-care testing for earlier detection and guided treatment of chronic obstructive pulmonary disease (COPD) acute exacerbation in the NHS in England. Exacerbations of COPD cause considerable mortality and morbidity. Earlier identification of exacerbations and guided treatment would lead to reduced exacerbation duration, reduced hospitalizations and mortality, improve health-related quality of life, reduce unnecessary treatments (including inappropriate antibiotic prescribing) which could save the NHS over £400 per patient. During the early stages of product design, we took a multi-disciplinary approach to evidence generation, gaining insights from key stakeholders to test the product concept and inform evidence-based implementation planning. Primary data was collected from 11 health care and service professionals involved in the management of acute COPD exacerbations. Overall, participants agreed that by earlier differentiation of acute exacerbation from stable COPD, patients could be started on appropriate treatment. To implement point-of-care testing into clinical practice, evidence is required to demonstrate the accuracy of differentiating between exacerbation etiologies and to provide information on the beneficial impact to the system in terms of optimized management, reduced long-term side effects, admission avoidance, and cost-effectiveness. This research provides an evidence base for future implementation planning of point-of-care testing for earlier detection and guided treatment of COPD acute exacerbation. Moreover, the technology developers can decide whether to refine the product design and value proposition thereby de-risking product development.

14.
Sens Diagn ; 2(6): 1623-1637, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38013763

RESUMO

Measuring the complex processes of blood coagulation, haemostasis and thrombosis that are central to cardiovascular health and disease typically requires a choice between high-resolution low-throughput laboratory assays, or simpler less quantitative tests. We propose combining mass-produced microfluidic devices with open-source robotic instrumentation to enable rapid development of affordable and portable, yet high-throughput and performance haematological testing. A time- and distance-resolved fluid flow analysis by Raspberry Pi imaging integrated with controlled sample addition and illumination, enabled simultaneous tracking of capillary rise in 120 individual capillaries (∼160, 200 or 270 µm internal diameter), in 12 parallel disposable devices. We found time-resolved tracking of capillary rise in each individual microcapillary provides quantitative information about fluid properties and most importantly enables quantitation of dynamic changes in these properties following stimulation. Fluid properties were derived from flow kinetics using a pressure balance model validated with glycerol-water mixtures and blood components. Time-resolved imaging revealed fluid properties that were harder to determine from a single endpoint image or equilibrium analysis alone. Surprisingly, instantaneous superficial fluid velocity during capillary rise was found to be largely independent of capillary diameter at initial time points. We tested if blood function could be measured dynamically by stimulating blood with thrombin to trigger activation of global haemostasis. Thrombin stimulation slowed vertical fluid velocity consistent with a dynamic increase in viscosity. The dynamics were concentration-dependent, with highest doses reducing flow velocity faster (within 10 s) than lower doses (10-30 s). This open-source imaging instrumentation expands the capability of affordable microfluidic devices for haematological testing, towards high-throughput multi-parameter blood analysis needed to understand and improve cardiovascular health.

15.
Sens Diagn ; 2(3): 736-750, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37216011

RESUMO

Innovation in infection based point-of-care (PoC) diagnostics is vital to avoid unnecessary use of antibiotics and the development of antimicrobial resistance. Several groups including our research team have in recent years successfully miniaturised phenotypic antibiotic susceptibility tests (AST) of isolated bacterial strains, providing validation that miniaturised AST can match conventional microbiological methods. Some studies have also shown the feasibility of direct testing (without isolation or purification), specifically for urinary tract infections, paving the way for direct microfluidic AST systems at PoC. As rate of bacteria growth is intrinsically linked to the temperature of incubation, transferring miniaturised AST nearer the patient requires building new capabilities in terms of temperature control at PoC, furthermore widespread clinical use will require mass-manufacturing of microfluidic test strips and direct testing of urine samples. This study shows for the first-time application of microcapillary antibiotic susceptibility testing (mcAST) directly from clinical samples, using minimal equipment and simple liquid handling, and with kinetics of growth recorded using a smartphone camera. A complete PoC-mcAST system was presented and tested using 12 clinical samples sent to a clinical laboratory for microbiological analysis. The test showed 100% accuracy for determining bacteria in urine above the clinical threshold (5 out of 12 positive) and achieved 95% categorical agreement for 5 positive urines tested with 4 antibiotics (nitrofurantoin, ciprofloxacin, trimethoprim and cephalexin) within 6 h compared to the reference standard overnight AST method. A kinetic model is presented for metabolization of resazurin, demonstrating kinetics of degradation of resazurin in microcapillaries follow those observed for a microtiter plate, with time for AST dependent on the initial CFU ml-1 of uropathogenic bacteria in the urine sample. In addition, we show for the first time that use of air-drying for mass-manufacturing and deposition of AST reagents within the inner surface of mcAST strips matches results obtained with standard AST methods. These results take mcAST a step closer to clinical application, for example as PoC support for antibiotic prescription decisions within a day.

16.
Micromachines (Basel) ; 13(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744555

RESUMO

The early detection of antimicrobial resistance remains an essential step in the selection and optimization of antibiotic treatments. Phenotypic antibiotic susceptibility testing including the measurement of minimum inhibitory concentration (MIC) remains critical for surveillance and diagnostic testing. Limitations to current testing methods include bulky labware and laborious methods. Furthermore, the requirement of a single strain of bacteria to be isolated from samples prior to antibiotic susceptibility testing delays results. The mixture of bacteria present in a sample may also have an altered resistance profile to the individual strains, and so measuring the susceptibility of the mixtures of organisms found in some samples may be desirable. To enable simultaneous MIC and bacterial species detection in a simple and rapid miniaturized format, a 3D-printed frame was designed for a multi-sample millifluidic dip-slide device that combines panels of identification culture media with a range of antibiotics (Ampicillin, Amoxicillin, Amikacin, Ceftazidime, Cefotaxime, Ofloxacin, Oxytetracycline, Streptomycin, Gentamycin and Imipenem) diluted in Muëller-Hinton Agar. Our proof-of-concept evaluation confirmed that the direct detection of more than one bacterium parallel to measuring MIC in samples is possible, which is validated using reference strains E. coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, Pseudomonas aeruginosa ATCC 10145, and Staphylococcus aureus ATCC 12600 and with mastitis milk samples collected from Reading University Farm. When mixtures were tested, a MIC value was obtained that reflected the most resistant organism present (i.e., highest MIC), suggesting it may be possible to estimate a minimum effective antibiotic concentration for mixtures directly from samples containing multiple pathogens. We conclude that this simple miniaturized approach to the rapid simultaneous identification and antibiotic susceptibility testing may be suitable for directly testing agricultural samples, which is achieved through shrinking conventional tests into a simple "dip-and-incubate" device that can be 3D printed anywhere.

17.
Micromachines (Basel) ; 13(11)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36422401

RESUMO

Antibiotic susceptibility testing is vital to tackle the emergence and spread of antimicrobial resistance. Inexpensive digital CMOS cameras can be converted into portable digital microscopes using 3D printed x-y-z stages. Microscopic examination of bacterial motility can rapidly detect the response of microbes to antibiotics to determine susceptibility. Here, we present a new simple microdevice-miniature microscope cell measurement system for multiplexed antibiotic susceptibility testing. The microdevice is made using melt-extruded plastic film strips containing ten parallel 0.2 mm diameter microcapillaries. Two different antibiotics, ceftazidime and gentamicin, were prepared in Mueller-Hinton agar (0.4%) to produce an antibiotic-loaded microdevice for simple sample addition. This combination was selected to closely match current standard methods for both antibiotic susceptibility testing and motility testing. Use of low agar concentration permits observation of motile bacteria responding to antibiotic exposure as they enter capillaries. This device fits onto the OpenFlexure 3D-printed digital microscope using a Raspberry Pi computer and v2 camera, avoiding need for expensive laboratory microscopes. This inexpensive and portable digital microscope platform had sufficient magnification to detect motile bacteria, yet wide enough field of view to monitor bacteria behavior as they entered antibiotic-loaded microcapillaries. The image quality was sufficient to detect how bacterial motility was inhibited by different concentrations of antibiotic. We conclude that a 3D-printed Raspberry Pi-based microscope combined with disposable microfluidic test strips permit rapid, easy-to-use bacterial motility detection, with potential for aiding detection of antibiotic resistance.

18.
Lab Chip ; 22(15): 2820-2831, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35792607

RESUMO

Counting viable bacterial cells and functional bacteriophage is fundamental to microbiology underpinning research, surveillance, biopharmaceuticals and diagnostics. Colony forming unit (CFU) and plaque forming unit (PFU) counting still requires slow and laborious solid culture on agar in Petri dishes or plates. Here, we show that dip-stick microfluidic strips can be used without growth indicator dye for rapid and simple CFU ml-1 and PFU ml-1 measurement. We demonstrate for the first time that fluoropolymer microcapillaries combined with digital imaging allow bacteriophage plaques to be counted rapidly in a dip-and-test format. The microfluidic length scales offer a linear 1-dimensional alternative to a 2D solid agar medium surface, with colonies or plaques clearly visible as "dashes" or "gaps". An inexpensive open source darkfield biosensor system using Raspberry Pi imaging permits label-free detection and counting of colonies or plaques within 4-8 hours in a linear, liquid matrix within ∼200 µm inner diameter microcapillaries. We obtained full quantitative agreement between 1D microfluidic colony counting in dipsticks versus conventional 2D solid agar Petri dish plates for S. aureus and E. coli, and for T2 phage and phage K, but up to 6 times faster. Time-lapse darkfield imaging permitted detailed kinetic analysis of colony growth in the microcapillaries, providing new insight into microfluidic microbiology and colony growth, not possible with Petri dishes. Surprisingly, whilst E. coli colonies appeared earlier, subsequent colony expansion was faster along the microcapillaries for S. aureus. This may be explained by the microenvironment offered for 1D colony growth within microcapillaries, linked to a mass balance between nutrient (glucose) diffusion and bacterial growth kinetics. Counting individual colonies in liquid medium was not possible for motile strains that spread rapidly along the capillary, however inclusion of soft agar inhibited spreading, making this new simple dip-and-test counting method applicable to both motile and non-motile bacteria. Label-free dipstick colony and plaque counting has potential for many analytical microbial tasks, and the innovation of 1D colony counting has relevance to other microfluidic microbiology.


Assuntos
Bacteriófagos , Ágar , Bactérias , Contagem de Colônia Microbiana , Escherichia coli , Cinética , Microfluídica , Staphylococcus aureus
19.
HardwareX ; 12: e00377, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36437840

RESUMO

Digital imaging permits the quantitation of many experiments, such as microbiological growth assays, but laboratory digital imaging systems can be expensive and too specialised. The Raspberry Pi camera platform makes automated, controlled imaging affordable with accessible customisation. When combined with open source software and open-source 3D printed hardware, the control over image quality and capture of this platform permits the rapid development of novel instrumentation. Here we present "PiRamid", a compact, portable, and inexpensive enclosure for autonomous imaging both in the laboratory and in the field. The modular three-piece 3D printed design makes it easy to incorporate different camera systems or lighting configurations (e.g., single wavelength LED for fluorescence). The enclosed design allows complete control of illumination unlike a conventional digital camera or smartphone, on a tripod or handheld, under ambient lighting. The stackable design permits rapid sample addition or camera focus adjustment, with a corresponding change in magnification and resolution. The entire unit is small enough to fit within a microbiological incubator, and cheap enough (∼£100) to scale out for larger parallel experiments. Simply, Python scripts fully automate illumination and image capture for small-scale experiments with an ∼110×85 mm area at 70-90 µm resolution. We demonstrate the versatility of PiRamid by capturing time-resolved, quantitative image data for a wide range of assays. Bacterial growth kinetics was captured for conventional microbiology (agar Petri dishes), 3D printed custom microbiology labware and microfluidic microbiology. To illustrate application beyond microbiology, we demonstrate time-lapse imaging of crystal growth and degradation of salad leaves. Minor modifications permit epi-illumination by addition of a LED ring to the camera module. We conclude that PiRamid permits inexpensive digital capture and quantitation of a wide range of experiments by time-lapse imaging to simplify both laboratory and field imaging.

20.
Cureus ; 14(6): e25764, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35812601

RESUMO

There are limited options for intravenous anesthetics and a lack of available information on the use of ketamine infusion during intracranial surgeries. We present a patient case report of hyperlactatemia during a craniotomy with neuromonitoring while on a propofol infusion with arterial lactate rising from 2.1 mmol/L to a peak of 5.0 mmol/L before reducing to 3.9 mmol/L after the transition to a mixed ketamine and dexmedetomidine infusion in order to maintain neuromonitoring quality and an appropriate depth of anesthesia. No complications were caused by the use of ketamine during this extended neurosurgery case.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA