Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 20(1): 203, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538539

RESUMO

BACKGROUND: Tanimilast is a novel and selective inhaled inhibitor of phosphodiesterase-4 in advanced clinical development for chronic obstructive pulmonary disease (COPD). Tanimilast is known to exert prominent anti-inflammatory activity when tested in preclinical experimental models as well as in human clinical studies. Recently, we have demonstrated that it also finely tunes, rather than suppressing, the cytokine network secreted by activated dendritic cells (DCs). This study was designed to characterize the effects of tanimilast on T-cell polarizing properties of DCs and to investigate additional functional and phenotypical features induced by tanimilast. METHODS: DCs at day 6 of culture were stimulated with LPS in the presence or absence of tanimilast or the control drug budesonide. After 24 h, DCs were analyzed for the expression of surface markers of maturation and activation by flow cytometry and cocultured with T cells to investigate cell proliferation and activation/polarization. The regulation of type 2-skewing mediators was investigated by real-time PCR in DCs and compared to results obtained in vivo in a randomized placebo-controlled trial on COPD patients treated with tanimilast. RESULTS: Our results show that both tanimilast and budesonide reduced the production of the immunostimulatory cytokine IFN-γ by CD4+ T cells. However, the two drugs acted at different levels since budesonide mainly blocked T cell proliferation, while tanimilast skewed T cells towards a Th2 phenotype without affecting cell proliferation. In addition, only DCs matured in the presence of tanimilast displayed increased CD86/CD80 ratio and CD141 expression, which correlated with Th2 T cell induction and dead cell uptake respectively. These cells also upregulated cAMP-dependent immunosuppressive molecules such as IDO1, TSP1, VEGF-A and Amphiregulin. Notably, the translational value of these data was confirmed by the finding that these same genes were upregulated also in sputum cells of COPD patients treated with tanimilast as add-on to inhaled glucocorticoids and bronchodilators. CONCLUSION: Taken together, these findings demonstrate distinct immunomodulatory properties of tanimilast associated with a type 2 endotype and CD141 upregulation in DCs and provide a mechanistic rationale for the administration of tanimilast on top of inhaled corticosteroids.


Assuntos
Inibidores da Fosfodiesterase 4 , Doença Pulmonar Obstrutiva Crônica , Trombomodulina , Budesonida/farmacologia , Budesonida/uso terapêutico , Células Cultivadas , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Trombomodulina/imunologia , Regulação para Cima/efeitos dos fármacos
2.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563373

RESUMO

Neutrophils, the most abundant subset of leukocytes in the blood, play a pivotal role in host response against invading pathogens. However, in respiratory diseases, excessive infiltration and activation of neutrophils can lead to tissue damage. Tanimilast-international non-proprietary name of CHF6001-is a novel inhaled phosphodiesterase 4 (PDE4) inhibitor in advanced clinical development for the treatment of chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease where neutrophilic inflammation plays a key pathological role. Human neutrophils from healthy donors were exposed to pro-inflammatory stimuli in the presence or absence of tanimilast and budesonide-a typical inhaled corticosteroid drug-to investigate the modulation of effector functions including adherence to endothelial cells, granule protein exocytosis, release of extracellular DNA traps, cytokine secretion, and cell survival. Tanimilast significantly decreased neutrophil-endothelium adhesion, degranulation, extracellular DNA traps casting, and cytokine secretion. In contrast, it promoted neutrophil survival by decreasing both spontaneous apoptosis and cell death in the presence of pro-survival factors. The present work suggests that tanimilast can alleviate the severe tissue damage caused by massive recruitment and activation of neutrophils in inflammatory diseases such as COPD.


Assuntos
Neutrófilos , Doença Pulmonar Obstrutiva Crônica , Sulfonamidas , para-Aminobenzoatos , Citocinas/metabolismo , Células Endoteliais/metabolismo , Armadilhas Extracelulares/metabolismo , Humanos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/patologia , Sulfonamidas/uso terapêutico , para-Aminobenzoatos/uso terapêutico
3.
Arch Biochem Biophys ; 685: 108355, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32268137

RESUMO

Psoriasis is a skin disease characterized by abnormal keratinocyte proliferation and inflammation. Currently, there are no cures for this disease, so the goal of treatment is to decrease inflammation and slow down the associated rapid cell growth and shedding. Recent advances have led to the usage of phosphodiesterase 4 (PDE4) inhibitors for treatment of this condition. For example, apremilast is an oral, selective PDE4 inhibitor that is able to reduce skin inflammation and is Food and Drug Administration (FDA)-approved to treat adults with moderate to severe psoriasis and/or psoriatic arthritis. However, common target-related adverse events, including diarrhea, nausea, headache, and insomnia limit the usage of this drug. To circumvent these effects, the usage of PDE4 inhibitors specifically designed for topical treatment, such as CHF6001, may combine local anti-inflammatory activity with limited systemic exposure, improving tolerability. In this study, we showed that CHF6001, currently undergoing clinical development for COPD, suppresses human keratinocyte proliferation as assessed via BrdU incorporation. We also observed decreased re-epithelialization in a scratch-wound model after CHF6001 treatment. At the molecular level, CHF6001 inhibited translocation of phosphorylated NF-κB subunit p65, promoting loss of nuclear cyclin D1 accumulation and an increase of cell cycle inhibitor p21. Furthermore, CHF6001 decreased oxidative stress, measured by assessing lipid peroxidation (4-HNE adduct formation), through the inactivation of the NADPH oxidase. These results suggest that CHF6001 has the potential to treat skin disorders associated with hyperproliferative keratinocytes, such as psoriasis by targeting oxidative stress, abnormal re-epithelization, and inflammation.


Assuntos
Proliferação de Células/efeitos dos fármacos , Queratinócitos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Sulfonamidas/farmacologia , para-Aminobenzoatos/farmacologia , Aldeídos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Humanos , NADPH Oxidases/metabolismo , Inibidores da Fosfodiesterase 4/toxicidade , Psoríase/tratamento farmacológico , Sulfonamidas/toxicidade , Fator de Transcrição RelA/metabolismo , para-Aminobenzoatos/toxicidade
4.
Neurobiol Dis ; 121: 240-251, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30300675

RESUMO

Therapeutic hypothermia is only partially protective for neonatal encephalopathy; there is an urgent need to develop treatments that augment cooling. Our objective was to assess safety, efficacy and pharmacokinetics of 5 and 15 mg/kg/24 h melatonin (proprietary formulation) administered at 2 h and 26 h after hypoxia-ischemia (HI) with cooling in a piglet model. Following moderate cerebral HI, 30 piglets were eligible and randomized to: i) Hypothermia (33.5 °C, 2-26 h) and vehicle (HT + V;n = 13); b) HT and 5 mg/kg melatonin over 6 h at 2 h and 26 h after HI (HT + Mel-5;n = 4); c) HT and 15 mg/kg melatonin over 6 h at 2 h and 26 h after HI (HT + Mel-15;n = 13). Intensive care was maintained for 48 h; brain MRS was acquired and cell death (TUNEL) evaluated at 48 h. Comparing HT + V with HT + Mel-5 and HT + Mel-15, there was no difference in blood pressure or inotropic support needed, brain Lactate/N Acetylaspartate at 24 h and 48 h was similar, ATP/phosphate pool was higher for HT + Mel-15 versus HT + V at 24 h (p = 0.038) but not 48 h. A localized reduction in TUNEL positive cell death was observed in the sensorimotor cortex in the 15 mg/kg melatonin group (HT + Mel-15 versus HT + V; p < 0.003) but not in the 5 mg/kg melatonin group (HT + Mel-5 versus HT + V; p = 0.808). Putative therapeutic melatonin levels were reached 8 h after HI (104 increase from baseline; ~15-30 mg/l). Mean ±â€¯SD peak plasma melatonin levels after the first infusion were 0.0014 ±â€¯0.0012 mg/l in the HT + V group, 3.97 ±â€¯1.53 mg/l in the HT + Mel-5 group and 16.8 ±â€¯8.3 mg/l in the HT + Mel-15 group. Protection was dose dependent; 15 mg/kg melatonin started 2 h after HI, given over 6 h, was well tolerated and augmented hypothermic protection in sensorimotor cortex. Earlier attainment of therapeutic plasma melatonin levels may optimize protection by targeting initial events of reperfusion injury. The time window for intervention with melatonin, as adjunct therapy with cooling, is likely to be narrow and should be considered in designing future clinical studies.


Assuntos
Encéfalo/efeitos dos fármacos , Hipotermia Induzida/métodos , Hipóxia-Isquemia Encefálica/terapia , Melatonina/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/complicações , Hipóxia-Isquemia Encefálica/metabolismo , Melatonina/farmacologia , Fármacos Neuroprotetores/farmacologia , Sus scrofa , Pesquisa Translacional Biomédica
5.
J Neuroinflammation ; 16(1): 194, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31660990

RESUMO

BACKGROUND: Hypoxic-ischemic (HI) encephalopathy causes life-long morbidity and premature mortality in term neonates. Therapies in addition to whole-body cooling are under development to treat the neonate at risk for HI encephalopathy, but are not a quickly measured serum inflammatory or neuronal biomarkers to rapidly and accurately identify brain injury in order to follow the efficacy of therapies. METHODS: In order to identify potential biomarkers for early inflammatory and neurodegenerative events after neonatal hypoxia-ischemia, both male and female Wistar rat pups at postnatal day 7 (P7) were used and had their right carotid artery permanently doubly occluded and exposed to 8% oxygen for 90 min. Sensory and cognitive parameters were assessed by open field, rotarod, CatWalk, and Morris water maze (MWM) test. Plasma and CSF biomarkers were investigated on the acute (24 h and 72 h) and chronic phase (4 weeks). Brains were assessed for gene expression analysis by quantitative RT-PCR Array. RESULTS: We found a delay of neurological reflex maturation in HI rats. We observed anxiolytic-like baseline behavior in males more than females following HI injury. HI rats held on the rotarod for a shorter time comparing to sham. HI injury impaired spatial learning ability on MWM test. The CatWalk assessment demonstrated a long-term deficit in gait parameters related to the hind paw. Proinflammatory biomarkers such as IL-6 in plasma and CCL2 and TNF-α in CSF showed an upregulation at 24 h after HI while other cytokines, such as IL-17A and CCL5, were upregulated after 72 h in CSF. At 24 h post-injury, we observed an increase of Edn1, Hif1-α, and Mmp9 mRNA levels in the ipsilateral vs the contralateral hemisphere of HI rats. An upregulation of genes involved with clotting and hematopoietic processes was observed 72 h post-injury. CONCLUSIONS: Our work showed that, in the immature brain, the HI injury induced an early increased production of several proinflammatory mediators detectable in plasma and CSF, followed by tissue damage in the hypoxic hemisphere and short-term as well as long-lasting neurobehavioral deficits.


Assuntos
Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Mediadores da Inflamação/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Feminino , Masculino , Aprendizagem em Labirinto/fisiologia , Distribuição Aleatória , Ratos , Ratos Wistar , Reflexo de Sobressalto/fisiologia , Fatores de Tempo
6.
Cytokine ; 113: 68-73, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29934047

RESUMO

BACKGROUND: Lymphocytes play a key role in asthma pathophysiology, secreting various cytokines involved in chronic inflammation. CHF6001 is a highly potent and selective phosphodiesterase type 4 (PDE4) inhibitor designed for inhaled administration and has been shown to reduce the late asthmatic response. However, the effect of PDE4 inhibition on the different cytokines produced by lung lymphocytes from asthma patients has not been examined. METHODS: This study investigated the anti-inflammatory effects of CHF6001 and the corticosteroid, 17-BMP, on T-cell receptor (TCR) stimulated Th1, Th2 and Th17 cytokine release from bronchoalveolar lavage (BAL) cells from mild (n = 12) and moderate asthma (n = 12) patients. RESULTS: CHF6001 inhibited IFNγ, IL-2 and IL-17, but not IL-13, secretion from both mild and moderate asthma patient BAL cells; there was a greater effect on IFNγ and IL-2 than IL-17. The corticosteroid inhibited all four cytokines from both patient groups, but was less effective in cells from more severe patients. CHF6001 had a greater inhibitory effect on IFNγ and IL-2 than 17-BMP. CONCLUSION: The PDE4 inhibitor CHF6001 had a greater effect on Th1 cytokines from TCR-stimulated BAL cells than corticosteroid. This pharmacological effect suggests the therapeutic potential for PDE4 inhibitors to be used in the subset of more severe asthma patients with increased airway levels of IFNγ.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Pulmão/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/uso terapêutico , Sulfonamidas/uso terapêutico , para-Aminobenzoatos/uso terapêutico , Adulto , Asma/metabolismo , Lavagem Broncoalveolar/métodos , Líquido da Lavagem Broncoalveolar , Linhagem Celular , Citocinas/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T/metabolismo
7.
Cytokine ; 123: 154739, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31319374

RESUMO

BACKGROUND: We compared the anti-inflammatory effects of phosphodiesterase type 4 (PDE4) inhibitor roflumilast with CHF6001, a novel PDE4 inhibitor designed for inhaled administration, using human alveolar macrophages (AM) and lung tissue explants models. METHODS: AM from 13 chronic obstructive pulmonary disease (COPD) patients and 10 smoking controls and lung tissue from 7 COPD patients were stimulated with LPS following preincubation with roflumilast (0.000001-10 µM), CHF6001 (0.000001-0.1 µM), or vehicle. After 24 h, supernatants were analysed for cytokines by ELISA. The effects of both compounds on the phosphorylation and cellular localisation of cAMP response element binding protein (CREB) were assessed by immunofluorescence and Western blot analysis. Extracted RNA was used for quantitative PCR analysis of PDE4 A, B and D mRNA. RESULTS: PDE4 A, B and D expression were increased in alveolar macrophages and lung tissue of COPD patients compared to controls. Roflumilast and CHF6001 significantly reduced TNF-α production in AM and lung tissue. CHF6001 was more potent than roflumilast with lower EC50s of 0.02, 0.01 and 0.31 nM compared to 0.87, 0.47 and 10.8 nM in respective samples. PDE4 inhibition also inhibited secretion of the chemokines CCL2 and CCL4 from macrophages. Both compounds increased nuclear levels of phosphorylated CREB. CONCLUSION: PDE4 inhibitors caused a robust anti-inflammatory effect on TNF-α production from COPD AM, with inhibition of selective chemokines also observed. CHF6001 caused more potent inhibition of TNF-α production from COPD AM and lung tissue compared to roflumilast.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Macrófagos Alveolares/imunologia , Inibidores da Fosfodiesterase 4/farmacologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Sulfonamidas/farmacologia , para-Aminobenzoatos/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Quimiocina CCL2/imunologia , Quimiocina CCL4/imunologia , Ciclopropanos/farmacologia , Feminino , Humanos , Macrófagos Alveolares/patologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/patologia , Fator de Necrose Tumoral alfa/imunologia
8.
Am J Physiol Lung Cell Mol Physiol ; 313(3): L507-L515, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596292

RESUMO

Combination therapy of PDE4 inhibitors and anticholinergics induces bronchoprotection in COPD. Mechanical forces that arise during bronchoconstriction may contribute to airway remodeling. Therefore, we investigated the impact of PDE4 inhibitors and anticholinergics on bronchoconstriction-induced remodeling. Because of the different mechanism of action of PDE4 inhibitors and anticholinergics, we hypothesized functional interactions of these two drug classes. Guinea pig precision-cut lung slices were preincubated with the PDE4 inhibitors CHF-6001 or roflumilast and/or the anticholinergics tiotropium or glycopyorrolate, followed by stimulation with methacholine (10 µM) or TGF-ß1 (2 ng/ml) for 48 h. The inhibitory effects on airway smooth muscle remodeling, airway contraction, and TGF-ß release were investigated. Methacholine-induced protein expression of smooth muscle-myosin was fully inhibited by CHF-6001 (0.3-100 nM), whereas roflumilast (1 µM) had smaller effects. Tiotropium and glycopyrrolate fully inhibited methacholine-induced airway remodeling (0.1-30 nM). The combination of CHF-6001 and tiotropium or glycopyrrolate, in concentrations partially effective by themselves, fully inhibited methacholine-induced remodeling in combination. CHF-6001 did not affect airway closure and had limited effects on TGF-ß1-induced remodeling, but rather, it inhibited methacholine-induced TGF-ß release. The PDE4 inhibitor CHF-6001, and to a lesser extent roflumilast, and the LAMAs tiotropium and glycopyrrolate inhibit bronchoconstriction-induced remodeling. The combination of CHF-6001 and anticholinergics was more effective than the individual compounds. This cooperativity might be explained by the distinct mechanisms of action inhibiting TGF-ß release and bronchoconstriction.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Broncoconstrição/efeitos dos fármacos , Antagonistas Colinérgicos/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Inibidores da Fosfodiesterase 4/farmacologia , Sulfonamidas/farmacologia , para-Aminobenzoatos/farmacologia , Aminopiridinas , Animais , Benzamidas , Ciclopropanos , Interações Medicamentosas , Glicopirrolato/farmacologia , Cobaias , Masculino , Cloreto de Metacolina/farmacologia , Brometo de Tiotrópio/farmacologia , Fator de Crescimento Transformador beta/farmacologia
9.
J Pharmacol Exp Ther ; 352(3): 568-78, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576073

RESUMO

CHF6001 [(S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(3-(cyclopropylmethoxy)-4-(methylsulfonamido)benzoyloxy)ethyl)pyridine 1-oxide] is a novel phosphodiesterase 4 (PDE4) inhibitor designed for use in pulmonary diseases by inhaled administration. Intratracheal administration of CHF6001 to ovalbumin-sensitized Brown-Norway rats suppressed the antigen-induced decline of lung functions (ED50 = 0.1 µmol/kg) and antigen-induced eosinophilia (ED50 = 0.03 µmol/kg) when administered (0.09 µmol/kg) up to 24 hours before antigen challenge, in agreement with CHF6001-sustained lung concentrations up to 72 hours after intratracheal treatment (mean residence time 26 hours). Intranasal, once daily administration of CHF6001 inhibited neutrophil infiltration observed after 11 days of tobacco smoke exposure in mice, both upon prophylactic (0.15-0.45 µmol/kg per day) or interventional (0.045-0.45 µmol/kg per day) treatment. CHF6001 was ineffective in reversing ketamine/xylazine-induced anesthesia (a surrogate of emesis in rat) up to 5 µmol/kg administered intratracheally, a dose 50- to 150-fold higher than anti-inflammatory ED50 observed in rats. When given topically to ferrets, no emesis and nausea were evident up to 10 to 20 µmol/kg, respectively, whereas the PDE4 inhibitor GSK-256066 (6-[3-(dimethylcarbamoyl)phenyl]sulfonyl-4-(3-methoxyanilino)-8-methylquinoline-3-carboxamide) induced nausea at 1 µmol/kg intratracheally. A 14-day inhalation toxicology study in rats showed a no-observed-adverse-effect level dose of 4.4 µmol/kg per day for CHF6001, lower than the 0.015 µmol/kg per day for GSK-256066. CHF6001 was found effective and extremely well tolerated upon topical administration in relevant animal models, and may represent a step forward in PDE4 inhibition for the treatment of asthma and chronic obstructive respiratory disease.


Assuntos
Anti-Inflamatórios/administração & dosagem , Inibidores da Fosfodiesterase 4/administração & dosagem , Sulfonamidas/administração & dosagem , para-Aminobenzoatos/administração & dosagem , Administração por Inalação , Administração Tópica , Animais , Anti-Inflamatórios/química , Avaliação Pré-Clínica de Medicamentos/métodos , Furões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Fosfodiesterase 4/química , Ratos , Ratos Endogâmicos BN , Ratos Wistar , Sulfonamidas/química , para-Aminobenzoatos/química
10.
J Pharmacol Exp Ther ; 352(3): 559-67, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576075

RESUMO

This study examined the pharmacologic characterization of CHF6001 [(S)-3,5-dichloro-4-(2-(3-(cyclopropylmethoxy)-4-(difluoromethoxy)phenyl)-2-(3-(cyclopropylmethoxy)-4-(methylsulfonamido)benzoyloxy)ethyl)pyridine 1-oxide], a novel phosphodiesterase (PDE)4 inhibitor designed for treating pulmonary inflammatory diseases via inhaled administration. CHF6001 was 7- and 923-fold more potent than roflumilast and cilomilast, respectively, in inhibiting PDE4 enzymatic activity (IC50 = 0.026 ± 0.006 nM). CHF6001 inhibited PDE4 isoforms A-D with equal potency, showed an elevated ratio of high-affinity rolipram binding site versus low-affinity rolipram binding site (i.e., >40) and displayed >20,000-fold selectivity versus PDE4 compared with a panel of PDEs. CHF6001 effectively inhibited (subnanomolar IC50 values) the release of tumor necrosis factor-α from human peripheral blood mononuclear cells, human acute monocytic leukemia cell line macrophages (THP-1), and rodent macrophages (RAW264.7 and NR8383). Moreover, CHF6001 potently inhibited the activation of oxidative burst in neutrophils and eosinophils, neutrophil chemotaxis, and the release of interferon-γ from CD4(+) T cells. In all these functional assays, CHF6001 was more potent than previously described PDE4 inhibitors, including roflumilast, UK-500,001 [2-(3,4-difluorophenoxy)-5-fluoro-N-((1S,4S)-4-(2-hydroxy-5-methylbenzamido)cyclohexyl)nicotinamide], and cilomilast, and it was comparable to GSK256066 [6-((3-(dimethylcarbamoyl)phenyl)sulfonyl)-4-((3-methoxyphenyl)amino)-8-methylquinoline-3-carboxamide]. When administered intratracheally to rats as a micronized dry powder, CHF6001 inhibited liposaccharide-induced pulmonary neutrophilia (ED50 = 0.205 µmol/kg) and leukocyte infiltration (ED50 = 0.188 µmol/kg) with an efficacy comparable to a high dose of budesonide (1 µmol/kg i.p.). In sum, CHF6001 has the potential to be an effective topical treatment of conditions associated with pulmonary inflammation, including asthma and chronic obstructive pulmonary disease.


Assuntos
Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Inibidores da Fosfodiesterase 4/administração & dosagem , Inibidores da Fosfodiesterase 4/metabolismo , Administração por Inalação , Administração Tópica , Animais , Furões , Masculino , Camundongos Endogâmicos C57BL , Ratos , Ratos Endogâmicos BN , Ratos Sprague-Dawley
11.
Front Pharmacol ; 15: 1343941, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549671

RESUMO

Inhibition of p38 mitogen-activated protein kinase (MAPKs) is a potential therapeutic approach for the treatment of acute and chronic pulmonary inflammatory conditions. Here, we report the in vitro and in vivo characterization of the anti-inflammatory effects of CHF6297, a novel potent and selective p38α inhibitor designed for inhalation delivery as a dry powder formulation. CHF6297 has been proven to inhibit p38α enzymatic activity with sub-nanomolar potency (IC50 = 0.14 ± 0.06 nM), with >1,000-fold selectivity against p38γ and p38δ. In human peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharides (LPS), as well as in human bronchial epithelial cells (BEAS2B) stimulated with TNF-α or cigarette smoke extract (CSE), CHF6297 inhibited interleukin (IL)-8 release with low nanomolar potency. CHF6297 administered to rats by using a nose-only inhalation device as a micronized dry powder formulation blended with lactose dose-dependently inhibited the LPS-induced neutrophil influx in the bronchoalveolar lavage fluid (BALF). CHF6297 administered intratracheally to rats dose-dependently counteracted the IL-1ß (0.3 mg/kg)-induced neutrophil influx (ED50 = 0.22 mg/kg) and increase in IL-6 levels (ED50 = 0.82 mg/kg) in the BALF. In mice exposed to tobacco smoke (TS), CHF6297, administered intranasally (i.n.) for 4 days at 0.03 or 0.3 mg/kg, dose-dependently inhibited the corticosteroid-resistant TS-induced neutrophil influx in the BALF. In a murine house dust mite (HDM) model of asthma exacerbated by influenza virus A (IAV) (H3N3), CHF6297 (0.1 mg/kg, i.n.) significantly decreased airway neutrophilia compared to vehicle-treated IAV/HDM-challenged mice. When CHF6297, at a dose ineffective per se (0.03 mg/kg), was added to budesonide, it augmented the anti-inflammatory effects of the steroid. Overall, CHF6297 effectively counteracted lung inflammation in experimental models where corticosteroids exhibit limited anti-inflammatory activity, suggesting a potential for the treatment of acute exacerbations associated with chronic obstructive pulmonary disease (COPD) and asthma, acute lung injury (ALI), and viral-induced hyperinflammation.

12.
Am J Respir Cell Mol Biol ; 48(2): 164-71, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23144333

RESUMO

The role of the receptor for advanced glycation end products (RAGE) in promoting the inflammatory response through activation of NF-κB pathway is well established. Recent findings indicate that RAGE may also have a regulative function in apoptosis, as well as in cellular proliferation, differentiation, and adhesion. Unlike other organs, lung tissue in adulthood and during organ development shows relatively high levels of RAGE expression. Thus a role for the receptor in lung organogenesis and homeostasis may be proposed. To evaluate the role of RAGE in lung development and adult lung homeostasis, we generated hemizygous and homozygous transgenic mice overexpressing human RAGE, and analyzed their lungs from the fourth postnatal day to adulthood. Moderate RAGE hyperexpression during lung development influenced secondary septation, resulting in an impairment of alveolar morphogenesis and leading to significant changes in morphometric parameters such as airspace number and the size of alveolar ducts. An increase in alveolar cell apoptosis and a decrease in cell proliferation were demonstrated by the terminal deoxy-nucleotidyltransferase-mediated dUTP nick end labeling reaction, active caspase-3, and Ki-67 immunohistochemistry. Alterations in elastin organization and deposition and in TGF-ß expression were observed. In homozygous mice, the hyperexpression of RAGE resulted in histological changes resembling those changes characterizing human bronchopulmonary dysplasia (BPD). RAGE hyperexpression in the adult lung is associated with an increase of the alveolar destructive index and persistent inflammatory status leading to "destructive" emphysema. These results suggest an important role for RAGE in both alveolar development and lung homeostasis, and open new doors to working hypotheses on the pathogenesis of BPD and chronic obstructive pulmonary disease.


Assuntos
Envelhecimento , Pulmão/crescimento & desenvolvimento , Receptores Imunológicos/fisiologia , Animais , Sequência de Bases , Caspase 3/metabolismo , Primers do DNA , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Antígeno Ki-67/metabolismo , Pulmão/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Receptor para Produtos Finais de Glicação Avançada , Fator de Crescimento Transformador beta/metabolismo
13.
Pharmaceutics ; 15(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37765223

RESUMO

Inhibitors of phosphodiesterase-4 (PDE4) are small-molecule drugs that, by increasing the intracellular levels of cAMP in immune cells, elicit a broad spectrum of anti-inflammatory effects. As such, PDE4 inhibitors are actively studied as therapeutic options in a variety of human diseases characterized by an underlying inflammatory pathogenesis. Dendritic cells (DCs) are checkpoints of the inflammatory and immune responses, being responsible for both activation and dampening depending on their activation status. This review shows evidence that PDE4 inhibitors modulate inflammatory DC activation by decreasing the secretion of inflammatory and Th1/Th17-polarizing cytokines, although preserving the expression of costimulatory molecules and the CD4+ T cell-activating potential. In addition, DCs activated in the presence of PDE4 inhibitors induce a preferential Th2 skewing of effector T cells, retain the secretion of Th2-attracting chemokines and increase the production of T cell regulatory mediators, such as IDO1, TSP-1, VEGF-A and Amphiregulin. Finally, PDE4 inhibitors selectively induce the expression of the surface molecule CD141/Thrombomodulin/BDCA-3. The result of such fine-tuning is immunomodulatory DCs that are distinct from those induced by classical anti-inflammatory drugs, such as corticosteroids. The possible implications for the treatment of respiratory disorders (such as COPD, asthma and COVID-19) by PDE4 inhibitors will be discussed.

14.
Am J Physiol Lung Cell Mol Physiol ; 303(10): L929-38, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22983351

RESUMO

Interleukin-8 (IL-8/CXCL8) is an important neutrophil chemoattractant known to be elevated in the airways of cigarette smokers and in patients with chronic obstructive pulmonary disease (COPD). We examined the acute effect of aqueous cigarette smoke extract (CSE) on IL-8 expression in primary human pulmonary cells, in particular in normal human bronchial smooth muscle cells (HBSMCs). IL-8 mRNA levels increased upon CSE exposure in a concentration- and time-dependent manner, and such an effect was accompanied by IL-8 secretion. CSE-evoked elevation of IL-8 mRNA was mimicked by its component acrolein. Both CSE and acrolein induced p38 mitogen-activated protein kinase (MAPK) phosphorylation, accompanied by the phosphorylation of MAPK-activated kinase 2 (MK2), a known downstream substrate of the p38 MAPK, both in HBSMCs and in human airway epithelial cells. Furthermore, pharmacological inhibition of p38 MAPK or MK2 strongly accelerated the decay of IL-8 mRNA levels upon stimulation with CSE or acrolein and subsequent blockade of mRNA neosynthesis with actinomycin D in pulmonary structural cells (HBSMCs and airways epithelial cells) as well as in human alveolar macrophages. Conversely, pharmacological inhibition of ERK1/2 signaling inhibited CSE-induced steady-state levels of IL-8 mRNA without affecting mRNA stability, thus suggesting inhibition at the transcriptional level. In sum, p38 MAPK/MK2 signaling is an important posttranscriptional mechanism underlying upregulation of IL-8 mRNA levels elicited by CSE and acrolein. Given the pivotal role of IL-8 in neutrophil chemotaxis and activation, our results shed light on the mechanisms through which cigarette smoke can initiate inflammation in the lung.


Assuntos
Acroleína/toxicidade , Brônquios/metabolismo , Células Epiteliais/metabolismo , Interleucina-8/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/biossíntese , Mucosa Respiratória/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Brônquios/patologia , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Dactinomicina/farmacologia , Células Epiteliais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miócitos de Músculo Liso/patologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/metabolismo , Neutrófilos/patologia , Inibidores da Síntese de Ácido Nucleico/farmacologia , Pneumonia/metabolismo , Pneumonia/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/patologia
15.
Biomedicines ; 10(5)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35625674

RESUMO

Representing an important cause of long-term disability, term neonatal hypoxic-ischemic encephalopathy (HIE) urgently needs further research aimed at repurposing existing drug as well as developing new therapeutics. Since various experimental in vitro and in vivo models of HIE have been developed with distinct characteristics, it becomes important to select the appropriate preclinical screening cascade for testing the efficacy of novel pharmacological treatments. As therapeutic hypothermia is already a routine therapy for neonatal encephalopathy, it is essential that hypothermia be administered to the experimental model selected to allow translational testing of novel or repurposed drugs on top of the standard of care. Moreover, a translational approach requires that therapeutic interventions must be initiated after the induction of the insult, and the time window for intervention should be evaluated to translate to real world clinical practice. Hippocampal organotypic slice cultures, in particular, are an invaluable intermediate between simpler cell lines and in vivo models, as they largely maintain structural complexity of the original tissue and can be subjected to transient oxygen-glucose deprivation (OGD) and subsequent reoxygenation to simulate ischemic neuronal injury and reperfusion. Progressing to in vivo models, generally, rodent (mouse and rat) models could offer more flexibility and be more cost-effective for testing the efficacy of pharmacological agents with a dose-response approach. Large animal models, including piglets, sheep, and non-human primates, may be utilized as a third step for more focused and accurate translational studies, including also pharmacokinetic and safety pharmacology assessments. Thus, a preclinical proof of concept of efficacy of an emerging pharmacological treatment should be obtained firstly in vitro, including organotypic models, and, subsequently, in at least two different animal models, also in combination with hypothermia, before initiating clinical trials.

16.
Dis Model Mech ; 15(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35466995

RESUMO

Increased research to improve preclinical models to inform the development of therapeutics for neonatal diseases is an area of great need. This article reviews five common neonatal diseases - bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, perinatal hypoxic-ischemic encephalopathy and neonatal sepsis - and the available in vivo, in vitro and in silico preclinical models for studying these diseases. Better understanding of the strengths and weaknesses of specialized neonatal disease models will help to improve their utility, may add to the understanding of the mode of action and efficacy of a therapeutic, and/or may improve the understanding of the disease pathology to aid in identification of new therapeutic targets. Although the diseases covered in this article are diverse and require specific approaches, several high-level, overarching key lessons can be learned by evaluating the strengths, weaknesses and gaps in the available models. This Review is intended to help guide current and future researchers toward successful development of therapeutics in these areas of high unmet medical need.


Assuntos
Displasia Broncopulmonar , Enterocolite Necrosante , Doenças do Recém-Nascido , Displasia Broncopulmonar/tratamento farmacológico , Desenvolvimento de Medicamentos , Enterocolite Necrosante/tratamento farmacológico , Humanos , Recém-Nascido , Doenças do Recém-Nascido/tratamento farmacológico
17.
J Med Chem ; 65(10): 7170-7192, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35546685

RESUMO

The identification of novel inhaled p38α/ß mitogen-activated protein kinases (MAPK) (MAPK14/11) inhibitors suitable for the treatment of pulmonary inflammatory conditions has been described. A rational drug design approach started from the identification of a novel tetrahydronaphthalene series, characterized by nanomolar inhibition of p38α with selectivity over p38γ and p38δ isoforms. SAR optimization of 1c is outlined, where improvements in potency against p38α and ligand-enzyme dissociation kinetics led to several compounds showing pronounced anti-inflammatory effects in vitro (inhibition of TNFα release). Targeting of the defined physicochemical properties allowed the identification of compounds 3h, 4e, and 4f, which showed, upon intratracheal instillation, low plasma levels, prolonged lung retention, and anti-inflammatory effects in a rat acute model of a bacterial endotoxin-induced pulmonary inflammation. Compound 4e, in particular, displayed remarkable efficacy and duration of action and was selected for progression in disease models of asthma and chronic obstructive pulmonary disease (COPD).


Assuntos
Proteína Quinase 14 Ativada por Mitógeno , Pneumonia , Inibidores de Proteínas Quinases , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Desenho de Fármacos , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Fosforilação , Pneumonia/tratamento farmacológico , Pneumonia/enzimologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
18.
Sci Transl Med ; 14(638): eabl6328, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35353541

RESUMO

Cyclic adenosine 3',5'-monophosphate (cAMP)-elevating agents, such as ß2-adrenergic receptor (ß2-AR) agonists and phosphodiesterase (PDE) inhibitors, remain a mainstay in the treatment of obstructive respiratory diseases, conditions characterized by airway constriction, inflammation, and mucus hypersecretion. However, their clinical use is limited by unwanted side effects because of unrestricted cAMP elevation in the airways and in distant organs. Here, we identified the A-kinase anchoring protein phosphoinositide 3-kinase γ (PI3Kγ) as a critical regulator of a discrete cAMP signaling microdomain activated by ß2-ARs in airway structural and inflammatory cells. Displacement of the PI3Kγ-anchored pool of protein kinase A (PKA) by an inhaled, cell-permeable, PI3Kγ mimetic peptide (PI3Kγ MP) inhibited a pool of subcortical PDE4B and PDE4D and safely increased cAMP in the lungs, leading to airway smooth muscle relaxation and reduced neutrophil infiltration in a murine model of asthma. In human bronchial epithelial cells, PI3Kγ MP induced unexpected cAMP and PKA elevations restricted to the vicinity of the cystic fibrosis transmembrane conductance regulator (CFTR), the ion channel controlling mucus hydration that is mutated in cystic fibrosis (CF). PI3Kγ MP promoted the phosphorylation of wild-type CFTR on serine-737, triggering channel gating, and rescued the function of F508del-CFTR, the most prevalent CF mutant, by enhancing the effects of existing CFTR modulators. These results unveil PI3Kγ as the regulator of a ß2-AR/cAMP microdomain central to smooth muscle contraction, immune cell activation, and epithelial fluid secretion in the airways, suggesting the use of a PI3Kγ MP for compartment-restricted, therapeutic cAMP elevation in chronic obstructive respiratory diseases.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fosfatidilinositol 3-Quinase , Animais , Classe Ib de Fosfatidilinositol 3-Quinase , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Inflamação , Camundongos , Peptídeos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
19.
Front Pharmacol ; 12: 740803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34887752

RESUMO

Chronic respiratory diseases are the third leading cause of death, behind cardiovascular diseases and cancer, affecting approximately 550 million of people all over the world. Most of the chronic respiratory diseases are attributable to asthma and chronic obstructive pulmonary disease (COPD) with this latter being the major cause of deaths. Despite differences in etiology and symptoms, a common feature of asthma and COPD is an underlying degree of airways inflammation. The nature and severity of this inflammation might differ between and within different respiratory conditions and pharmacological anti-inflammatory treatments are unlikely to be effective in all patients. A precision medicine approach is needed to selectively target patients to increase the chance of therapeutic success. Inhibitors of the phosphodiesterase 4 (PDE4) enzyme like the oral PDE4 inhibitor roflumilast have shown a potential to reduce inflammatory-mediated processes and the frequency of exacerbations in certain groups of COPD patients with a chronic bronchitis phenotype. However, roflumilast use is dampened by class related side effects as nausea, diarrhea, weight loss and abdominal pain, resulting in both substantial treatment discontinuation in clinical practice and withdrawal from clinical trials. This has prompted the search for PDE4 inhibitors to be given by inhalation to reduce the systemic exposure (and thus optimize the systemic safety) and maximize the therapeutic effect in the lung. Tanimilast (international non-proprietary name of CHF6001) is a novel highly potent and selective inhaled PDE4 inhibitor with proven anti-inflammatory properties in various inflammatory cells, including leukocytes derived from asthma and COPD patients, as well as in experimental rodent models of pulmonary inflammation. Inhaled tanimilast has reached phase III clinical development by showing promising pharmacodynamic results associated with a good tolerability and safety profile, with no evidence of PDE4 inhibitors class-related side effects. In this review we will discuss the main outcomes of preclinical and clinical studies conducted during tanimilast development, with particular emphasis on the characterization of the pharmacodynamic profile that led to the identification of target populations with increased therapeutic potential in inflammatory respiratory diseases.

20.
Front Immunol ; 12: 797390, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140709

RESUMO

Phosphodiesterase 4 (PDE4) inhibitors are immunomodulatory drugs approved to treat diseases associated with chronic inflammatory conditions, such as COPD, psoriasis and atopic dermatitis. Tanimilast (international non-proprietary name of CHF6001) is a novel, potent and selective inhaled PDE4 inhibitor in advanced clinical development for the treatment of COPD. To begin testing its potential in limiting hyperinflammation and immune dysregulation associated to SARS-CoV-2 infection, we took advantage of an in vitro model of dendritic cell (DC) activation by SARS-CoV-2 genomic ssRNA (SCV2-RNA). In this context, Tanimilast decreased the release of pro-inflammatory cytokines (TNF-α and IL-6), chemokines (CCL3, CXCL9, and CXCL10) and of Th1-polarizing cytokines (IL-12, type I IFNs). In contrast to ß-methasone, a reference steroid anti-inflammatory drug, Tanimilast did not impair the acquisition of the maturation markers CD83, CD86 and MHC-II, nor that of the lymph node homing receptor CCR7. Consistent with this, Tanimilast did not reduce the capability of SCV2-RNA-stimulated DCs to activate CD4+ T cells but skewed their polarization towards a Th2 phenotype. Both Tanimilast and ß-methasone blocked the increase of MHC-I molecules in SCV2-RNA-activated DCs and restrained the proliferation and activation of cytotoxic CD8+ T cells. Our results indicate that Tanimilast can modulate the SCV2-RNA-induced pro-inflammatory and Th1-polarizing potential of DCs, crucial regulators of both the inflammatory and immune response. Given also the remarkable safety demonstrated by Tanimilast, up to now, in clinical studies, we propose this inhaled PDE4 inhibitor as a promising immunomodulatory drug in the scenario of COVID-19.


Assuntos
COVID-19/imunologia , Células Dendríticas , Inibidores da Fosfodiesterase 4/farmacologia , RNA/farmacologia , SARS-CoV-2/fisiologia , Ativação Viral/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Humanos , Células Th1/imunologia , Células Th2/imunologia , Ativação Viral/imunologia , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA