Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
EMBO J ; 39(19): e104319, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32915464

RESUMO

The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that senses xenobiotics, diet, and gut microbial-derived metabolites, is increasingly recognized as a key regulator of intestinal biology. However, its effects on the function of colonic stem and progenitor cells remain largely unexplored. Here, we observed that inducible deletion of AhR in Lgr5+ stem cells increases the percentage of colonic stem cells and enhances organoid initiating capacity and growth of sorted stem and progenitor cells, while AhR activation has the opposite effect. Moreover, intestinal-specific AhR knockout increases basal stem cell and crypt injury-induced cell proliferation and promotes colon tumorigenesis in a preclinical colitis-associated tumor model by upregulating FoxM1 signaling. Mechanistically, AhR transcriptionally suppresses FoxM1 expression. Activation of AhR in human organoids recapitulates phenotypes observed in mice, such as reduction in the percentage of colonic stem cells, promotion of stem cell differentiation, and attenuation of FoxM1 signaling. These findings indicate that the AhR-FoxM1 axis, at least in part, mediates colonic stem/progenitor cell behavior.


Assuntos
Colo/metabolismo , Proteína Forkhead Box M1/metabolismo , Receptores de Hidrocarboneto Arílico/deficiência , Transdução de Sinais , Células-Tronco/metabolismo , Animais , Feminino , Proteína Forkhead Box M1/genética , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Receptores de Hidrocarboneto Arílico/metabolismo
2.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G93-G106, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755534

RESUMO

IL22 signaling plays an important role in maintaining gastrointestinal epithelial barrier function, cell proliferation, and protection of intestinal stem cells from genotoxicants. Emerging studies indicate that the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, promotes production of IL22 in gut immune cells. However, it remains to be determined if AhR signaling can also affect the responsiveness of colonic epithelial cells to IL22. Here, we show that IL22 treatment induces the phosphorylation of STAT3, inhibits colonic organoid growth, and promotes colonic cell proliferation in vivo. Notably, intestinal cell-specific AhR knockout (KO) reduces responsiveness to IL22 and compromises DNA damage response after exposure to carcinogen, in part due to the enhancement of suppressor of cytokine signaling 3 (SOCS3) expression. Deletion of SOCS3 increases levels of pSTAT3 in AhR KO organoids, and phenocopies the effects of IL22 treatment on wild-type (WT) organoid growth. In addition, pSTAT3 levels are inversely associated with increased azoxymethane/dextran sulfate sodium (AOM/DSS)-induced colon tumorigenesis in AhR KO mice. These findings indicate that AhR function is required for optimal IL22 signaling in colonic epithelial cells and provide rationale for targeting AhR as a means of reducing colon cancer risk.NEW & NOTEWORTHY AhR is a key transcription factor controlling expression of IL22 in gut immune cells. In this study, we show for the first time that AhR signaling also regulates IL22 response in colonic epithelial cells by modulating SOCS3 expression.


Assuntos
Colo/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Interleucinas/farmacologia , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Fator de Transcrição STAT3/efeitos dos fármacos , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Colo/metabolismo , Neoplasias do Colo/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Camundongos Knockout , Organoides/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais/fisiologia , Proteína 3 Supressora da Sinalização de Citocinas/efeitos dos fármacos , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Ativação Transcricional/fisiologia , Interleucina 22
3.
Breast Cancer Res ; 21(1): 131, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783895

RESUMO

BACKGROUND: Breast cancer is a leading cause of cancer-related death for women in the USA. Thus, there is an increasing need to investigate novel prognostic markers and therapeutic methods. Inflammation raises challenges in treating and preventing the spread of breast cancer. Specifically, the nuclear factor kappa b (NFκB) pathway contributes to cancer progression by stimulating proliferation and preventing apoptosis. One target gene of this pathway is PTGS2, which encodes for cyclooxygenase 2 (COX-2) and is upregulated in 40% of human breast carcinomas. COX-2 is an enzyme involved in the production of prostaglandins, which mediate inflammation. Here, we investigate the effect of Singleminded-2s (SIM2s), a transcriptional tumor suppressor that is implicated in inhibition of tumor growth and metastasis, in regulating NFκB signaling and COX-2. METHODS: For in vitro experiments, reporter luciferase assays were utilized in MCF7 cells to investigate promoter activity of NFκB and SIM2. Real-time PCR, immunoblotting, immunohistochemistry, and chromatin immunoprecipitation assays were performed in SUM159 and MCF7 cells. For in vivo experiments, MCF10DCIS.COM cells stably expressing SIM2s-FLAG or shPTGS2 were injected into SCID mice and subsequent tumors harvested for immunostaining and analysis. RESULTS: Our results reveal that SIM2 attenuates the activation of NFκB as measured using NFκB-luciferase reporter assay. Furthermore, immunostaining of lysates from breast cancer cells overexpressing SIM2s showed reduction in various NFκB signaling proteins, as well as pAkt, whereas knockdown of SIM2 revealed increases in NFκB signaling proteins and pAkt. Additionally, we show that NFκB signaling can act in a reciprocal manner to decrease expression of SIM2s. Likewise, suppressing NFκB translocation in DCIS.COM cells increased SIM2s expression. We also found that NFκB/p65 represses SIM2 in a dose-dependent manner, and when NFκB is suppressed, the effect on the SIM2 is negated. Additionally, our ChIP analysis confirms that NFκB/p65 binds directly to SIM2 promoter site and that the NFκB sites in the SIM2 promoter are required for NFκB-mediated suppression of SIM2s. Finally, overexpression of SIM2s decreases PTGS2 in vitro, and COX-2 staining in vivo while decreasing PTGS2 and/or COX-2 activity results in re-expression of SIM2. CONCLUSION: Our findings identify a novel role for SIM2s in NFκB signaling and COX-2 expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ciclo-Oxigenase 2/genética , Regulação Neoplásica da Expressão Gênica , NF-kappa B/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Genes Reporter , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Modelos Biológicos , Mutação , Ligação Proteica , Transdução de Sinais
4.
Br J Nutr ; 119(2): 163-175, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29249211

RESUMO

Cell membrane fatty acids influence fundamental properties of the plasma membrane, including membrane fluidity, protein functionality, and lipid raft signalling. Evidence suggests that dietary n-3 PUFA may target the plasma membrane of immune cells by altering plasma membrane lipid dynamics, thereby regulating the attenuation of immune cell activation and suppression of inflammation. As lipid-based immunotherapy might be a promising new clinical strategy for the treatment of inflammatory disorders, we conducted in vitro and in vivo experiments to examine the effects of n-3 PUFA on CD4+ T cell membrane order, mitochondrial bioenergetics and lymphoproliferation. n-3 PUFA were incorporated into human primary CD4+ T cells phospholipids in vitro in a dose-dependent manner, resulting in a reduction in whole cell membrane order, oxidative phosphorylation and proliferation. At higher doses, n-3 PUFA induced unique phase separation in T cell-derived giant plasma membrane vesicles. Similarly, in a short-term human pilot study, supplementation of fish oil (4 g n-3 PUFA/d) for 6 weeks in healthy subjects significantly elevated EPA (20 : 5n-3) levels in CD4+ T cell membrane phospholipids, and reduced membrane lipid order. These results demonstrate that the dynamic reshaping of human CD4+ T cell plasma membrane organisation by n-3 PUFA may modulate down-stream clonal expansion.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/ultraestrutura , Membrana Celular/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Idoso , Idoso de 80 Anos ou mais , Membrana Celular/química , Membrana Celular/fisiologia , Gorduras na Dieta/administração & dosagem , Suplementos Nutricionais , Ácido Eicosapentaenoico/sangue , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/sangue , Feminino , Óleos de Peixe/administração & dosagem , Humanos , Ativação Linfocitária/efeitos dos fármacos , Masculino , Lipídeos de Membrana/sangue , Lipídeos de Membrana/química , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfolipídeos/sangue , Fosfolipídeos/química , Projetos Piloto
5.
Biochim Biophys Acta ; 1858(1): 85-96, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26476105

RESUMO

The mechanisms by which n-3 polyunsaturated fatty acids (n-3 PUFA), abundant in fish oil, exert their anti-inflammatory effects have not been rigorously defined. We have previously demonstrated that n-3 PUFA decrease the amount of phosphatidylinositol-(4,5)-bisphosphate, [PI(4,5)P2], in CD4(+) T cells, leading to suppressed actin remodeling upon activation. Since discrete pools of PI(4,5)P2 exist in the plasma membrane, we determined whether n-3 PUFA modulate spatial organization of PI(4,5)P2 relative to raft and non-raft domains. We used Förster resonance energy transfer (FRET) to demonstrate that lipid raft mesodomains in the plasma membrane of CD4(+) T cells enriched in n-3 PUFA display increased co-clustering of Lck(N10) and LAT(ΔCP), markers of lipid rafts. CD4(+) T cells enriched in n-3 PUFA also exhibited a depleted plasma membrane non-raft PI(4,5)P2 pool as detected by decreased co-clustering of Src(N15), a non-raft marker, and PH(PLC-δ), a PI(4,5)P2 reporter. Incubation with exogenous PI(4,5)P2 rescued the effects on the non-raft PI(4,5)P2 pool, and reversed the suppression of T cell proliferation in CD4(+) T cells enriched with n-3 PUFA. Furthermore, CD4(+) T cells isolated from mice fed a 4% docosahexaenoic acid (DHA)-enriched diet exhibited a decrease in the non-raft pool of PI(4,5)P2, and exogenous PI(4,5)P2 reversed the suppression of T cell proliferation. Finally, these effects were not due to changes to post-translational lipidation, since n-3 PUFA did not alter the palmitoylation status of signaling proteins. These data demonstrate that n-3 PUFA suppress T cell proliferation by altering plasma membrane topography and the spatial organization of PI(4,5)P2.


Assuntos
Linfócitos T CD4-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Microdomínios da Membrana/efeitos dos fármacos , Fosfatidilinositol 4,5-Difosfato/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Biomarcadores/metabolismo , Linfócitos T CD4-Positivos/química , Linfócitos T CD4-Positivos/citologia , Expressão Gênica , Vetores Genéticos , Lentivirus/genética , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/farmacologia , Fosfolipase C delta/genética , Fosfolipase C delta/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Cultura Primária de Células , Quinases da Família src/genética , Quinases da Família src/metabolismo
6.
Annu Rev Nutr ; 36: 543-70, 2016 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-27431370

RESUMO

The International Agency for Research on Cancer recently released an assessment classifying red and processed meat as "carcinogenic to humans" on the basis of the positive association between increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert chemoprotective effects, and their molecular mechanisms have been the focus of research in the dietary/chemoprevention field. Using these bioactives as examples, this review surveys the proposed mechanisms by which they exert their effects, from the nucleus to the cellular membrane. In addition, we discuss emerging technologies involving the culturing of colonic organoids to study the physiological effects of dietary bioactives. Finally, we address future challenges to the field regarding the identification of additional molecular mechanisms and other bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal cancer.


Assuntos
Neoplasias do Colo/prevenção & controle , Dieta Saudável , Regulação da Expressão Gênica , Modelos Biológicos , Nutrigenômica/métodos , Animais , Anticarcinógenos/metabolismo , Anticarcinógenos/uso terapêutico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/microbiologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/prevenção & controle , Curcumina/metabolismo , Curcumina/uso terapêutico , Metilação de DNA , Fibras na Dieta/metabolismo , Fibras na Dieta/uso terapêutico , Epigênese Genética , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/uso terapêutico , Fermentação , Microbioma Gastrointestinal , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , MicroRNAs/metabolismo , Nutrigenômica/tendências , Processamento de Proteína Pós-Traducional
7.
J BUON ; 22(5): 1272-1277, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29135113

RESUMO

PURPOSE: The minichromosomal maintenance (MCM) proteins are involved in the initiation and DNA replication. The role of MCM4 remains to be elucidated. The purpose of this study was to investigate the effects of MCM4 in laryngeal squamous cell carcinoma (LSCC) cell growth and apoptosis. METHODS: LSCC cell line UMSCC 5 was used in this study. The small interfering RNA (siRNA) of MCM 4 gene was used to identify the effects of MCM4 on the proliferation and apoptosis using methylimidazole tetrazolium (MTT) assay and flow-cytometry, respectively. Confirmed LSCC and adjacent non-tumor tissues were collected from 34 patients who were willing to participate in the study, from 2010 through 2015, from 163 patients undergoing treatment in the Department of Otorhinolaryngology/Head and Neck Surgery of Beijing Tongren Hospital in Capital Medical University of P.R. China. Immunohistochemical staining of MCM4 expression in the resected tissues was performed to analyze the correlation between its expression and the clinicopathological characteristics. RESULTS: The results showed that siRNA of MCM4 could significantly inhibit LSCC cell line UMSCC 5 proliferation and induce apoptosis. MCM4 mRNA was higher expressed in carcinoma tissues than in adjacent normal tissues. MCM4 expression was correlated with male gender, smoking history and poor differentiation. CONCLUSIONS: We noticed a significant role for MCM4 overexpression in human LSCC tissues and their corresponding adjacent non-neoplastic tissues and found that siRNA of MCM4 can significantly decrease the proliferation of cancer cells. It is suggested that MCM4 profiling could potentially be used to predict response to treatment and prognosis in LSCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma de Células Escamosas/genética , Neoplasias Laríngeas/genética , Proteínas Nucleares/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Feminino , Humanos , Neoplasias Laríngeas/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico
8.
Biochim Biophys Acta ; 1842(10): 1475-82, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25066474

RESUMO

Glycerol-3-phosphate acyltransferase-1 is the first rate limiting step in de novo glycerophospholipid synthesis. We have previously demonstrated that GPAT-1 deletion can significantly alter T cell function resulting in a T cell phenotype similar to that seen in aging. Recent studies have suggested that changes in the metabolic profile of T cells are responsible for defining specific effector functions and T cell subsets. Therefore, we determined whether T cell dysfunction in GPAT-1 (-/-) CD4(+) T cells could be explained by changes in cellular metabolism. We show here for the first time that GPAT-1 (-/-) CD4(+) T cells exhibit several key metabolic defects. Striking decreases in both the oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) were observed in GPAT-1 (-/-) CD4(+) T cells following CD3/CD28 stimulation indicating an inherent cellular defect in energy production. In addition, the spare respiratory capacity (SRC) of GPAT-1 (-/-) CD4+ T cells, a key indicator of their ability to cope with mitochondrial stress was significantly decreased. We also observed a significant reduction in mitochondrial membrane potential in GPAT-1 (-/-) CD4(+) T cells compared to their WT counterparts, indicating that GPAT-1 deficiency results in altered or dysfunctional mitochondria. These data demonstrate that deletion of GPAT-1 can dramatically alter total cellular metabolism under conditions of increased energy demand. Furthermore, altered metabolic response following stimulation may be the defining mechanism underlying T cell dysfunction in GPAT-1 (-/-) CD4(+) T cells. Taken together, these results indicate that GPAT-1 is essential for the response to the increased metabolic demands associated with T cell activation.

9.
Am J Physiol Gastrointest Liver Physiol ; 309(1): G1-9, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25977509

RESUMO

Evidence suggests that targeting cancer cell energy metabolism might be an effective therapeutic approach for selective ablation of malignancies. Using a Seahorse Extracellular Flux Analyzer, we have demonstrated that select environmental agents can alter colonic mitochondrial function by increasing respiration-induced proton leak, thereby inducing apoptosis, a marker of colon cancer risk. To further probe bioenergetics in primary intestinal cells, we developed methodology that can be modified and adapted to measure the bioenergetic profiles of colonic crypts, the basic functional unit of the colon, and colonic organoids, an ex vivo 3D culture of colonic crypts. Furthermore, in combination with the MoFlo Astrios High-Speed Cell Sorter, we were able to measure the bioenergetic profiles of colonic adult stem and daughter cells from Lgr5-EGFP-IRES-creER(T2) transgenic mice. We examined the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a full arylhydrocarbon receptor agonist, known to affect gastrointestinal function and cancer risk, on the bioenergetic profiles of intestinal epithelial cells. Mouse colonic crypts, organoids, or sorted single cells were seeded onto Matrigel-precoated Seahorse XF24 microplates for extracellular flux analysis. Temporal analyses revealed distinct energy metabolic profiles in crypts and organoids challenged with TCDD. Furthermore, sorted Lgr5(+) stem cells exhibited a Warburg-like metabolic profile. This is noteworthy because perturbations in stem cell dynamics are generally believed to represent the earliest step toward colon tumorigenesis. We propose that our innovative methodology may facilitate future in vivo/ex vivo metabolic studies using environmental agents affecting colonocyte energy metabolism.


Assuntos
Bioensaio/métodos , Separação Celular/métodos , Colo/metabolismo , Metabolismo Energético , Citometria de Fluxo , Organoides/metabolismo , Células-Tronco/metabolismo , Animais , Células Cultivadas , Colo/citologia , Colo/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organoides/citologia , Organoides/efeitos dos fármacos , Fenótipo , Dibenzodioxinas Policloradas/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fatores de Tempo , Técnicas de Cultura de Tecidos
10.
Carcinogenesis ; 35(3): 606-12, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24336194

RESUMO

Arachidonic acid (20:4(Δ5,8,11,14), AA)-derived prostaglandin E2 (PGE2) promotes colon cancer development. In contrast, chemoprotective n-3 polyunsaturated fatty acids supplant AA, thereby decreasing PGE2 biosynthesis in colonocytes, with eicosapentaenoic acid (20:5(Δ5,8,11,14,17), EPA) in particular being metabolized to a novel 3-series E-prostaglandin (PGE3), a putative anti-tumorigenic-cyclooxygenase metabolite. Because transformation of adult stem cells is an extremely important route toward initiating intestinal cancer, we utilized the leucine-rich-repeat-containing G-protein-coupled receptor 5 (Lgr5)-enhanced green fluorescent protein-internal ribosome entry site (IRES)-creER(T2) knock-in mouse model to isolate and culture colonic organoids, in order to document ex vivo responses to exogenous PGE2 and PGE3. Colonic crypts were isolated from transgenic mice and cultured in a Matrigel-based three-dimensional platform. Organoids were treated with exogenous PGE2, PGE3 or dimethyl sulfoxide (vehicle control) for 5 days and the number of viable organoids was recorded daily. Subsequently, samples were processed for immunohistochemistry, flow cytometry and real-time PCR analyses. PGE2 promoted optimal organoid growth and induced significantly higher levels of cell proliferation (P < 0.05) compared with PGE3 and control. In contrast, the Lgr5-green fluorescent protein-positive stem cell number was uniquely elevated by >2-fold in PGE2-treated cultures compared with PGE3 and control. This coincided with the upregulation of stem-cell-related Sox9, Axin2 and Cd44 messenger RNAs. Our results demonstrate that relative to AA-derived PGE2, a known promoter of colon tumorigenesis, EPA-derived PGE3 has diminished ability to support colonic stem cell expansion in mouse colonic organoids.


Assuntos
Divisão Celular/efeitos dos fármacos , Colo/efeitos dos fármacos , Prostaglandinas/farmacologia , Células-Tronco/efeitos dos fármacos , Colo/citologia , Proteínas de Fluorescência Verde/genética , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/citologia
11.
J Nutr ; 144(8): 1306-13, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24944284

RESUMO

Cluster of differentiation 4(+) (CD4(+)) effector T-cell subsets [e.g., T-helper (Th) 1 and Th17] are implicated in autoimmune and inflammatory disorders such as multiple sclerosis, psoriasis, and rheumatoid arthritis. Interleukin (IL)-6 is a pleiotropic cytokine that induces Th17 polarization via signaling through the membrane-bound transducer glycoprotein 130 (GP130). Previously, we demonstrated that n-3 (ω-3) polyunsaturated fatty acids (PUFAs) reduce CD4(+) T-cell activation and differentiation into pathogenic Th17 cells by 25-30%. Here we report that n-3 PUFAs alter the response of CD4(+) T cells to IL-6 in a lipid raft membrane-dependent manner. Naive splenic CD4(+) T cells from fat-1 transgenic mice exhibited 30% lower surface expression of the IL-6 receptor. This membrane-bound receptor is known to be shed during cellular activation, but the release of soluble IL-6 receptor after treatment with anti-CD3 and anti-CD28 was not changed in the CD4(+) T cells from fat-1 mice, suggesting that the decrease in surface expression was not due to ectodomain release. We observed a significant 20% decrease in the association of GP130 with lipid rafts in activated fat-1 CD4(+) T cells and a 35% reduction in GP130 homodimerization, an obligate requirement for downstream signaling. The phosphorylation of signal transducer and activator of transcription 3 (STAT3), a downstream target of IL-6-dependent signaling, was also decreased by 30% in response to exogenous IL-6 in fat-1 CD4(+) T cells. Our results suggest that n-3 PUFAs suppress Th17 cell differentiation in part by reducing membrane raft-dependent responsiveness to IL-6, an essential polarizing cytokine.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Interleucina-6/metabolismo , Células Th17/efeitos dos fármacos , Animais , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Feminino , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Fosforilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Baço/efeitos dos fármacos , Baço/metabolismo
12.
Mediators Inflamm ; 2014: 917149, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25136149

RESUMO

During colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA-) derived eicosanoids, such as prostaglandin E2 (PGE2), promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS-) induced colitis. Fat-1 mice contain the ω3 desaturase gene from C. elegans and synthesize n-3 PUFA de novo, thereby reducing the biosynthesis of n-6 PUFA-derived eicosanoids. In contrast, Fads1 Null mice contain a disrupted Δ5 desaturase gene and produce lower levels of n-6 PUFA-derived eicosanoids. Compared to Wt littermates, Fat-1 and Fads1 Null mice exhibited a similar colitic phenotype characterized by reduced colonic mucosal inflammatory eicosanoid levels and mRNA expression of Th17 cell markers (IL-17A, RORγτ, and IL-23), decreased percentages of Th17 cells and, improved colon injury scores (P ≤ 0.05). Thus, during colitis, similar outcomes were obtained in two genetically distinct models, both of which antagonize PGE2 levels via different mechanisms. Our data highlight the critical impact of n-6 PUFA-derived eicosanoids in the promotion of Th17 cell-mediated colonic inflammation.


Assuntos
Ácido Araquidônico/química , Colite/tratamento farmacológico , Colite/imunologia , Eicosanoides/química , Eicosanoides/uso terapêutico , Inflamação/imunologia , Inflamação/metabolismo , Células Th1/metabolismo , Células Th17/metabolismo , Animais , Colite/metabolismo , Feminino , Masculino , Camundongos
13.
bioRxiv ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38586033

RESUMO

Monounsaturated fatty acids (MUFAs) play a pivotal role in maintaining endoplasmic reticulum (ER) homeostasis, an emerging hallmark of cancer. However, the role of polyunsaturated fatty acid (PUFAs) desaturation in persistent ER stress driven by oncogenic abnormalities remains elusive. Fatty Acid Desaturase 1 (FADS1) is a rate-limiting enzyme controlling the bioproduction of long-chain PUFAs. Our previous research has demonstrated the significant role of FADS1 in cancer survival, especially in kidney cancers. We explored the underlying mechanism in this study. We found that pharmacological inhibition or knockdown of the expression of FADS1 effectively inhibits renal cancer cell proliferation and induces cell cycle arrest. The stable knockdown of FADS1 also significantly inhibits tumor formation in vivo. Mechanistically, we show that while FADS1 inhibition induces ER stress, its expression is also augmented by ER-stress inducers. Notably, FADS1-inhibition sensitized cellular response to ER stress inducers, providing evidence of FADS1's role in modulating the ER stress response in cancer cells. We show that, while FADS1 inhibition-induced ER stress leads to activation of ATF3, ATF3-knockdown rescues the FADS1 inhibition-induced ER stress and cell growth suppression. In addition, FADS1 inhibition results in the impaired biosynthesis of nucleotides and decreases the level of UPD-N-Acetylglucosamine, a critical mediator of the unfolded protein response. Our findings suggest that PUFA desaturation is crucial for rescuing cancer cells from persistent ER stress, supporting FADS1 as a new therapeutic target.

14.
Am J Physiol Cell Physiol ; 304(9): C905-17, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23426968

RESUMO

Epidermal growth factor receptor (EGFR)-mediated signaling is required for optimal intestinal wound healing. Since n-3 polyunsaturated fatty acids (PUFA), specifically docosahexaenoic acid (DHA), alter EGFR signaling and suppress downstream activation of key signaling pathways, we hypothesized that DHA would be detrimental to the process of intestinal wound healing. Using a mouse immortalized colonocyte model, DHA uniquely reduced EGFR ligand-induced receptor activation, whereas DHA and its metabolic precursor eicosapentaenoic acid (EPA) reduced wound-induced EGFR transactivation compared with control (no fatty acid or linoleic acid). Under wounding conditions, the suppression of EGFR activation was associated with a reduction in downstream activation of cytoskeletal remodeling proteins (PLCγ1, Rac1, and Cdc42). Subsequently, DHA and EPA reduced cell migration in response to wounding. Mice were fed a corn oil-, DHA-, or EPA-enriched diet prior to intestinal wounding (2.5% dextran sodium sulfate for 5 days followed by termination after 0, 3, or 6 days of recovery). Mortality was increased in EPA-fed mice and colonic histological injury scores were increased in EPA- and DHA-fed mice compared with corn oil-fed (control) mice. Although kinetics of colonic EGFR activation and downstream signaling (PLCγ1, Rac1, and Cdc42) were delayed by both n-3 PUFA, colonic repair was increased in EPA- relative to DHA-fed mice. These results indicate that, during the early response to intestinal wounding, DHA and EPA uniquely delay the activation of key wound-healing processes in the colon. This effect is mediated, at least in part, via suppression of EGFR-mediated signaling and downstream cytoskeletal remodeling.


Assuntos
Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácido Eicosapentaenoico/administração & dosagem , Receptores ErbB/metabolismo , Processamento de Proteína Pós-Traducional , Cicatrização , Animais , Ácido Araquidônico/metabolismo , Movimento Celular , Células Cultivadas , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Colo/efeitos dos fármacos , Colo/patologia , Óleo de Milho/administração & dosagem , Sulfato de Dextrana , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/fisiologia , Ácido Eicosapentaenoico/fisiologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neuropeptídeos/metabolismo , Consumo de Oxigênio , Fosforilação , Transdução de Sinais , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP
15.
J Biol Chem ; 287(25): 21492-500, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22556414

RESUMO

Increasing evidence demonstrates the dissociation of fat deposition, the inflammatory response, and insulin resistance in the development of obesity-related metabolic diseases. As a regulatory enzyme of glycolysis, inducible 6-phosphofructo-2-kinase (iPFK2, encoded by PFKFB3) protects against diet-induced adipose tissue inflammatory response and systemic insulin resistance independently of adiposity. Using aP2-PFKFB3 transgenic (Tg) mice, we explored the ability of targeted adipocyte PFKFB3/iPFK2 overexpression to modulate diet-induced inflammatory responses and insulin resistance arising from fat deposition in both adipose and liver tissues. Compared with wild-type littermates (controls) on a high fat diet (HFD), Tg mice exhibited increased adiposity, decreased adipose inflammatory response, and improved insulin sensitivity. In a parallel pattern, HFD-fed Tg mice showed increased hepatic steatosis, decreased liver inflammatory response, and improved liver insulin sensitivity compared with controls. In both adipose and liver tissues, increased fat deposition was associated with lipid profile alterations characterized by an increase in palmitoleate. Additionally, plasma lipid profiles also displayed an increase in palmitoleate in HFD-Tg mice compared with controls. In cultured 3T3-L1 adipocytes, overexpression of PFKFB3/iPFK2 recapitulated metabolic and inflammatory changes observed in adipose tissue of Tg mice. Upon treatment with conditioned medium from iPFK2-overexpressing adipocytes, mouse primary hepatocytes displayed metabolic and inflammatory responses that were similar to those observed in livers of Tg mice. Together, these data demonstrate a unique role for PFKFB3/iPFK2 in adipocytes with regard to diet-induced inflammatory responses in both adipose and liver tissues.


Assuntos
Adipócitos/enzimologia , Tecido Adiposo/enzimologia , Gorduras na Dieta/efeitos adversos , Fígado Gorduroso/enzimologia , Hepatócitos/enzimologia , Resistência à Insulina , Fígado/enzimologia , Células 3T3-L1 , Adipócitos/patologia , Tecido Adiposo/patologia , Animais , Gorduras na Dieta/farmacologia , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Hepatócitos/patologia , Inflamação/induzido quimicamente , Inflamação/enzimologia , Inflamação/genética , Inflamação/patologia , Fígado/patologia , Camundongos , Camundongos Transgênicos , Fosfofrutoquinase-2
16.
Biochem J ; 443(1): 27-37, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22250985

RESUMO

n-3 PUFA (polyunsaturated fatty acids), i.e. DHA (docosahexaenoic acid), found in fish oil, exhibit anti-inflammatory properties; however, the molecular mechanisms remain unclear. Since PtdIns(4,5)P2 resides in raft domains and DHA can alter the size of rafts, we hypothesized that PtdIns(4,5)P2 and downstream actin remodelling are perturbed by the incorporation of n-3 PUFA into membranes, resulting in suppressed T-cell activation. CD4+ T-cells isolated from Fat-1 transgenic mice (membranes enriched in n-3 PUFA) exhibited a 50% decrease in PtdIns(4,5)P2. Upon activation by plate-bound anti-CD3/anti-CD28 or PMA/ionomycin, Fat-1 CD4+ T-cells failed to metabolize PtdIns(4,5)P2. Furthermore, actin remodelling failed to initiate in Fat-1 CD4+ T-cells upon stimulation; however, the defect was reversed by incubation with exogenous PtdIns(4,5)P2. When Fat-1 CD4+ T-cells were stimulated with anti-CD3/anti-CD28-coated beads, WASP (Wiskott-Aldrich syndrome protein) failed to translocate to the immunological synapse. The suppressive phenotype, consisting of defects in PtdIns(4,5)P2 metabolism and actin remodelling, were recapitulated in CD4+ T-cells isolated from mice fed on a 4% DHA triacylglycerol-enriched diet. Collectively, these data demonstrate that n-3 PUFA, such as DHA, alter PtdIns(4,5)P2 in CD4+ T-cells, thereby suppressing the recruitment of WASP to the immunological synapse, and impairing actin remodelling in CD4+ T-cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Anti-Inflamatórios/farmacologia , Linfócitos T CD4-Positivos/imunologia , Ácidos Graxos Ômega-3/farmacologia , Ativação Linfocitária , Fosfatidilinositol 4,5-Difosfato/fisiologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Caderinas/genética , Células Cultivadas , Sinapses Imunológicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/farmacologia , Transporte Proteico , Baço/citologia , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
17.
J Lipid Res ; 53(7): 1287-95, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22534642

RESUMO

Arachidonic acid (20:4(Δ5,8,11,14), AA)-derived eicosanoids regulate inflammation and promote cancer development. Previous studies have targeted prostaglandin enzymes in an attempt to modulate AA metabolism. However, due to safety concerns surrounding the use of pharmaceutical agents designed to target Ptgs2 (cyclooxygenase 2) and its downstream targets, it is important to identify new targets upstream of Ptgs2. Therefore, we determined the utility of antagonizing tissue AA levels as a novel approach to suppressing AA-derived eicosanoids. Systemic disruption of the Fads1 (Δ5 desaturase) gene reciprocally altered the levels of dihomo-γ-linolenic acid (20:3(Δ8,11,14), DGLA) and AA in mouse tissues, resulting in a profound increase in 1-series-derived and a concurrent decrease in 2-series-derived prostaglandins. The lack of AA-derived eicosanoids, e.g., PGE2 was associated with perturbed intestinal crypt proliferation, immune cell homeostasis, and a heightened sensitivity to acute inflammatory challenge. In addition, null mice failed to thrive, dying off by 12 weeks of age. Dietary supplementation with AA extended the longevity of null mice to levels comparable to wild-type mice. We propose that this new mouse model will expand our understanding of how AA and its metabolites mediate inflammation and promote malignant transformation, with the eventual goal of identifying new drug targets upstream of Ptgs2.


Assuntos
Modelos Animais de Doenças , Eicosanoides/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Animais , Ácido Araquidônico/administração & dosagem , Dessaturase de Ácido Graxo Delta-5 , Suplementos Nutricionais , Eicosanoides/deficiência , Ácidos Graxos Dessaturases/deficiência , Ácidos Graxos Dessaturases/genética , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
18.
Int J Cancer ; 128(1): 63-71, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20232381

RESUMO

The biological properties of polyunsaturated fatty acid (PUFA) classes have been the source of much contention. For example, n-3 PUFA are chemoprotective, whereas n-6 PUFA may promote tumor development. Since dietary components can have combinatorial effects, we further examined the apoptotic properties of n-3 or n-6 fatty acids when combined with different fiber sources. Mice were fed diets supplemented with either fish oil (FO; enriched in n-3 PUFA) or corn oil (CO; enriched in n-6 PUFA) and nonfermentable (cellulose) or fermentable (pectin) fiber sources. In complementary experiments, immortalized young adult mouse colonic (YAMC) cells were treated with docosahexaenoic acid (DHA; 22:6n-3) or linoleic acid (LA; 18:2n-6) with or without butyrate. Mice fed a FO and pectin diet had significantly (p < 0.05) increased levels of apoptosis in colonocytes compared to all other diets. Similarly, apoptosis was highly induced in DHA and butyrate cotreated YAMC cells. In contrast, in both YAMC and mouse models, LA/CO with butyrate/pectin treatment reduced apoptosis and enhanced expression of bcl-2. The LA and butyrate induced antiapoptotic phenotype was reversed by knocking down bcl-2 using targeted siRNA. In comparison, overexpression of bcl-2 blocked the proapoptotic effect of DHA and butyrate. These data provide new mechanistic insights into the regulation of apoptosis by dietary PUFA and fiber.


Assuntos
Butiratos/farmacologia , Colo/efeitos dos fármacos , Ácido Linoleico/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Butiratos/administração & dosagem , Células Cultivadas , Celulose/administração & dosagem , Celulose/farmacologia , Colo/citologia , Colo/metabolismo , Óleo de Milho/administração & dosagem , Óleo de Milho/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Sinergismo Farmacológico , Óleos de Peixe/administração & dosagem , Óleos de Peixe/farmacologia , Expressão Gênica/efeitos dos fármacos , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Ácido Linoleico/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Pectinas/administração & dosagem , Pectinas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Cancer ; 117(23): 5294-303, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21563175

RESUMO

BACKGROUND: The combination of fish oil-derived docosahexaenoic acid (DHA) (22:6; omega 3 [n-3]) and butyrate (4:0), a fiber fermentation product, synergized to enhance colonocyte apoptosis by inducing a p53-independent, oxidation sensitive, mitochondrial Ca(2+) -dependent (intrinsic) pathway. METHODS: In this study, the authors probed the specificity of n-6 and n-3 polyunsaturated fatty acid induction of Ca(2+) -dependent proapoptotic events in immortalized young adult mouse colonocytes and determined whether combinations of polyunsaturated fatty acid and butyrate could trigger endoplasmic reticulum (ER) stress conditions, thereby promoting mitochondrial Ca(2+) overload. Cultures were treated with 0 µM to 50 µM of DHA (22:6; n-3), EPA (20:5; n-3), arachidoinic acid (AA) (20:4; n-6), linoleic acid (18:2; n-6), or oleic acid (OA) (18:1; n-9) for a total of 72 hours with or without RU-360 (to inhibit the mitochondrial Ca(2+) uniporter) for 30 minutes before cotreatment with butyrate (0 mM or 5 mM). RESULTS: Combined DHA and butyrate maximally induced apoptosis and mitochondrial-to-cytosolic Ca(2+) levels. By comparison, EPA, a precursor to DHA, was minimally effective. Similarly, AA and OA in combination with butyrate had no effect on mitochondrial Ca(2+) or apoptosis compared with butyrate alone. DHA with or without butyrate cotreatment minimally altered the ER stress-regulated genes DNA damage-inducible transcript 3, the CCAAT enhancer binding protein (C/EBP) homologous protein (CHOP), and eukaryotic initiation factor 2α. CONCLUSIONS: The current data indicated that butyrate and DHA, but not EPA, worked in a coordinated fashion to trigger an ER-independent, Ca(2+) -dependent, intrinsic mitochondrial-mediated apoptotic pathway in colonocytes.


Assuntos
Apoptose/efeitos dos fármacos , Butiratos/farmacologia , Cálcio/metabolismo , Colo/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Insaturados/farmacologia , Mitocôndrias/metabolismo , Animais , Células Cultivadas , Colo/citologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Compostos de Rutênio/farmacologia
20.
Br J Nutr ; 106(4): 519-29, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21401974

RESUMO

Both fish oil (FO) and curcumin have potential as anti-tumour and anti-inflammatory agents. To further explore their combined effects on dextran sodium sulphate (DSS)-induced colitis, C57BL/6 mice were randomised to four diets (2 × 2 design) differing in fatty acid content with or without curcumin supplementation (FO, FO+2 % curcumin, maize oil (control, MO) or MO+2 % curcumin). Mice were exposed to one or two cycles of DSS in the drinking-water to induce either acute or chronic intestinal inflammation, respectively. FO-fed mice exposed to the single-cycle DSS treatment exhibited the highest mortality (40 %, seventeen of forty-three) compared with MO with the lowest mortality (3 %, one of twenty-nine) (P = 0·0008). Addition of curcumin to MO increased (P = 0·003) mortality to 37 % compared with the control. Consistent with animal survival data, following the one- or two-cycle DSS treatment, both dietary FO and curcumin promoted mucosal injury/ulceration compared with MO. In contrast, compared with other diets, combined FO and curcumin feeding enhanced the resolution of chronic inflammation and suppressed (P < 0·05) a key inflammatory mediator, NF-κB, in the colon mucosa. Mucosal microarray analysis revealed that dietary FO, curcumin and FO plus curcumin combination differentially modulated the expression of genes induced by DSS treatment. These results suggest that dietary lipids and curcumin interact to regulate mucosal homeostasis and the resolution of chronic inflammation in the colon.


Assuntos
Colite/dietoterapia , Colo/metabolismo , Curcumina/uso terapêutico , Citocinas/metabolismo , Suplementos Nutricionais , Óleos de Peixe/uso terapêutico , Regulação da Expressão Gênica , Doença Aguda , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Anti-Inflamatórios não Esteroides/uso terapêutico , Doença Crônica , Colite/imunologia , Colite/metabolismo , Colite/patologia , Colo/efeitos dos fármacos , Colo/imunologia , Colo/patologia , Curcumina/efeitos adversos , Citocinas/genética , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Óleos de Peixe/efeitos adversos , Perfilação da Expressão Gênica , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Irritantes/administração & dosagem , Irritantes/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Distribuição Aleatória , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA