Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Am Coll Nutr ; 30(1): 63-72, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21697540

RESUMO

OBJECTIVES: The effects of a new resistant dextrin ingested at breakfast on day-long metabolic parameters and ghrelin profile at subsequent lunch were investigated. METHODS: In this randomized, single-blinded, crossover study, 12 healthy men ingested a standardized breakfast with 50 g of NUTRIOSE 10, a resistant dextrin (RD), or of maltodextrin (Malto) and a standardized lunch 5 hours later. Both products (RD and Malto) were derived from corn naturally rich in (13)C to follow their metabolic fate (by using stable isotope analysis). Oxidation and fermentation patterns were assessed by simultaneous (13)CO(2)/H(2) breath testing. The appearance of exogenous (13)C-glucose in plasma, glycemia, insulinemia, nonesterified fatty acids (NEFAs), and ghrelin concentrations were measured for 10 hours following breakfast ingestion. RESULTS: With RD, H(2) excretion (fermentation) was significantly enhanced compared with Malto, whereas the appearance of (13)CO(2) (oxidation) was significantly prolonged (p < 0.0001). Following breakfast, ghrelin secretion was significantly less inhibited and NEFA concentration was higher with RD (p < 0.05), but unexpectedly, both remained lower after lunch and up to T600 minutes. According to the reduced bioavailability of RD compared with Malto, the appearance of (13)C-glucose in plasma (p < 0.0001) and glycemic and insulinemic responses to breakfast (p < 0.05) were significantly reduced. CONCLUSIONS: Ingestion of this new resistant dextrin at breakfast decreased ghrelin concentrations in response to the subsequent lunch, even if the caloric load ingested at breakfast was lower. This effect may be linked to the prolonged fermentation/oxidation pattern seen in the late postprandial phase (up to 10 hours after ingestion at breakfast), and thus prolonged energy release with the resistant dextrin.


Assuntos
Glicemia/metabolismo , Dextrinas/farmacologia , Carboidratos da Dieta/metabolismo , Grelina/metabolismo , Insulina/metabolismo , Adulto , Testes Respiratórios , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Estudos Cross-Over , Dextrinas/metabolismo , Ácidos Graxos não Esterificados/sangue , Fermentação , Humanos , Hidrogênio/metabolismo , Secreção de Insulina , Masculino , Oxirredução , Polissacarídeos/farmacologia , Método Simples-Cego , Coloração e Rotulagem , Zea mays/química
2.
Rapid Commun Mass Spectrom ; 25(19): 2749-59, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21913252

RESUMO

During nutritional interventions, the ingestion of d(31)-palmitic acid and H(2)(18)O allows the assessment of dietary fatty acid oxidation from cumulative (2)H recovery in urine and the estimation of the total body water pool (TBW) from (18)O dilution. Continuous-flow isotope ratio mass spectrometry (CF-IRMS) coupled to either equilibration or high-temperature conversion (HTC) techniques permits (2)H- and (18)O-enrichment measurements in biological fluids. Thus it was of great interest to compare these methods applied to the determination of dietary fatty acid oxidation. The linearity, accuracy and correlation between CF-equilibration and CF-HTC were first checked using (2)H- and (18)O-enriched water and urine samples. Urine samples from 14 subjects were then measured with both methods. The (2)H and (18)O raw data were normalised against calibration lines. The final aim was to study the impact of the normalised raw results on physiological data (i.e. TBW and d(31)-palmitate recovery). No significant difference was observed between the (18)O- and (2)H-enrichment measurements depending on the analytical method used. The TBW volumes calculated from the (18)O enrichments measured either with CF-equilibration or CF-HTC were not significantly different: respectively, 45.1 ± 1.0 L or 45.7 ± 1.0 L (mean ± sem, p = 0.09). The palmitic acid oxidation results obtained from the (2)H-enrichment measurements and the TBW from CF-equilibration vs. CF-HTC were not significantly different (p ≥ 0.26): with δ(2)H values of, respectively, 16.2 ± 1.6% vs. 16.2 ± 1.1% at 8 h, 18.7 ± 2.0% vs. 17.6 ± 1.3% at 12 h and 21.7 ± 1.9% vs. 21.5 ± 1.3% at 3 days post-dose (mean ± sem). Thus, even if CF-HTC was preferred because it was more practical to carry out, both methods allow the study of dietary lipid oxidation in man and generate similar results.


Assuntos
Gorduras na Dieta/administração & dosagem , Espectrometria de Massas/métodos , Ácido Palmítico/administração & dosagem , Ácido Palmítico/urina , Água Corporal/química , Deutério/urina , Gorduras na Dieta/metabolismo , Gorduras na Dieta/urina , Temperatura Alta , Humanos , Modelos Lineares , Oxirredução , Isótopos de Oxigênio/urina , Ácido Palmítico/metabolismo
3.
Rapid Commun Mass Spectrom ; 25(19): 2697-703, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21913246

RESUMO

Lipid metabolism studies focus mainly on oxidation and storage but rarely on faecal elimination, which is needed to assess total lipid distribution during the postprandial period. The purpose of the present work was to set up and validate the analysis of lipid tracers in stools, with an aim of later using this methodology in studies of postprandial lipid tracer metabolism. Eight subjects received a mixture of [1,1,1-(13)C3]tripalmitin and [1,1,1-(13)C3]triolein with a fat-rich meal. The nature and amounts of (13)C lipids excreted in stools during 3 days post-dose were determined by gas chromatography/mass spectrometry (GC/MS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analysis of fatty acid methyl esters (FAMEs) from total fatty acid (TFA), free fatty acid (FFA) and triacylglycerol (TAG) fractions. The results were expressed as the Cumulative Tracer Recovery of the administered dose (CTR%). The quantities and labelling of FAMEs were higher in FFA than in TAG, indicating that label loss was not due to a lack of digestive lipase activity. The labelling was higher for C16:0 than for C18:1. The CTRs were 7.03 ± 0.77% and 6.87 ± 0.91%, respectively, in TFA and FFA for [1-(13)C] C16:0, while they were 0.60 ± 0.15% and 0.51 ± 0.11% for [1-(13)C] C18:1 (mean ± sem). By studying the kinetics of lipid excretion from subjects, two groups emerged. The first one showed rapid excretion in stool #1, whereas the second showed slower excretion in stools #2-#3. A significant difference was found in the FFA in stool #1 for C16:0 (p < 0.01) and C18:1 (p < 0.05). Individual excretion kinetics showed marked variability. Nevertheless, the CTR over the 3-day study period was substantial and homogenous for all subjects. These results confirm that the assessment of faecal elimination is of great importance when establishing total lipid distribution during the postprandial period and validate the analysis of cumulative tracer loss during 72 h post-tracer ingestion.


Assuntos
Digestão/fisiologia , Fezes/química , Triglicerídeos/farmacocinética , Trioleína/farmacocinética , Adulto , Isótopos de Carbono/análise , Estudos Cross-Over , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Marcação por Isótopo , Masculino , Triglicerídeos/administração & dosagem , Triglicerídeos/química , Trioleína/administração & dosagem , Trioleína/química , Adulto Jovem
4.
Rapid Commun Mass Spectrom ; 23(23): 3855-67, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19904737

RESUMO

A reference method to accurately define kinetics in response to the ingestion of glucose in terms of total, exogenous and endogenous glucose is to use stable-isotope-labelled compounds such as 2H and 13C glucose followed by gas chromatography/mass spectrometry (GC/MS) and gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS) analysis. The use of the usual pentaacetyl (5Ac) derivative generates difficulties in obtaining accurate and reproducible results due to the two chromatographic peaks for the syn and anti isomers, and to the isotopic effect occurring during acetylation. Therefore, the pentaacetylaldononitrile derivative (Aldo) was validated for both isotopes, and compared with the 5Ac derivative. A correction factor including carbon atom dilution (stoichiometric equation) and the kinetic isotopic effect (KIE) was determined. Analytical validation results for the 2H GC/MS and 13C GC/C/IRMS measurements produced acceptable results with both derivatives. When 2H enrichments of plasma samples were < or = 1 mol % excess (MPE), the repeatability (RSD(Aldo Intra assay and Intra day) <0.94%, RSD(5Ac Intra assay and Intra day) <3.29%), accuracy (Aldo <3.4%, 5Ac <29.0%), and stability of the derivatized samples were significantly better when the Aldo derivatives of the plasma samples were used (p < 0.05). When the glucose kinetics were assessed in nine human subjects, after glucose ingestion, the plasma glucose 2H enrichments were identical with both derivatives, whereas the 13C enrichments needed a correction factor to fit together. Due to KIE variation, this correction factor was not constant and had to be calculated for each batch of analyses, to obtain satisfactory results. Mean quantities of exogenous glucose exhibit marked difference (20.9 +/- 1.3g (5Ac) vs. 26.7 +/- 2.5g (Aldo)) when calculated with stoichiometric correction, but fit perfectly when calculated after application of the correction factor (22.1 +/- 1.3g (5Ac) vs. 22.9 +/- 1.9g (Aldo)). Finally, the pentaacetylaldononitrile derivative, used here in GC/C/IRMS for the first time, enables measurement of 2H and 13C enrichments in plasma glucose with a single sample preparation.


Assuntos
Acetatos/química , Glicemia/análise , Isótopos de Carbono/química , Deutério/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nitrilas/química , Análise de Variância , Glicemia/metabolismo , Isótopos de Carbono/administração & dosagem , Deutério/administração & dosagem , Hexoses/análise , Hexoses/metabolismo , Humanos , Modelos Lineares , Reprodutibilidade dos Testes , Estatísticas não Paramétricas
5.
Am J Clin Nutr ; 103(2): 348-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26702120

RESUMO

BACKGROUND: Exercise prevents the adverse effects of a high-fructose diet through mechanisms that remain unknown. OBJECTIVE: We assessed the hypothesis that exercise prevents fructose-induced increases in very-low-density lipoprotein (VLDL) triglycerides by decreasing the fructose conversion into glucose and VLDL-triglyceride and fructose carbon storage into hepatic glycogen and lipids. DESIGN: Eight healthy men were studied on 3 occasions after 4 d consuming a weight-maintenance, high-fructose diet. On the fifth day, the men ingested an oral (13)C-labeled fructose load (0.75 g/kg), and their total fructose oxidation ((13)CO2 production), fructose storage (fructose ingestion minus (13)C-fructose oxidation), fructose conversion into blood (13)C glucose (gluconeogenesis from fructose), blood VLDL-(13)C palmitate (a marker of hepatic de novo lipogenesis), and lactate concentrations were monitored over 7 postprandial h. On one occasion, participants remained lying down throughout the experiment [fructose treatment alone with no exercise condition (NoEx)], and on the other 2 occasions, they performed a 60-min exercise either 75 min before fructose ingestion [exercise, then fructose condition (ExFru)] or 90 min after fructose ingestion [fructose, then exercise condition (FruEx)]. RESULTS: Fructose oxidation was significantly (P < 0.001) higher in the FruEx (80% ± 3% of ingested fructose) than in the ExFru (46% ± 1%) and NoEx (49% ± 1%). Consequently, fructose storage was lower in the FruEx than in the other 2 conditions (P < 0.001). Fructose conversion into blood (13)C glucose, VLDL-(13)C palmitate, and postprandial plasma lactate concentrations was not significantly different between conditions. CONCLUSIONS: Compared with sedentary conditions, exercise performed immediately after fructose ingestion increases fructose oxidation and decreases fructose storage. In contrast, exercise performed before fructose ingestion does not significantly alter fructose oxidation and storage. In both conditions, exercise did not abolish fructose conversion into glucose or its incorporation into VLDL triglycerides. This trial was registered at clinicaltrials.gov as NCT01866215.


Assuntos
Metabolismo dos Carboidratos , Carboidratos da Dieta/metabolismo , Frutose/metabolismo , Atividade Motora , Adulto , Ciclismo , Biomarcadores/análise , Biomarcadores/sangue , Glicemia/análise , Glicemia/metabolismo , Testes Respiratórios , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Estudos Cross-Over , Carboidratos da Dieta/administração & dosagem , Carboidratos da Dieta/efeitos adversos , Frutose/administração & dosagem , Frutose/efeitos adversos , Humanos , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Lipoproteínas VLDL/sangue , Lipoproteínas VLDL/química , Lipoproteínas VLDL/metabolismo , Masculino , Oxirredução , Ácido Palmítico/sangue , Ácido Palmítico/metabolismo , Período Pós-Prandial , Comportamento Sedentário , Adulto Jovem
6.
Obesity (Silver Spring) ; 24(3): 589-96, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26916239

RESUMO

OBJECTIVE: Fructose is partly metabolized in small bowel enterocytes, where it can be converted into glucose or fatty acids. It was therefore hypothesized that Roux-en-Y gastric bypass (RYGB) may significantly alter fructose metabolism. METHODS: We performed a randomized clinical study in eight patients 12-17 months after RYGB and eight control (Ctrl) subjects. Each participant was studied after ingestion of a protein and lipid meal (PL) and after ingestion of a protein+lipid+fructose+glucose meal labeled with (13) C-fructose (PLFG). Postprandial blood glucose, fructose, lactate, apolipoprotein B48 (apoB48), and triglyceride (TG) concentrations, (13) C-palmitate concentrations in chylomicron-TG and VLDL-TG, fructose oxidation ((13) CO2 production), and gluconeogenesis from fructose (GNGf) were measured over 6 hours. RESULTS: After ingestion of PLFG, postprandial plasma fructose, glucose, insulin, and lactate concentrations increased earlier and reached higher peak values in RYGB than in Ctrl. GNGf was 33% lower in RYGB than Ctrl (P = 0.041), while fructose oxidation was unchanged. Postprandial incremental areas under the curves for total TG and chylomicrons-TG were 72% and 91% lower in RYGB than Ctrl (P = 0.064 and P = 0.024, respectively). ApoB48 and (13) C-palmitate concentrations were not significantly different. CONCLUSIONS: Postprandial fructose metabolism was not grossly altered, but postprandial lipid concentrations were markedly decreased in subjects having had RYGB surgery.


Assuntos
Anastomose em-Y de Roux , Metabolismo dos Carboidratos/efeitos dos fármacos , Frutose/administração & dosagem , Período Pós-Prandial/efeitos dos fármacos , Adulto , Idoso , Apolipoproteína B-48/sangue , Glicemia/metabolismo , Feminino , Frutose/efeitos adversos , Humanos , Insulina/sangue , Lipoproteínas VLDL/sangue , Masculino , Pessoa de Meia-Idade , Triglicerídeos/sangue
7.
Mol Nutr Food Res ; 60(3): 609-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26592505

RESUMO

SCOPE: Enhanced adiposity and metabolic inflammation are major features of obesity that could be impacted by dietary emulsifiers. We investigated in high-fat fed mice the effects of using a new polar lipid (PL) emulsifier from milk (MPL) instead of soybean lecithin (soybean PL [SPL]) on adipose tissue and intestinal mucosa function. METHODS AND RESULTS: Four groups of C57BL6 mice received for 8 wks a low-fat (LF) diet or a high-fat diet devoid of PLs or an high-fat diet including MPL (high-fat-MPL) or SPL (high-fat-SPL). Compared with high-fat diet, high-fat-SPL diet increased white adipose tissue (WAT) mass (p < 0.05), with larger adipocytes (p < 0.05) and increased expression of tumor necrosis factor alpha, monochemoattractant protein-1, LPS-binding protein, and leptin (p < 0.05). This was not observed with high-fat-MPL diet despite similar dietary intakes and increased expression of fatty acid transport protein 4 and microsomal TG transfer protein, involved in lipid absorption, in upper intestine (p < 0.05). High-fat-MPL mice had a lower expression in WAT of cluster of differentiation 68, marker of macrophage infiltration, versus high-fat and high-fat-SPL mice (p < 0.05), and more goblet cells in the colon (p < 0.05). CONCLUSIONS: Unlike SPL, MPL in the high-fat diet did not induce WAT hypertrophy and inflammation but increased colonic goblet cells. This supports further clinical exploration of different sources of dietary emulsifiers in the frame of obesity outbreak.


Assuntos
Colo/efeitos dos fármacos , Emulsificantes/farmacologia , Glycine max/química , Células Caliciformes/efeitos dos fármacos , Leite/química , Tecido Adiposo Branco/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Animais , Células CACO-2/efeitos dos fármacos , Colo/citologia , Dieta com Restrição de Gorduras , Dieta Hiperlipídica/efeitos adversos , Humanos , Lecitinas/química , Lecitinas/farmacologia , Lipídeos/análise , Lipídeos/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Paniculite/induzido quimicamente , Paniculite/metabolismo
8.
Am J Clin Nutr ; 98(3): 648-58, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23902784

RESUMO

BACKGROUND: Previous studies suggested that physical activity energy expenditure (AEE) is a major determinant of dietary fat oxidation, which is a central component of fat metabolism and body weight regulation. OBJECTIVE: We tested this hypothesis by investigating the effect of contrasted physical activity levels on dietary saturated and monounsaturated fatty acid oxidation in relation to insulin sensitivity while controlling energy balance. DESIGN: Sedentary lean men (n = 10) trained for 2 mo according to the current guidelines on physical activity, and active lean men (n = 9) detrained for 1 mo by reducing structured and spontaneous activity. Dietary [d31]palmitate and [1-¹³C]oleate oxidation and incorporation into triglyceride-rich lipoproteins and nonesterified fatty acid, AEE, and muscle markers were studied before and after interventions. RESULTS: Training increased palmitate and oleate oxidation by 27% and 20%, respectively, whereas detraining reduced them by 31% and 13%, respectively (P < 0.05 for all). Changes in AEE were positively correlated with changes in oleate (R² = 0.62, P < 0.001) and palmitate (R² = 0.66, P < 0.0001) oxidation. The d31-palmitate appearance in nonesterified fatty acid and very-low-density lipoprotein pools was negatively associated with changes in fatty acid translocase CD36 (R² = 0.30), fatty acid transport protein 1 (R² = 0.24), and AcylCoA synthetase long chain family member 1 (ACSL1) (R² = 0.25) expressions and with changes in fatty acid binding protein expression (R² = 0.33). The d31-palmitate oxidation correlated with changes in ACSL1 (R² = 0.39) and carnitine palmitoyltransferase 1 (R² = 0.30) expressions (P < 0.05 for all). Similar relations were observed with oleate. Insulin response was associated with AEE (R² = 0.34, P = 0.02) and oleate (R² = 0.52, P < 0.01) and palmitate (R² = 0.62, P < 001) oxidation. CONCLUSION: Training and detraining modified the oxidation of the 2 most common dietary fats, likely through a better trafficking and uptake by the muscle, which was negatively associated with whole-body insulin sensitivity.


Assuntos
Gorduras na Dieta/metabolismo , Metabolismo Energético , Exercício Físico/fisiologia , Peroxidação de Lipídeos , Ácido Oleico/metabolismo , Palmitatos/metabolismo , Comportamento Sedentário , Acetato-CoA Ligase/metabolismo , Adulto , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Lipoproteínas VLDL/metabolismo , Masculino , Oxirredução , Adulto Jovem
9.
J Clin Endocrinol Metab ; 98(2): 802-10, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23284008

RESUMO

CONTEXT: The hypothesis of a limited expansion of sc adipose tissue during weight gain provides an attractive explanation for the reorientation of excess lipids toward ectopic sites, contributing to visceral adipose depots and metabolic syndrome. OBJECTIVE: Our objective was to define whether the characteristics of sc adipose tissue influence the partition of lipids toward abdominal fat depots during weight gain in healthy men. RESEARCH DESIGN AND METHODS: Forty-one healthy nonobese volunteers performed a 56-day overfeeding protocol (+760 kcal/d). Insulin sensitivity was estimated by euglycemic hyperinsulinemic clamp. Changes in abdominal visceral and sc adipose tissue depots were measured by magnetic resonance imaging. The fate of ingested lipids before and after overfeeding was investigated using a [d31]palmitate test meal, and gene expression was measured by real-time PCR in sc fat biopsies. RESULTS: Overfeeding led to a 2.5-kg body weight increase with large interindividual variations in abdominal sc and visceral adipose tissues. There was no relationship between the relative expansions of these 2 depots, but the increase in visceral depot was positively associated with the magnitude of the postprandial exogenous fatty acid release in the circulation during the test meal. The regulation of lipid storage-related genes (DGAT2, SREBP1c, and CIDEA) was defective in the sc fat of the subjects exhibiting the largest accumulation in visceral depot. CONCLUSIONS: Characteristics of sc adipose tissue appear therefore to contribute to the development of visceral fat depot, supporting the adipose tissue expandability theory and extending it to early stages of weight gain in nonobese subjects.


Assuntos
Gordura Intra-Abdominal/metabolismo , Metabolismo dos Lipídeos/fisiologia , Hipernutrição/metabolismo , Gordura Subcutânea/metabolismo , Adulto , Expressão Gênica , Técnica Clamp de Glucose , Humanos , Resistência à Insulina/fisiologia , Masculino , Obesidade/metabolismo
10.
Am J Clin Nutr ; 97(1): 23-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23235199

RESUMO

BACKGROUND: Prolonged postprandial hypertriglyceridemia is a potential risk factor for cardiovascular diseases. In the context of obesity, this is associated with a chronic imbalance of lipid partitioning oriented toward storage and not toward ß-oxidation. OBJECTIVE: We tested the hypothesis that the physical structure of fat in a meal can modify the absorption, chylomicron transport, and further metabolic handling of dietary fatty acids. DESIGN: Nine normal-weight and 9 obese subjects were fed 40 g milk fat (+[(13)C]triacylglycerols), either emulsified or nonemulsified, in breakfasts of identical composition. We measured the postprandial triacylglycerol content and size of the chylomicron-rich fraction, plasma kinetics of [(13)C]fatty acids, exogenous lipid oxidation with breath-test/indirect calorimetry, and fecal excretion. RESULTS: The emulsified fat resulted in earlier (>1 h) and sharper chylomicron and [(13)C]fatty acid peaks in plasma than in spread fat in both groups (P < 0.0001). After 2 h, the emulsified fat resulted in greater apolipoprotein B-48 concentrations (9.7 ± 0.7 compared with 7.1 ± 0.9 mg/L; P < 0.05) in the normal-weight subjects than did the spread fat. In the obese subjects, emulsified fat resulted in a 3-fold greater chylomicron size (218 ± 24 nm) compared with the spread fat (P < 0.05). The emulsified fat induced higher dietary fatty acid spillover in plasma and a sharper (13)CO(2) appearance, which provoked increased exogenous lipid oxidation in each group: from 45% to 52% in normal-weight subjects (P < 0.05) and from 40% to 57% in obese subjects (P < 0.01). CONCLUSION: This study supports a new concept of "slow vs fast fat," whereby intestinal absorption can be modulated by structuring dietary fat to modulate postprandial lipemia and lipid ß-oxidation in humans with different BMIs. This trial was registered at clinicaltrials.gov as NCT01249378.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos/administração & dosagem , Absorção Intestinal , Metabolismo dos Lipídeos/fisiologia , Período Pós-Prandial/fisiologia , Adulto , Apolipoproteína B-48/sangue , Glicemia , Índice de Massa Corporal , Desjejum , Testes Respiratórios , Calorimetria Indireta , Dióxido de Carbono , Quilomícrons/análise , Quilomícrons/metabolismo , Estudos Cross-Over , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos Ômega-3/sangue , Fezes/química , Humanos , Fome/fisiologia , Hiperlipidemias/metabolismo , Insulina/sangue , Cinética , Masculino , Refeições , Obesidade/fisiopatologia , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA