Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Med ; 29(1): 41, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997855

RESUMO

BACKGROUND: Differential expression analysis is usually adjusted for variation. However, most studies that examined the expression variability (EV) have used computations affected by low expression levels and did not examine healthy tissue. This study aims to calculate and characterize an unbiased EV in primary fibroblasts of childhood cancer survivors and cancer-free controls (N0) in response to ionizing radiation. METHODS: Human skin fibroblasts of 52 donors with a first primary neoplasm in childhood (N1), 52 donors with at least one second primary neoplasm (N2 +), as well as 52 N0 were obtained from the KiKme case-control study and exposed to a high (2 Gray) and a low dose (0.05 Gray) of X-rays and sham- irradiation (0 Gray). Genes were then classified as hypo-, non-, or hyper-variable per donor group and radiation treatment, and then examined for over-represented functional signatures. RESULTS: We found 22 genes with considerable EV differences between donor groups, of which 11 genes were associated with response to ionizing radiation, stress, and DNA repair. The largest number of genes exclusive to one donor group and variability classification combination were all detected in N0: hypo-variable genes after 0 Gray (n = 49), 0.05 Gray (n = 41), and 2 Gray (n = 38), as well as hyper-variable genes after any dose (n = 43). While after 2 Gray positive regulation of cell cycle was hypo-variable in N0, (regulation of) fibroblast proliferation was over-represented in hyper-variable genes of N1 and N2+. In N2+, 30 genes were uniquely classified as hyper-variable after the low dose and were associated with the ERK1/ERK2 cascade. For N1, no exclusive gene sets with functions related to the radiation response were detected in our data. CONCLUSION: N2+ showed high degrees of variability in pathways for the cell fate decision after genotoxic insults that may lead to the transfer and multiplication of DNA-damage via proliferation, where apoptosis and removal of the damaged genome would have been appropriate. Such a deficiency could potentially lead to a higher vulnerability towards side effects of exposure to high doses of ionizing radiation, but following low-dose applications employed in diagnostics, as well.


Assuntos
Sobreviventes de Câncer , Neoplasias , Humanos , Criança , Perfilação da Expressão Gênica , Neoplasias/genética , Neoplasias/radioterapia , Estudos de Casos e Controles , Radiação Ionizante , Expressão Gênica , Relação Dose-Resposta à Radiação
2.
Mol Med ; 28(1): 105, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068491

RESUMO

BACKGROUND: The etiology and most risk factors for a sporadic first primary neoplasm in childhood or subsequent second primary neoplasms are still unknown. One established causal factor for therapy-associated second primary neoplasms is the exposure to ionizing radiation during radiation therapy as a mainstay of cancer treatment. Second primary neoplasms occur in 8% of all cancer survivors within 30 years after the first diagnosis in Germany, but the underlying factors for intrinsic susceptibilities have not yet been clarified. Thus, the purpose of this nested case-control study was the investigation and comparison of gene expression and affected pathways in primary fibroblasts of childhood cancer survivors with a first primary neoplasm only or with at least one subsequent second primary neoplasm, and controls without neoplasms after exposure to a low and a high dose of ionizing radiation. METHODS: Primary fibroblasts were obtained from skin biopsies from 52 adult donors with a first primary neoplasm in childhood (N1), 52 with at least one additional primary neoplasm (N2+), as well as 52 without cancer (N0) from the KiKme study. Cultured fibroblasts were exposed to a high [2 Gray (Gy)] and a low dose (0.05 Gy) of X-rays. Messenger ribonucleic acid was extracted 4 h after exposure and Illumina-sequenced. Differentially expressed genes (DEGs) were computed using limma for R, selected at a false discovery rate level of 0.05, and further analyzed for pathway enrichment (right-tailed Fisher's Exact Test) and (in-) activation (z ≥|2|) using Ingenuity Pathway Analysis. RESULTS: After 0.05 Gy, least DEGs were found in N0 (n = 236), compared to N1 (n = 653) and N2+ (n = 694). The top DEGs with regard to the adjusted p-value were upregulated in fibroblasts across all donor groups (SESN1, MDM2, CDKN1A, TIGAR, BTG2, BLOC1S2, PPM1D, PHLDB3, FBXO22, AEN, TRIAP1, and POLH). Here, we observed activation of p53 Signaling in N0 and to a lesser extent in N1, but not in N2+. Only in N0, DNA (excision-) repair (involved genes: CDKN1A, PPM1D, and DDB2) was predicted to be a downstream function, while molecular networks in N2+ were associated with cancer, as well as injury and abnormalities (among others, downregulation of MSH6, CCNE2, and CHUK). After 2 Gy, the number of DEGs was similar in fibroblasts of all donor groups and genes with the highest absolute log2 fold-change were upregulated throughout (CDKN1A, TIGAR, HSPA4L, MDM2, BLOC1SD2, PPM1D, SESN1, BTG2, FBXO22, PCNA, and TRIAP1). Here, the p53 Signaling-Pathway was activated in fibroblasts of all donor groups. The Mitotic Roles of Polo Like Kinase-Pathway was inactivated in N1 and N2+. Molecular Mechanisms of Cancer were affected in fibroblasts of all donor groups. P53 was predicted to be an upstream regulator in fibroblasts of all donor groups and E2F1 in N1 and N2+. Results of the downstream analysis were senescence in N0 and N2+, transformation of cells in N0, and no significant effects in N1. Seven genes were differentially expressed in reaction to 2 Gy dependent on the donor group (LINC00601, COBLL1, SESN2, BIN3, TNFRSF10A, EEF1AKNMT, and BTG2). CONCLUSION: Our results show dose-dependent differences in the radiation response between N1/N2+ and N0. While mechanisms against genotoxic stress were activated to the same extent after a high dose in all groups, the radiation response was impaired after a low dose in N1/N2+, suggesting an increased risk for adverse effects including carcinogenesis, particularly in N2+.


Assuntos
Sobreviventes de Câncer , Proteínas Imediatamente Precoces , Segunda Neoplasia Primária , Neoplasias , Adulto , Estudos de Casos e Controles , Criança , Proteínas F-Box , Fibroblastos/efeitos da radiação , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Segunda Neoplasia Primária/genética , Proteínas Nucleares , Receptores Citoplasmáticos e Nucleares , Sestrinas , Proteína Supressora de Tumor p53 , Proteínas Supressoras de Tumor
3.
Mol Med ; 26(1): 85, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907548

RESUMO

BACKGROUND: Exposure to ionizing radiation induces complex stress responses in cells, which can lead to adverse health effects such as cancer. Although a variety of studies investigated gene expression and affected pathways in human fibroblasts after exposure to ionizing radiation, the understanding of underlying mechanisms and biological effects is still incomplete due to different experimental settings and small sample sizes. Therefore, this study aims to identify the time point with the highest number of differentially expressed genes and corresponding pathways in primary human fibroblasts after irradiation at two preselected time points. METHODS: Fibroblasts from skin biopsies of 15 cell donors were exposed to a high (2Gy) and a low (0.05Gy) dose of X-rays. RNA was extracted and sequenced 2 h and 4 h after exposure. Differentially expressed genes with an adjusted p-value < 0.05 were flagged and used for pathway analyses including prediction of upstream and downstream effects. Principal component analyses were used to examine the effect of two different sequencing runs on quality metrics and variation in expression and alignment and for explorative analysis of the radiation dose and time point of analysis. RESULTS: More genes were differentially expressed 4 h after exposure to low and high doses of radiation than after 2 h. In experiments with high dose irradiation and RNA sequencing after 4 h, inactivation of the FAT10 cancer signaling pathway and activation of gluconeogenesis I, glycolysis I, and prostanoid biosynthesis was observed taking p-value (< 0.05) and (in) activating z-score (≥2.00 or ≤ - 2.00) into account. Two hours after high dose irradiation, inactivation of small cell lung cancer signaling was observed. For low dose irradiation experiments, we did not detect any significant (p < 0.05 and z-score ≥ 2.00 or ≤ - 2.00) activated or inactivated pathways for both time points. CONCLUSIONS: Compared to 2 h after irradiation, a higher number of differentially expressed genes were found 4 h after exposure to low and high dose ionizing radiation. Differences in gene expression were related to signal transduction pathways of the DNA damage response after 2 h and to metabolic pathways, that might implicate cellular senescence, after 4 h. The time point 4 h will be used to conduct further irradiation experiments in a larger sample.


Assuntos
Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Regulação da Expressão Gênica/efeitos da radiação , Radiação Ionizante , Transdução de Sinais/efeitos da radiação , Estudos de Casos e Controles , Células Cultivadas , Biologia Computacional/métodos , Relação Dose-Resposta à Radiação , Perfilação da Expressão Gênica , Humanos , Fatores de Tempo
4.
Am J Med Genet A ; 179(7): 1214-1225, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31069901

RESUMO

The S-Phase Cyclin A Associated Protein In The ER (SCAPER) gene is a ubiquitously expressed gene with unknown function in the brain. Recently, biallelic SCAPER variants were described in four patients from three families with retinitis pigmentosa (RP) and intellectual disability (ID). Here, we expand the spectrum of pathogenic variants in SCAPER and report on 10 further patients from four families with ID, RP, and additional dysmorphic features carrying homozygous variants in SCAPER. The variants found comprise frameshift, nonsense, and missense variants as well as an intragenic homozygous deletion, which spans SCAPER exons 15 and 16 and introduces a frameshift and a premature stop codon. Analyses of SCAPER expression in human and mouse brain revealed an upregulation of SCAPER expression during cortical development and a higher expression of SCAPER in neurons compared to neural progenitors. In the adult brain SCAPER is expressed in several regions including the cerebral cortex where it shows a layer-specific expression with an expression peak in lower layer glutamatergic neurons. Our study supports the role of SCAPER variants in the pathogenesis of ID and RP, expands the variant spectrum and highlights the need for functional studies concerning the role of SCAPER during brain development and function.


Assuntos
Proteínas de Transporte/genética , Homozigoto , Deficiência Intelectual/genética , Mutação , Retinose Pigmentar/genética , Adolescente , Adulto , Animais , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Criança , Consanguinidade , Família , Feminino , Expressão Gênica , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Masculino , Camundongos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Retinose Pigmentar/complicações , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Síndrome
5.
Behav Brain Funct ; 9: 7, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23419067

RESUMO

BACKGROUND: We report on a 6-year-old Turkish boy with profound sensorineural deafness, balance disorder, severe disorder of oral motor function, and mild developmental delay. Further findings included scaphocephaly, plagiocephaly, long palpebral fissures, high narrow palate, low-set posteriorly rotated ears, torticollis, hypoplastic genitalia and faulty foot posture. Parents were consanguineous. METHODS AND RESULTS: Computed tomography and magnetic resonance imaging showed bilateral single widened cochlear turn, narrowing of the internal auditory canal, and bilateral truncation of the vestibulo-cochlear nerve. Microarray analysis and next generation sequencing showed a homozygous deletion of chromosome 5q31.1 spanning 115.3 kb and including three genes: NEUROG1 (encoding neurogenin 1), DCNP1 (dendritic cell nuclear protein 1, C5ORF20) and TIFAB (TIFA-related protein). The inability to chew and swallow, deafness and balance disorder represented congenital palsies of cranial nerves V (trigeminal nerve) and VIII (vestibulo-cochlear nerve) and thus a congenital cranial dysinnervation disorder. CONCLUSIONS: Based on reported phenotypes of neurog1 null mutant mice and other vertebrates, we strongly propose NEUROG1 as the causative gene in this boy. The human NEUROG1 resides within the DFNB60 locus for non-syndromic autosomal recessive deafness on chromosome 5q22-q31, but linkage data have excluded it from being causative in the DFNB60 patients. Given its large size (35 Mb, >100 genes), the 5q22-q31 area could harbor more than one deafness gene. We propose NEUROG1 as a new gene for syndromic autosomal recessive hearing loss and congenital cranial dysinnervation disorder including cranial nerves V and VIII.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Síndrome de Möbius/genética , Proteínas do Tecido Nervoso/genética , Criança , Mapeamento Cromossômico , Consanguinidade , Análise Mutacional de DNA , Deleção de Genes , Estudo de Associação Genômica Ampla , Humanos , Cariotipagem , Imageamento por Ressonância Magnética , Masculino , Análise em Microsséries , Exame Neurológico , Reação em Cadeia da Polimerase , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X
6.
Clin Oral Investig ; 17(1): 123-30, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22297612

RESUMO

OBJECTIVES: Fibroblast growth factors consist of receptor tyrosine kinase binding proteins involved in growth, differentiation, and regeneration of a variety of tissues of the head and neck. Their role in the development of teeth has been documented, and their presence in human odontogenic cysts and tumors has previously been investigated. Odontoma­dysphagia syndrome (OMIM 164330) is a very rare disorder characterized by clustering of teeth as compound odontoma, dysplasia and aplasia of teeth, slight craniofacial abnormalities, and dysphagia. We have followed the clinical course of the disease in a family over more than 30 years and have identified a genetic abnormality segregating with the disorder. MATERIALS AND METHODS: We evaluated clinical data from nine different family members and obtained venous blood probes for genetic studies from three family members (two affected and one unaffected). RESULTS: The present family with five patients in two generations has remained one out of only two known cases with this very rare syndrome. All those affected showed teeth dysplasia, oligodontia, and dysplasia and odontoma of the upper and lower jaw. Additional signs included dysphagia and strictures of the oesophagus. Comorbidity in one patient included aortic stenosis and coronary artery disease, requiring coronary bypasses and aortic valve replacement. Genome-wide SNP array analyses in three family members (two affected and one unaffected) revealed a microduplication of chromosome 11q13.3 spanning 355 kilobases (kb) and including two genes in full length, fibroblast growth factors 3 (FGF3) and 4 (FGF4). CONCLUSION: The microduplication identified in this family represents the most likely cause of the odontoma­dysphagia syndrome and implies that the syndrome is caused by a gain of function of the FGF3 and FGF4 genes. CLINICAL RELEVANCE: Mutations of FGF receptor genes can cause craniofacial syndromes such as odontoma­dysphagia syndrome. Following this train of thought, an evaluation of FGF gene family in sporadic odontoma could be worthwhile.


Assuntos
Transtornos Cromossômicos/genética , Duplicação Cromossômica/genética , Cromossomos Humanos Par 11/genética , Transtornos de Deglutição/genética , Fator 3 de Crescimento de Fibroblastos/genética , Fator 4 de Crescimento de Fibroblastos/genética , Odontoma/genética , Anodontia/genética , Estenose da Valva Aórtica/patologia , Pareamento de Bases , Doença da Artéria Coronariana/patologia , Estenose Esofágica/genética , Feminino , Seguimentos , Genoma , Humanos , Masculino , Mutação/genética , Odontodisplasia/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Estudos Retrospectivos , Síndrome
7.
Pediatr Hematol Oncol ; 30(1): 33-45, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23140311

RESUMO

Genetic factors are important for developing primary and subsequent malignancies in children. This study investigated the role of genetic factors involved in DNA-repair. Designed as a feasibility study, it addressed the possibility of obtaining samples for genetic analyses from former patients through the German Childhood Cancer Registry. Testing feasibility was as important as the biological question itself. We analyzed the expression of DNA-repair genes in untreated primary fibroblasts of 20 individuals with a second neoplasm compared to 20 matched single neoplasm cases using customized cDNA microarrays (1344 gene sequences, about 800 genes). Matching was by first neoplasm, age, and year of first diagnosis. Forty-six percent of the 52 contacted second neoplasm cases and 18% of the 132 single neoplasm patients participated in the study. The DNA-repair gene results show small differences in the basal gene expression of FTH1 and CDKN1A. To our knowledge, this is the first study using gene expression arrays in untreated primary fibroblasts regarding second neoplasms after a childhood neoplasm. We were able to recruit childhood cancer patients for genetic analyses long after diagnosis. The biological importance of the differences in the DNA-repair gene expression has to be elucidated yet.


Assuntos
Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/genética , Adolescente , Células Cultivadas , Criança , Pré-Escolar , Reparo do DNA/genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino
8.
DNA Repair (Amst) ; 122: 103435, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549044

RESUMO

New development and optimization of oncologic strategies are steadily increasing the number of long-term cancer survivors being at risk of developing second primary neoplasms (SPNs) as a late consequence of genotoxic cancer therapies with the highest risk among former childhood cancer patients. Since risk factors and predictive biomarkers for therapy-associated SPN remain unknown, we examined the sensitivity to mild replication stress as a driver of genomic instability and carcinogenesis in fibroblasts from 23 long-term survivors of a pediatric first primary neoplasm (FPN), 22 patients with the same FPN and a subsequent SPN, and 22 controls with no neoplasm (NN) using the cytokinesis-block micronucleus (CBMN) assay. Mild replication stress was induced with the DNA-polymerase inhibitor aphidicolin (APH). Fibroblasts from patients with the DNA repair deficiency syndromes Bloom, Seckel, and Fanconi anemia served as positive controls and for validation of the CBMN assay supplemented by analysis of chromosomal aberrations, DNA repair foci (γH2AX/53BP1), and cell cycle regulation. APH treatment resulted in G2/M arrest and underestimation of cytogenetic damage beyond G2, which could be overcome by inhibition of Chk1. Basal micronuclei were significantly increased in DNA repair deficiency syndromes but comparable between NN, FPN, and SPN donors. After APH-induced replication stress, the average yield of micronuclei was significantly elevated in SPN donors compared to FPN (p = 0.013) as well as NN (p = 0.03) donors but substantially lower than for DNA repair deficiency syndromes. Our findings suggest that mild impairment of the response to replication stress induced by genotoxic impacts of DNA-damaging cancer therapies promotes genomic instability in a subset of long-term cancer survivors and may drive the development of an SPN. Our study provides a basis for detailed mechanistic studies as well as predictive bioassays for clinical surveillance, to identify cancer patients at high risk for SPNs at first diagnosis.


Assuntos
Sobreviventes de Câncer , Segunda Neoplasia Primária , Humanos , Criança , Segunda Neoplasia Primária/genética , Segunda Neoplasia Primária/metabolismo , Apoptose , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Instabilidade Cromossômica , Instabilidade Genômica , Testes para Micronúcleos/métodos , Dano ao DNA , DNA/metabolismo , Fibroblastos/metabolismo
9.
Front Oncol ; 13: 1150629, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124517

RESUMO

Background: Childhood cancer survivors (CCS) are at particularly high risk for therapy-related late sequelae, with secondary primary neoplasms (SPN) being the most detrimental. Since there is no standardized questionnaire for retrospective assessment of associations between prior cancer treatments and late health effects, we developed a self-administered questionnaire and validated it in a cohort of CCS. Methods: CCS of a first primary neoplasm (FPN, N=340) only or with a subsequent SPN (N=101) were asked whether they had received cancer therapies. Self-reports were compared to participants' medical records on cancer therapies from hospitals and clinical studies (N=242). Cohen's Kappa (κ) was used to measure their agreement and logistic regression was used to identify factors influencing the concordance. Associations between exposure to cancer therapies and late health effects (overweight/obesity, diseases of the lipid metabolism and the thyroid gland, cardiovascular diseases, occurrence of SPN) were analyzed in all participants by applying generalized linear mixed models to calculate odds ratios (OR) and 95% confidence intervals (95%CI). Results: For CCS of SPN, a perfect agreement was found between self-reports and medical records for chemotherapy (CT, κ=1.0) while the accordance for radiotherapy (RT) was lower but still substantial (κ=0.8). For the CCS of FPN the accordance was less precise (CT: κ=0.7, RT: κ=0.3). Cancer status, tumors of the central nervous system, sex, age at recruitment, vocational training, follow-up time, and comorbidities had no impact on agreement. CCS with exposure to CT were found to be less often overweight or obese compared to those without CT (OR=0.6 (95%CI 0.39; 0.91)). However, they were found to suffer more likely from thyroid diseases excluding thyroid cancers (OR=9.91 (95%CI 4.0; 24.57)) and hypercholesterolemia (OR=4.45 (95%CI 1.5; 13.23)). All other analyses did not show an association. Conclusion: Our new questionnaire proved reliable for retrospective assessment of exposure to CT and RT in CCS of SPN. For the CCS of FPN, self-reported RT was very imprecise and should not be used for further analyses. We revealed an association between late health outcomes occurring as hypercholesterolemia and thyroid diseases, excluding thyroid cancer, and the use of CT for the treatment of childhood cancer.

10.
Front Oncol ; 13: 1158176, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37182169

RESUMO

Introduction: Long non-coding ribonucleic acids (lncRNAs) are involved in the cellular damage response following exposure to ionizing radiation as applied in radiotherapy. However, the role of lncRNAs in radiation response concerning intrinsic susceptibility to late effects of radiation exposure has not been examined in general or in long-term survivors of childhood cancer with and without potentially radiotherapy-related second primary cancers, in particular. Methods: Primary skin fibroblasts (n=52 each) of long-term childhood cancer survivors with a first primary cancer only (N1), at least one second primary neoplasm (N2+), as well as tumor-free controls (N0) from the KiKme case-control study were matched by sex, age, and additionally by year of diagnosis and entity of the first primary cancer. Fibroblasts were exposed to 0.05 and 2 Gray (Gy) X-rays. Differentially expressed lncRNAs were identified with and without interaction terms for donor group and dose. Weighted co-expression networks of lncRNA and mRNA were constructed using WGCNA. Resulting gene sets (modules) were correlated to the radiation doses and analyzed for biological function. Results: After irradiation with 0.05Gy, few lncRNAs were differentially expressed (N0: AC004801.4; N1: PCCA-DT, AF129075.3, LINC00691, AL158206.1; N2+: LINC02315). In reaction to 2 Gy, the number of differentially expressed lncRNAs was higher (N0: 152, N1: 169, N2+: 146). After 2 Gy, AL109976.1 and AL158206.1 were prominently upregulated in all donor groups. The co-expression analysis identified two modules containing lncRNAs that were associated with 2 Gy (module1: 102 mRNAs and 4 lncRNAs: AL158206.1, AL109976.1, AC092171.5, TYMSOS, associated with p53-mediated reaction to DNA damage; module2: 390 mRNAs, 7 lncRNAs: AC004943.2, AC012073.1, AC026401.3, AC092718.4, MIR31HG, STXBP5-AS1, TMPO-AS1, associated with cell cycle regulation). Discussion: For the first time, we identified the lncRNAs AL158206.1 and AL109976.1 as involved in the radiation response in primary fibroblasts by differential expression analysis. The co-expression analysis revealed a role of these lncRNAs in the DNA damage response and cell cycle regulation post-IR. These transcripts may be targets in cancer therapy against radiosensitivity, as well as provide grounds for the identification of at-risk patients for immediate adverse reactions in healthy tissues. With this work we deliver a broad basis and new leads for the examination of lncRNAs in the radiation response.

12.
Nucleic Acids Res ; 38(12): 3880-90, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20194112

RESUMO

DNA methylation is an epigenetic modification that plays an important role in gene regulation. It can be influenced by stochastic events, environmental factors and developmental programs. However, little is known about the natural variation of gene-specific methylation patterns. In this study, we performed quantitative methylation analyses of six differentially methylated imprinted genes (H19, MEG3, LIT1, NESP55, PEG3 and SNRPN), one hypermethylated pluripotency gene (OCT4) and one hypomethylated tumor suppressor gene (APC) in chorionic villus, fetal and adult cortex, and adult blood samples. Both average methylation level and range of methylation variation depended on the gene locus, tissue type and/or developmental stage. We found considerable variability of functionally important methylation patterns among unrelated healthy individuals and a trend toward more similar methylation levels in monozygotic twins than in dizygotic twins. Imprinted genes showed relatively little methylation changes associated with aging in individuals who are >25 years. The relative differences in methylation among neighboring CpGs in the generally hypomethylated APC promoter may not only reflect stochastic fluctuations but also depend on the tissue type. Our results are consistent with the view that most methylation variation may arise after fertilization, leading to epigenetic mosaicism.


Assuntos
Metilação de DNA , Epigênese Genética , Fatores Etários , Ilhas de CpG , Genes Supressores de Tumor , Variação Genética , Impressão Genômica , Crescimento e Desenvolvimento/genética , Humanos , Masculino , Gêmeos Dizigóticos , Gêmeos Monozigóticos
13.
Front Oncol ; 12: 1037276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324589

RESUMO

Background: Improved treatments for childhood cancer result in a growing number of long-term childhood cancer survivors (CCS). The diagnosis and the prevalence of comorbidities may, however, influence their lifestyle later in life. Nonetheless, little is known about differences in late effects between CCS of a first primary neoplasm (FPN) in childhood and subsequent second primary neoplasms (SPN) and their impact on lifestyle. Therefore, we aim to investigate associations between the occurrence of FPN or SPN and various diseases and lifestyle in the later life of CCS. Methods: CCS of SPN (n=101) or FPN (n=340) and cancer-free controls (n=150) were matched by age and sex, and CCS additionally by year and entity of FPN. All participants completed a self-administered questionnaire on anthropometric and socio-economic factors, medical history, health status, and lifestyle. Mean time between FPN diagnosis and interview was 27.3 years for SPN and 26.2 years for FPN CCS. To confirm results from others and to generate new hypotheses on late effects of childhood cancer as well as CCS´ lifestyles, generalized linear mixed models were applied. Results: CCS were found to suffer more likely from diseases compared to cancer-free controls. In detail, associations with cancer status were observed for hypercholesterinemia and thyroid diseases. Moreover, CCS were more likely to take regular medication compared to controls. A similar association was observed for CCS of SPN compared to CCS of FPN. In contrast to controls, CCS rarely exercise more than 5 hours per week, consumed fewer soft and alcoholic drinks, and were less likely to be current, former, or passive smokers. Additionally, they were less likely overweight or obese. All other exploratory analyses performed on cardiovascular, chronic lung, inflammatory bone, allergic, and infectious diseases, as well as on a calculated health-score revealed no association with tumor status. Conclusion: CCS were more affected by pathologic conditions and may consequently take more medication, particularly among CCS of SPN. The observed higher disease burden is likely related to the received cancer therapy. To reduce the burden of long-term adverse health effects in CCS, improving cancer therapies should therefore be in focus of research in this area.

14.
EXCLI J ; 21: 117-143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35221838

RESUMO

Most childhood cancers occur sporadically and cannot be explained by an inherited mutation or an unhealthy lifestyle. However, risk factors might trigger the oncogenic transformation of cells. Among other regulatory signals, hypermethylation of RAD9A intron 2 is responsible for the increased expression of RAD9A protein, which may play a role in oncogenic transformation. Here, we analyzed the RAD9A intron 2 methylation in primary fibroblasts of 20 patients with primary cancer in childhood and second primary cancer (2N) later in life, 20 matched patients with only one primary cancer in childhood (1N) and 20 matched cancer-free controls (0N), using bisulfite pyrosequencing and deep bisulfite sequencing (DBS). Four 1N patients and one 2N patient displayed elevated mean methylation levels (≥ 10 %) of RAD9A. DBS revealed ≥ 2 % hypermethylated alleles of RAD9A, indicative for constitutive mosaic epimutations. Bone marrow samples of NHL and AML tumor patients (n=74), EBV (Epstein Barr Virus) lymphoblasts (n=6), tumor cell lines (n=5) and FaDu subclones (n=13) were analyzed to substantiate our findings. We find a broad spectrum of tumor entities with an aberrant methylation of RAD9A. We detected a significant difference in mean methylation of RAD9A for NHL versus AML patients (p ≤0.025). Molecular karyotyping of AML samples during therapy with hypermethylated RAD9A showed an evolving duplication of 1.8 kb on Chr16p13.3 including the PKD1 gene. Radiation, colony formation assays, cell proliferation, PCR and molecular karyotyping SNP-array experiments using generated FaDu subclones suggest that hypermethylation of RAD9A intron 2 is associated with genomic imbalances in regions with tumor-relevant genes and survival of the cells. In conclusion, this is the very first study of RAD9A intron 2 methylation in childhood cancer and Leukemia. RAD9A epimutations may have an impact on leukemia and tumorigenesis and can potentially serve as a biomarker.

15.
J Immunother Cancer ; 9(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34112738

RESUMO

BACKGROUND: Tumor microenvironment-associated T cell senescence is a key limiting factor for durable effective cancer immunotherapy. A few studies have demonstrated the critical role of the tumor suppressor TP53-derived p53 isoforms in cellular senescence process of non-immune cells. However, their role in lymphocytes, in particular tumor-antigen (TA) specific T cells remain largely unexplored. METHODS: Human T cells from peripheral blood were retrovirally engineered to coexpress a TA-specific T cell receptor and the Δ133p53α-isoform, and characterized for their cellular phenotype, metabolic profile and effector functions. RESULTS: Phenotypic analysis of Δ133p53α-modified T cells revealed a marked reduction of the T-cell inhibitory molecules (ie, CD160 and TIGIT), a lower frequency of senescent-like CD57+ and CD160+ CD8+ T cell populations, and an increased number of less differentiated CD28+ T cells. Consistently, we demonstrated changes in the cellular metabolic program toward a quiescent T cell state. On a functional level, Δ133p53α-expressing T cells acquired a long-term proliferative capacity, showed superior cytokine secretion and enhanced tumor-specific killing in vitro and in mouse tumor model. Finally, we demonstrated the capacity of Δ133p53α to restore the antitumor response of senescent T cells isolated from multiple myeloma patients. CONCLUSION: This study uncovered a broad effect of Δ133p53α isoform in regulating T lymphocyte function. Enhancing fitness and effector functions of senescent T cells by modulation of p53 isoforms could be exploited for future translational research to improve cancer immunotherapy and immunosenescence-related diseases.


Assuntos
Imunoterapia/métodos , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Microambiente Tumoral
16.
JMIR Res Protoc ; 10(11): e32395, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34762066

RESUMO

BACKGROUND: Therapy for a first primary neoplasm (FPN) in childhood with high doses of ionizing radiation is an established risk factor for second primary neoplasms (SPN). An association between exposure to low doses and childhood cancer is also suggested; however, results are inconsistent. As only subgroups of children with FPNs develop SPNs, an interaction between radiation, genetic, and other risk factors is presumed to influence cancer development. OBJECTIVE: Therefore, the population-based, nested case-control study KiKme aims to identify differences in genetic predisposition and radiation response between childhood cancer survivors with and without SPNs as well as cancer-free controls. METHODS: We conducted a population-based, nested case-control study KiKme. Besides questionnaire information, skin biopsies and saliva samples are available. By measuring individual reactions to different exposures to radiation (eg, 0.05 and 2 Gray) in normal somatic cells of the same person, our design enables us to create several exposure scenarios for the same person simultaneously and measure several different molecular markers (eg, DNA, messenger RNA, long noncoding RNA, copy number variation). RESULTS: Since 2013, 101 of 247 invited SPN patients, 340 of 1729 invited FPN patients, and 150 of 246 invited cancer-free controls were recruited and matched by age and sex. Childhood cancer patients were additionally matched by tumor morphology, year of diagnosis, and age at diagnosis. Participants reported on lifestyle, socioeconomical, and anthropometric factors, as well as on medical radiation history, health, and family history of diseases (n=556). Primary human fibroblasts from skin biopsies of the participants were cultivated (n=499) and cryopreserved (n=3886). DNA was extracted from fibroblasts (n=488) and saliva (n=510). CONCLUSIONS: This molecular-epidemiological study is the first to combine observational epidemiological research with standardized experimental components in primary human skin fibroblasts to identify genetic predispositions related to ionizing radiation in childhood and SPNs. In the future, fibroblasts of the participants will be used for standardized irradiation experiments, which will inform analysis of the case-control study and vice versa. Differences between participants will be identified using several molecular markers. With its innovative combination of experimental and observational components, this new study will provide valuable data to forward research on radiation-related risk factors in childhood cancer and SPNs. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/32395.

17.
Front Oncol ; 10: 1338, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850427

RESUMO

The purpose of the present study was to investigate whether former childhood cancer patients who developed a subsequent secondary primary neoplasm (SPN) are characterized by elevated spontaneous chromosomal instability or cellular and chromosomal radiation sensitivity as surrogate markers of compromised DNA repair compared to childhood cancer patients with a first primary neoplasm (FPN) only or tumor-free controls. Primary skin fibroblasts were obtained in a nested case-control study including 23 patients with a pediatric FPN, 22 matched patients with a pediatric FPN and an SPN, and 22 matched tumor-free donors. Clonogenic cell survival and cytogenetic aberrations in Giemsa-stained first metaphases were assessed after X-irradiation in G1 or on prematurely condensed chromosomes of cells irradiated and analyzed in G2. Fluorescence in situ hybridization was applied to investigate spontaneous transmissible aberrations in selected donors. No significant difference in clonogenic survival or the average yield of spontaneous or radiation-induced aberrations was found between the study populations. However, two donors with an SPN showed striking spontaneous chromosomal instability occurring as high rates of numerical and structural aberrations or non-clonal and clonal translocations. No correlation was found between radiation sensitivity and a susceptibility to a pediatric FPN or a treatment-associated SPN. Together, the results of this unique case-control study show genomic stability and normal radiation sensitivity in normal somatic cells of donors with an early and high intrinsic or therapy-associated tumor risk. These findings provide valuable information for future studies on the etiology of sporadic childhood cancer and therapy-related SPN as well as for the establishment of predictive biomarkers based on altered DNA repair processes.

19.
Eur J Hum Genet ; 15(5): 570-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17327879

RESUMO

A boy with severe mental retardation, funnel chest, bell-shaped thorax, and hexadactyly of both feet was found to have a balanced de novo t(12;17)(p13.3;q21.3) translocation. FISH with BAC clones and long-range PCR products assessed in the human genome sequence localized the breakpoint on chromosome 17q21.3 to a 21-kb segment that lies <30 kb upstream of the HOXB gene cluster and immediately adjacent to the 3' end of the TTLL6 gene. The breakpoint on chromosome 12 occurred within telomeric hexamer repeats and, therefore, is not likely to affect gene function directly. We propose that juxtaposition of the HOXB cluster to a repetitive DNA domain and/or separation from required cis-regulatory elements gave rise to a position effect.


Assuntos
Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 17/genética , Deficiências do Desenvolvimento/genética , Genes Homeobox/genética , Anormalidades Musculoesqueléticas/genética , Translocação Genética , Pré-Escolar , Quebra Cromossômica , Mapeamento Cromossômico , Humanos , Masculino
20.
Nat Biotechnol ; 22(7): 856-62, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15195103

RESUMO

Crop loss due to viral diseases is still a major problem for agriculture today. We present a strategy to achieve virus resistance based on the expression of single-chain Fv fragments (scFvs) against a conserved domain in a plant viral RNA-dependent RNA polymerase (RdRp), a key enzyme in virus replication. The selected scFvs inhibited complementary RNA synthesis of different plant virus RdRps in vitro and virus replication in planta. Moreover, the scFvs also bound to the RdRp of the distantly related hepatitis C virus. T(1) and T(2) progeny of transgenic lines of Nicotiana benthamiana expressing different scFvs either in the cytosol or in the endoplasmic reticulum showed varying degrees of resistance against four plant viruses from different genera, three of which belong to the Tombusviridae family. Virus resistance based on antibodies to RdRps adds another tool to the repertoire for combating plant viruses.


Assuntos
Anticorpos Antivirais/farmacologia , Doenças das Plantas/virologia , Vírus de Plantas/efeitos dos fármacos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Motivos de Aminoácidos/imunologia , Anticorpos Antivirais/genética , Vírus de Plantas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , RNA Polimerase Dependente de RNA/imunologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Tombusvirus/efeitos dos fármacos , Tombusvirus/enzimologia , Tombusvirus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA