Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38337173

RESUMO

AIMS: This study explored the effect of three different prebiotics, the human milk oligosaccharide 2'-fucosyllactose (2'-FL), an oligofructose-enriched inulin (fructo-oligosaccharide, or FOS), and a galacto-oligosaccaride (GOS) mixture, on the faecal microbiota from patients with ulcerative colitis (UC) using in vitro batch culture fermentation models. Changes in bacterial groups and short-chain fatty acid (SCFA) production were compared. METHODS AND RESULTS: In vitro pH controlled batch culture fermentation was carried out over 48 h on samples from three healthy controls and three patients with active UC. Four vessels were run, one negative control and one for each of the prebiotic substrates. Bacterial enumeration was carried out using fluorescence in situ hybridization with flow cytometry. SCFA quantification was performed using gas chromatography mass spectrometry. All substrates had a positive effect on the gut microbiota and led to significant increases in total SCFA and propionate concentrations at 48 h. 2'-FL was the only substrate to significantly increase acetate and led to the greatest increase in total SCFA concentration at 48 h. 2'-FL best suppressed Desulfovibrio spp., a pathogen associated with UC. CONCLUSIONS: 2'FL, FOS, and GOS all significantly improved the gut microbiota in this in vitro study and also led to increased SCFA.


Assuntos
Colite Ulcerativa , Prebióticos , Humanos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Fermentação , Hibridização in Situ Fluorescente , Fezes/microbiologia , Ácidos Graxos Voláteis , Oligossacarídeos/farmacologia , Bactérias/genética
2.
Eur J Nutr ; 62(5): 2205-2215, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37046122

RESUMO

PURPOSE: Prebiotic foods can be used to increase production of short-chain fatty acids (SCFA) in the gut. Of the SCFA, propionate is credited with the strongest anorectic activity. In previous work, a 50/50 blend of inulin and arabinoxylan was produced (I + AX) that significantly increased propionate production in an in vitro gut model. This study sought to establish whether chronic consumption of a prebiotic blend of I + AX decreases appetite and energy intake and increases intestinal propionate production in human participants. METHODS: MIXSAT (clinicaltrials.gov id: NCT02846454, August 2016) was a double-blind randomised acute-within-chronic crossover feeding trial in healthy adult men (n = 20). Treatments were 8 g per day I + AX for 21 days or weight-matched maltodextrin control. The primary outcome measure was perceived satiety and appetite during an acute study visit. Secondary outcomes were energy intake in an ad libitum meal, faecal SCFA concentration, and faecal microbiota composition. RESULTS: Perceived satiety and appetite were not affected by the intervention. I + AX was associated with a reduction in energy intake in an ad libitum meal, increased faecal SCFA concentration, and an increase in cell counts of Bifidobacteria, Lactobacilli, and other microbial genera associated with health. IMPLICATIONS: Chronic consumption of this blend of prebiotics decreased energy intake in a single sitting. Further studies are needed to confirm mechanism of action and to determine whether this might be useful in weight control.


Assuntos
Apetite , Inulina , Adulto , Masculino , Humanos , Inulina/farmacologia , Propionatos , Estudos Cross-Over , Ingestão de Energia , Ácidos Graxos Voláteis , Prebióticos
3.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724279

RESUMO

AIMS: Certain bacteria can produce gamma aminobutyric acid (GABA) from glutamate in the human intestinal tract, leading to the possibility of altering GABA levels through diet. To this end, we assessed the ability of seven commercially available probiotic supplements to produce GABA. METHOD AND RESULTS: Probiotic strains were compared for GABA production in pure culture. The bacteria were inoculated at a concentration of 107 CFU ml-1 in 10 ml MRS supplemented with monosodium glutamate (1% w/v), both with and without oligofructose-enriched inulin (OFI) (1% w/v). Two strains with the highest production of GABA were further assessed for 48 h in pH-controlled anaerobic batch cultures inoculated with faecal bacteria. Liquid chromatography-mass spectrometry (LC-MS) was used for quantification of GABA and microbiota composition was determined through 16S rRNA gene sequencing. Levilactobacillus brevis LB01 (CGMCC 16921) and Lactiplantibacillus plantarum 299v (DSM 9843) were the most efficient producers of GABA. High GABA levels (28.32 mmol l-1 ± 0.29) were produced by the probiotic strain L. brevis LB01 at pH 5.4-5.6. This was significantly higher than the levels of GABA produced by L. plantarum (4.8 mmol l-1 ± 6.8) and a negative control (2.9 mM ± 3.1). The addition of OFI did not further stimulate GABA production under the conditions tested. The ability of these strains to produce GABA in-vitro was further evaluated in a faecal microbiota environment. Once again, L.brevis LB01 produced the highest levels of GABA (40.24 mmol l-1 ± 20.98). CONCLUSIONS: L. brevis LB01 was found to be the most efficient probiotic strain, of those tested, for GABA production.


Assuntos
Levilactobacillus brevis , Probióticos , Humanos , RNA Ribossômico 16S/genética , Ácido gama-Aminobutírico/metabolismo , Intestinos , Fermentação
4.
Br J Nutr ; 127(4): 554-555, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34789345

RESUMO

In 2010, British Journal of Nutrition published a consensus review article entitled Prebiotic effects: metabolic and health benefits(1). This was commissioned by International Life Sciences Institute, Europe and had twenty-one co-authors. The current article summarises how this review was planned and written. It deals with three questions regarding the context/background of the paper; what it told us and what happened next.


Assuntos
Prebióticos , Europa (Continente)
5.
Br J Nutr ; 126(2): 219-227, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33032673

RESUMO

The recent COVID-19 pandemic has altered the face of biology, social interaction and public health worldwide. It has had a destructive effect upon millions of people and is approaching a devastating one million fatalities. Emerging evidence has suggested a link between the infection and gut microbiome status. This is one of the several factors that may contribute towards severity of infection. Given the fact that the gut is heavily linked to immunity, inflammatory status and the ability to challenge pathogens, it is worthwhile to consider dietary intervention of the gut microbiota as means of potentially challenging the viral outcome. In this context, probiotics and prebiotics have been used to mitigate similar respiratory infections. Here, we summarise links between the gut microbiome and COVID-19 infection, as well as propose mechanisms whereby probiotic and prebiotic interventions may act.


Assuntos
COVID-19/microbiologia , Microbioma Gastrointestinal , Humanos , Prebióticos , Probióticos , SARS-CoV-2 , Simbióticos
6.
Eur J Nutr ; 60(8): 4635-4643, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34170392

RESUMO

PURPOSE: Resistant dextrin (RD) supplementation has been shown to alter satiety, glycaemia, and body weight, in overweight Chinese men; however, there are limited data on its effects in other demographic groups. Here, we investigated the effects of RD on satiety in healthy adults living in the United Kingdom. METHODS: 20 normal weight and 16 overweight adults completed this randomised controlled cross-over study. Either RD (14 g/day NUTRIOSE® FB06) or maltodextrin control was consumed in mid-morning and mid-afternoon preload beverages over a 28-day treatment period with crossover after a 28-day washout. During 10-h study visits (on days 1, 14, and 28 of each treatment period), satietogenic, glycaemic and anorectic hormonal responses to provided meals were assessed. RESULTS: Chronic supplementation with RD was associated with higher fasted satiety scores at day 14 (P = 0.006) and day 28 (P = 0.040), compared to control. RD also increased satiety after the mid-morning intervention drink, but it was associated with a reduction in post-meal satiety following both the lunch and evening meals (P < 0.01). The glycaemic response to the mid-morning intervention drink (0-30 min) was attenuated following RD supplementation (P < 0.01). Whilst not a primary endpoint we also observed lower systolic blood pressure at day 14 (P = 0.035) and 28 (P = 0.030), compared to day 1, following RD supplementation in the normal weight group. Energy intake and anthropometrics were unaffected. CONCLUSIONS: RD supplementation modified satiety and glycaemic responses in this cohort, further studies are required to determine longer-term effects on body weight control and metabolic markers. CLINICALTRIALS. GOV REGISTRATION: NCT02041975 (22/01/2014).


Assuntos
Dextrinas , Resposta de Saciedade , Adulto , Glicemia , Estudos Cross-Over , Suplementos Nutricionais , Ingestão de Energia , Humanos , Masculino , Saciação
7.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32198169

RESUMO

Dietary protein residue can result in microbial generation of various toxic metabolites in the gut, such as ammonia. A prebiotic is "a substrate that is selectively utilised by host microorganisms conferring a health benefit" (G. R. Gibson, R. Hutkins, M. E. Sanders, S. L. Prescott, et al., Nat Rev Gastroenterol Hepatol 14:491-502, 2017, https://doi.org/10.1038/nrgastro.2017.75). Prebiotics are carbohydrates that may have the potential to reverse the harmful effects of gut bacterial protein fermentation. Three-stage continuous colonic model systems were inoculated with fecal samples from omnivore and vegetarian volunteers. Casein (equivalent to 105 g protein consumption per day) was used within the systems as a protein source. Two different doses of inulin-type fructans (Synergy1) were later added (equivalent to 10 g per day in vivo and 15 g per day) to assess whether this influenced protein fermentation. Bacteria were enumerated by fluorescence in situ hybridization with flow cytometry. Metabolites from bacterial fermentation (short-chain fatty acid [SCFA], ammonia, phenol, indole, and p-cresol) were monitored to further analyze proteolysis and the prebiotic effect. A significantly higher number of bifidobacteria was observed with the addition of inulin together with reduction of Desulfovibrio spp. Furthermore, metabolites from protein fermentation, such as branched-chain fatty acids (BCFA) and ammonia, were significantly lowered with Synergy1. Production of p-cresol varied among donors, as we recognized four high producing models and two low producing models. Prebiotic addition reduced its production only in vegetarian high p-cresol producers.IMPORTANCE Dietary protein levels are generally higher in Western populations than in the world average. We challenged three-stage continuous colonic model systems containing high protein levels and confirmed the production of potentially harmful metabolites from proteolysis, especially replicates of the transverse and distal colon. Fermentations of proteins with a prebiotic supplementation resulted in a change in the human gut microbiota and inhibited the production of some proteolytic metabolites. Moreover, we observed both bacterial and metabolic differences between fecal bacteria from omnivore donors and vegetarian donors. Proteins with prebiotic supplementation showed higher Bacteroides spp. and inhibited Clostridium cluster IX in omnivore models, while in vegetarian modes, Clostridium cluster IX was higher and Bacteroides spp. lower with high protein plus prebiotic supplementation. Synergy1 addition inhibited p-cresol production in vegetarian high p-cresol-producing models while the inhibitory effect was not seen in omnivore models.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Dieta Rica em Proteínas , Microbioma Gastrointestinal/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Prebióticos/administração & dosagem , Adulto , Humanos , Técnicas In Vitro , Pessoa de Meia-Idade , Proteólise , Adulto Jovem
8.
Gastroenterology ; 155(4): 1004-1007, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29964041

RESUMO

Prebiotics and diets low in fermentable oligo-, di-, mono-saccharides and polyols (low-FODMAP diet) might reduce symptoms in patients with functional gastrointestinal disorders, despite reports that some nonabsorbable, fermentable meal products (prebiotics) provide substrates for colonic bacteria and thereby increase gas production. We performed a randomized, parallel, double-blind study of patients with functional gastrointestinal disorders with flatulence. We compared the effects of a prebiotic supplement (2.8 g/d Bimuno containing 1.37 g beta-galactooligosaccharide) plus a placebo (Mediterranean-type diet (prebiotic group, n = 19) vs a placebo supplement (2.8 g xylose) plus a diet low in FODMAP (low-FODMAP group, n = 21) for 4 weeks; patients were then followed for 2 weeks. The primary outcome was effects on composition of the fecal microbiota, analyzed by 16S sequencing. Secondary outcomes were intestinal gas production and digestive sensations. After 4 weeks, we observed opposite effects on microbiota in each group, particularly in relation to the abundance of Bifidobacterium sequences (increase in the prebiotic group and decrease in the low-FODMAP group; P = .042), and Bilophila wadsworthia (decrease in the prebiotic group and increase in the low-FODMAP group; P = .050). After 4 weeks, both groups had statistically significant reductions in all symptom scores, except reductions in flatulence and borborygmi were not significant in the prebiotic group. Although the decrease in symptoms persisted for 2 weeks after patients discontinued prebiotic supplementation, symptoms reappeared immediately after patients discontinued the low-FODMAP diet. Intermittent prebiotic administration might therefore be an alternative to dietary restrictions for patients with functional gut symptoms. ClinicalTrials.gov no.: NCT02210572.


Assuntos
Bactérias/metabolismo , Dieta com Restrição de Carboidratos , Carboidratos da Dieta/administração & dosagem , Fermentação , Gastroenteropatias/dietoterapia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Prebióticos , Dieta com Restrição de Carboidratos/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Carboidratos da Dieta/metabolismo , Método Duplo-Cego , Europa (Continente) , Gastroenteropatias/diagnóstico , Gastroenteropatias/metabolismo , Gastroenteropatias/microbiologia , Humanos , Prebióticos/efeitos adversos , Recidiva , Indução de Remissão , Fatores de Tempo , Resultado do Tratamento
9.
Appl Environ Microbiol ; 85(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824442

RESUMO

Metabolism of protein by gut bacteria is potentially detrimental due to the production of toxic metabolites, such as ammonia, amines, p-cresol, and indole. The consumption of prebiotic carbohydrates results in specific changes in the composition and/or activity of the microbiota that may confer benefits to host well-being and health. Here, we have studied the impact of prebiotics on proteolysis within the gut in vitro Anaerobic stirred batch cultures were inoculated with feces from omnivores (n = 3) and vegetarians (n = 3) and four protein sources (casein, meat, mycoprotein, and soy protein) with and without supplementation by an oligofructose-enriched inulin. Bacterial counts and concentrations of short-chain fatty acids (SCFA), ammonia, phenol, indole, and p-cresol were monitored during fermentation. Addition of the fructan prebiotic Synergy1 increased levels of bifidobacteria (P = 0.000019 and 0.000013 for omnivores and vegetarians, respectively). Branched-chain fatty acids (BCFA) were significantly lower in fermenters with vegetarians' feces (P = 0.004), reduced further by prebiotic treatment. Ammonia production was lower with Synergy1. Bacterial adaptation to different dietary protein sources was observed through different patterns of ammonia production between vegetarians and omnivores. In volunteer samples with high baseline levels of phenol, indole, p-cresol, and skatole, Synergy1 fermentation led to a reduction of these compounds.IMPORTANCE Dietary protein intake is high in Western populations, which could result in potentially harmful metabolites in the gut from proteolysis. In an in vitro fermentation model, the addition of prebiotics reduced the negative consequences of high protein levels. Supplementation with a prebiotic resulted in a reduction of proteolytic metabolites in the model. A difference was seen in protein fermentation between omnivore and vegetarian gut microbiotas: bacteria from vegetarian donors grew more on soy and Quorn than on meat and casein, with reduced ammonia production. Bacteria from vegetarian donors produced less branched-chain fatty acids (BCFA).


Assuntos
Bactérias/metabolismo , Dieta , Microbioma Gastrointestinal , Prebióticos/administração & dosagem , Adulto , Fezes/microbiologia , Fermentação , Humanos , Pessoa de Meia-Idade , Proteólise , Adulto Jovem
10.
Appl Microbiol Biotechnol ; 103(16): 6463-6472, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31267231

RESUMO

Adhesion ability to the host is a classical selection criterion for potential probiotic bacteria that could result in a transient colonisation that would help to promote immunomodulatory effects, as well as stimulate gut barrier and metabolic functions. In addition, probiotic bacteria have a potential protective role against enteropathogens through different mechanisms including production of antimicrobial compounds, reduction of pathogenic bacterial adhesion and competition for host cell binding sites. The competitive exclusion by probiotic bacteria has a beneficial effect not only on the gut but also in the urogenital tract and oral cavity. On the other hand, prebiotics may also act as barriers to pathogens and toxins by preventing their adhesion to epithelial receptors. In vitro studies with different intestinal cell lines have been widely used along the last decades to assess the adherence ability of probiotic bacteria and pathogen antagonism. However, extrapolation of these results to in vivo conditions still remains unclear, leading to the need of optimisation of more complex in vitro approaches that include interaction with the resident microbiota to address the current limitations. The aim of this mini review is to provide a comprehensive overview on the potential effect of the adhesive properties of probiotics and prebiotics on the host by focusing on the most recent findings related with adhesion and immunomodulatory and antipathogenic effect on human health.


Assuntos
Aderência Bacteriana , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Prebióticos/administração & dosagem , Probióticos/administração & dosagem , Antibiose , Humanos , Fatores Imunológicos/administração & dosagem
11.
Eur J Nutr ; 57(1): 1-24, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28393285

RESUMO

The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.


Assuntos
Bactérias/metabolismo , Alimentos , Microbioma Gastrointestinal/fisiologia , Promoção da Saúde , Bactérias/enzimologia , Ácidos e Sais Biliares/metabolismo , Dieta , Carboidratos da Dieta/metabolismo , Proteínas Alimentares/metabolismo , Ácidos Graxos/metabolismo , Humanos , Metagenômica , Modelos Teóricos , Compostos Fitoquímicos/metabolismo , Plantas Comestíveis/química , Plantas Comestíveis/metabolismo , Polifenóis/metabolismo , Proteômica , Vitaminas/biossíntese
12.
Appl Microbiol Biotechnol ; 102(17): 7577-7587, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29955936

RESUMO

Distillers' dried grains with solubles (DDGS) is a low-value agro-industrial by-product, rich in arabinoxylans (AX), which is produced by commercial distillery and bioethanol plants. In a first approach, we investigated the prebiotic potential of four fractions comprising arabinoxylan oligosaccharides (AXOS) and xylooligosaccharides (XOS) obtained by enzymatic hydrolysis of AX fractions derived from DDGS and wet solids (in-process sample of DDGS production process). Anaerobic batch cultures in controlled pH conditions were used to test the prebiotic activity of the samples. Results did not show significant differences between the enzymatic treatments used, and all AXOS/XOS were extensively fermented after 24 h. In addition, significant increases (P < 0.05) in Bifidobacterium and total short-chain fatty acids (SCFAs) were observed after 24 h of fermentation. Finally, DDGS-derived hydrolysates were separated on an anionic semi-preparative column to prepare AXOS/XOS fractions with degree of polymerisation (DP) greater than 3. Bifidogenic activity and an increase of SCFAs were again observed after 24 h of fermentation, although this time, the selectivity was higher and the fermentation slower, suggesting that the fermentation of this substrate could take place (at least partially) in the distal part of the colon with highly desirable beneficial effects.


Assuntos
Prebióticos/análise , Triticum/química , Xilanos/metabolismo , Bifidobacterium/crescimento & desenvolvimento , Fermentação
13.
Disasters ; 42(1): 3-18, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28440595

RESUMO

There is a general assumption, based on macroeconomic studies, that remittances will rise following major sudden-onset natural disasters. This is confirmed by a few assessments involving country-specific research, and usually short-term data. This study, questioning conventional wisdom, reviewed and graphed annual and quarterly remittance flows using International Monetary Fund and World Bank data from 2000-14 for 12 countries that confronted 18 major natural disasters. It found that, regardless of event type, annual remittances rose steadily from 2000-14 except for after the 2008-09 financial crisis. Post disaster, there was a quarterly increase in the majority of cases (confirming previous research) but there was seldom an annual increase in the year of the disaster greater than the average annual increase in 2000-14. It appears that remittance senders rush to provide assistance after a natural disaster, but since their own financial situation has not changed, the immediate increase is compensated by a later decrease.


Assuntos
Desastres , Cooperação Internacional , Países em Desenvolvimento , Humanos
14.
Int J Food Sci Nutr ; 68(4): 421-428, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27871184

RESUMO

The prebiotic ability of several rice bran fractions obtained by debranning (RBD) using human microbiota was studied in anaerobic batch cultures with agitation and pH-controlled. Fraction C (3.8-5% w/w pearling) from RBD increased the number of bifidobacteria and lactobacteria compared with the positive control, raftilose P95. RBD fermentation induced changes in the short-chain fatty acid (SCFA) profile. In addition, Fraction C revealed the highest growth of positive lactobacteria than commercial control. The present work illustrates the prebiotic capacity of RBD to modulate human microbiota and highlights that fraction C could be an economical source for use in human food as well as an interesting alternative to valorise a by-product of cereal industry.


Assuntos
Bactérias/metabolismo , Manipulação de Alimentos/métodos , Oryza , Prebióticos , Ácidos Graxos/metabolismo , Fermentação
15.
Br J Nutr ; 116(3): 480-6, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27267934

RESUMO

Prebiotic oligosaccharides have the ability to generate important changes in the gut microbiota composition that may confer health benefits to the host. Reducing the impurities in prebiotic mixtures could expand their applications in food industries and improve their selectivity and prebiotic effect on the potential beneficial bacteria such as bifidobacteria and lactobacilli. This study aimed to determine the in vitro potential fermentation properties of a 65 % galacto-oligosaccharide (GOS) content Bimuno® GOS (B-GOS) on gut microbiota composition and their metabolites. Fermentation of 65 % B-GOS was compared with 52 % B-GOS in pH- and volume-controlled dose-response anaerobic batch culture experiments. In total, three different doses (1, 0·5 and 0·33 g equivalent to 0·1, 0·05 and 0·033 g/l) were tested. Changes in the gut microbiota during a time course were identified by fluorescence in situ hybridisation, whereas small molecular weight metabolomics profiles and SCFA were determined by 1H-NMR analysis and GC, respectively. The 65 % B-GOS showed positive modulation of the microbiota composition during the first 8 h of fermentation with all doses. Administration of the specific doses of B-GOS induced a significant increase in acetate as the major SCFA synthesised compared with propionate and butyrate concentrations, but there were no significant differences between substrates. The 65 % B-GOS in syrup format seems to have, in all the analysis, an efficient prebiotic effect. However, the applicability of such changes remains to be shown in an in vivo trial.


Assuntos
Bactérias/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , Fermentação , Galactose/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Oligossacarídeos/farmacologia , Prebióticos , Ácido Acético/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Ácido Butírico/metabolismo , Colo/metabolismo , Colo/microbiologia , Fezes , Humanos , Lactobacillus/efeitos dos fármacos , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Metabolômica , Propionatos/metabolismo
16.
Br J Nutr ; 116(11): 1869-1877, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27974055

RESUMO

Aberrant microbiota composition and function have been linked to several pathologies, including type 2 diabetes. In animal models, prebiotics induce favourable changes in the intestinal microbiota, intestinal permeability (IP) and endotoxaemia, which are linked to concurrent improvement in glucose tolerance. This is the first study to investigate the link between IP, glucose tolerance and intestinal bacteria in human type 2 diabetes. In all, twenty-nine men with well-controlled type 2 diabetes were randomised to a prebiotic (galacto-oligosaccharide mixture) or placebo (maltodextrin) supplement (5·5 g/d for 12 weeks). Intestinal microbial community structure, IP, endotoxaemia, inflammatory markers and glucose tolerance were assessed at baseline and post intervention. IP was estimated by the urinary recovery of oral 51Cr-EDTA and glucose tolerance by insulin-modified intravenous glucose tolerance test. Intestinal microbial community analysis was performed by high-throughput next-generation sequencing of 16S rRNA amplicons and quantitative PCR. Prebiotic fibre supplementation had no significant effects on clinical outcomes or bacterial abundances compared with placebo; however, changes in the bacterial family Veillonellaceae correlated inversely with changes in glucose response and IL-6 levels (r -0·90, P=0·042 for both) following prebiotic intake. The absence of significant changes to the microbial community structure at a prebiotic dosage/length of supplementation shown to be effective in healthy individuals is an important finding. We propose that concurrent metformin treatment and the high heterogeneity of human type 2 diabetes may have played a significant role. The current study does not provide evidence for the role of prebiotics in the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Disbiose/dietoterapia , Microbioma Gastrointestinal/fisiologia , Interações Hospedeiro-Patógeno , Prebióticos , Trissacarídeos/uso terapêutico , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/microbiologia , Método Duplo-Cego , Disbiose/complicações , Disbiose/metabolismo , Disbiose/microbiologia , Endotoxemia/complicações , Endotoxemia/imunologia , Endotoxemia/microbiologia , Endotoxemia/prevenção & controle , Seguimentos , Microbioma Gastrointestinal/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Mediadores da Inflamação/sangue , Resistência à Insulina , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Londres , Masculino , Metformina/efeitos adversos , Metformina/uso terapêutico , Pessoa de Meia-Idade , Veillonellaceae/efeitos dos fármacos , Veillonellaceae/crescimento & desenvolvimento , Veillonellaceae/imunologia , Veillonellaceae/fisiologia
18.
Infect Immun ; 83(6): 2350-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25824834

RESUMO

Resistance to the innate defenses of the intestine is crucial for the survival and carriage of Staphylococcus aureus, a common colonizer of the human gut. Bile salts produced by the liver and secreted into the intestines are one such group of molecules with potent antimicrobial activity. The mechanisms by which S. aureus is able to resist such defenses in order to colonize and survive in the human gut are unknown. Here we show that mnhF confers resistance to bile salts, which can be abrogated by efflux pump inhibitors. MnhF mediates the efflux of radiolabeled cholic acid both in S. aureus and when heterologously expressed in Escherichia coli, rendering them resistant. Deletion of mnhF attenuated the survival of S. aureus in an anaerobic three-stage continuous-culture model of the human colon (gut model), which represents different anatomical areas of the large intestine.


Assuntos
Proteínas de Bactérias/metabolismo , Colatos/metabolismo , Colo/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/genética , Clonagem Molecular , Colo/microbiologia , Humanos , Modelos Biológicos , Staphylococcus aureus/genética
19.
Gastroenterology ; 156(4): 1223, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30794765
20.
J Nutr ; 145(7): 1446-52, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25948780

RESUMO

BACKGROUND: Advancing age is linked to a decrease in beneficial bacteria such as Bifidobacterium spp. and reduced aspects of innate immune function. OBJECTIVES: We investigated whether daily consumption of a probiotic [Bacillus coagulans GBI-30, 6086 (BC30); GanedenBC(30)] could improve immune function and gut function in men and women aged 65-80 y, using a double-blind, placebo-controlled crossover design. METHOD: Thirty-six volunteers were recruited and randomly assigned to receive either a placebo (microcrystalline cellulose) or the probiotic BC30 (1 × 10(9) colony-forming units/capsule). Volunteers consumed 1 treatment capsule per day for 28 d, followed by a 21-d washout period before switching to the other treatment. Blood and fecal samples were collected at the beginning and end of each treatment period. Fecal samples were used to enumerate bacterial groups and concentrations of calprotectin. Peripheral blood mononuclear cells (PBMCs) were extracted from whole blood to assess natural killer cell activity and lipopolysaccharide (LPS)-stimulated cytokine production. C-reactive protein concentrations were measured in plasma. RESULTS: Consumption of BC30 significantly increased populations of Faecalibacterium prausnitzii by 0.1 log10 cells/mL more than during consumption of the placebo (P = 0.03), whereas populations of Bacillus spp. increased significantly by 0.5 log10 cells/mL from baseline in volunteers who consumed BC30 (P = 0.007). LPS-stimulated PBMCs showed a 0.2 ng/mL increase in the anti-inflammatory cytokine IL-10 28 d after consumption of BC30 (P < 0.05), whereas the placebo did not affect IL-10, and no overall difference was found in the effect of the treatments. CONCLUSIONS: Daily consumption of BC30 by adults aged 65-80 y can increase beneficial groups of bacteria in the human gut and potentially increase production of anti-inflammatory cytokines. This study shows the potential benefits of a probiotic to improve dysbiosis via modulation of the microbiota in older persons.


Assuntos
Bacillus , Bactérias Gram-Positivas/isolamento & purificação , Intestinos/microbiologia , Probióticos/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Anti-Inflamatórios/farmacologia , Proteína C-Reativa/metabolismo , Contagem de Colônia Microbiana , Estudos Cross-Over , Método Duplo-Cego , Fezes/química , Fezes/microbiologia , Feminino , Voluntários Saudáveis , Humanos , Interleucina-10/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Intestinos/fisiologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/metabolismo , Lipopolissacarídeos/efeitos adversos , Masculino , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA