Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Genet ; 143(5): 703-719, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609570

RESUMO

Systemic Lupus Erythematosus (SLE) is an autoimmune disease with heterogeneous manifestations, including neurological and psychiatric symptoms. Genetic association studies in SLE have been hampered by insufficient sample size and limited power compared to many other diseases. Multiple Sclerosis (MS) is a chronic relapsing autoimmune disease of the central nervous system (CNS) that also manifests neurological and immunological features. Here, we identify a method of leveraging large-scale genome wide association studies (GWAS) in MS to identify novel genetic risk loci in SLE. Statistical genetic comparison methods including linkage disequilibrium score regression (LDSC) and cross-phenotype association analysis (CPASSOC) to identify genetic overlap in disease pathophysiology, traditional 2-sample and novel PPI-based mendelian randomization to identify causal associations and Bayesian colocalization were applied to association studies conducted in MS to facilitate discovery in the smaller, more limited datasets available for SLE. Pathway analysis using SNP-to-gene mapping identified biological networks composed of molecular pathways with causal implications for CNS disease in SLE specifically, as well as pathways likely causal of both pathologies, providing key insights for therapeutic selection.


Assuntos
Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico , Esclerose Múltipla , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/fisiopatologia , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Esclerose Múltipla/fisiopatologia , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Mapas de Interação de Proteínas , População Branca , Desequilíbrio de Ligação , Correlação de Dados , Biologia de Sistemas/métodos
2.
Am J Hum Genet ; 107(5): 864-881, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33031749

RESUMO

Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disorder with a prominent genetic component. Individuals of African ancestry (AA) experience the disease more severely and with an increased co-morbidity burden compared to European ancestry (EA) populations. We hypothesize that the disparities in disease prevalence, activity, and response to standard medications between AA and EA populations is partially conferred by genomic influences on biological pathways. To address this, we applied a comprehensive approach to identify all genes predicted from SNP-associated risk loci detected with the Immunochip. By combining genes predicted via eQTL analysis, as well as those predicted from base-pair changes in intergenic enhancer sites, coding-region variants, and SNP-gene proximity, we were able to identify 1,731 potential ancestry-specific and trans-ancestry genetic drivers of SLE. Gene associations were linked to upstream and downstream regulators using connectivity mapping, and predicted biological pathways were mined for candidate drug targets. Examination of trans-ancestral pathways reflect the well-defined role for interferons in SLE and revealed pathways associated with tissue repair and remodeling. EA-dominant genetic drivers were more often associated with innate immune and myeloid cell function pathways, whereas AA-dominant pathways mirror clinical findings in AA subjects, suggesting disease progression is driven by aberrant B cell activity accompanied by ER stress and metabolic dysfunction. Finally, potential ancestry-specific and non-specific drug candidates were identified. The integration of all SLE SNP-predicted genes into functional pathways revealed critical molecular pathways representative of each population, underscoring the influence of ancestry on disease mechanism and also providing key insight for therapeutic selection.


Assuntos
Redes Reguladoras de Genes , Genoma Humano , Interferons/genética , Lúpus Eritematoso Sistêmico/etnologia , Lúpus Eritematoso Sistêmico/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Linfócitos B/imunologia , Linfócitos B/patologia , População Negra , Bortezomib/uso terapêutico , DNA Intergênico/genética , DNA Intergênico/imunologia , Elementos Facilitadores Genéticos , Expressão Gênica , Ontologia Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Compostos Heterocíclicos/uso terapêutico , Humanos , Interferons/imunologia , Isoquinolinas/uso terapêutico , Lactamas , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Anotação de Sequência Molecular , Análise Serial de Proteínas , Característica Quantitativa Herdável , População Branca
3.
J Allergy Clin Immunol ; 149(1): 12-23, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34857396

RESUMO

Systemic lupus erythematosus (SLE) is a multiorgan autoimmune disorder with a prominent genetic component. Evidence has shown that individuals of non-European ancestry experience the disease more severely, exhibiting an increased incidence of cardiovascular disease, renal involvement, and tissue damage compared with European ancestry populations. Furthermore, there seems to be variability in the response of individuals within different ancestral groups to standard medications, including cyclophosphamide, mycophenolate, rituximab, and belimumab. Although the widespread application of candidate gene, Immunochip, and genome-wide association studies has contributed to our understanding of the link between genetic variation (typically single nucleotide polymorphisms) and SLE, despite decades of research it is still unclear why ancestry remains a key determinant of poorer outcome in non-European-ancestry patients with SLE. Here, we will discuss the impact of ancestry on SLE disease burden in patients from diverse backgrounds and highlight how research efforts using novel bioinformatic and pathway-based approaches have begun to disentangle the complex genetic architecture linking ancestry to SLE susceptibility. Finally, we will illustrate how genomic and gene expression analyses can be combined to help identify novel molecular pathways and drug candidates that might uniquely impact SLE among different ancestral populations.


Assuntos
Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Animais , Meio Ambiente , Epigênese Genética , Genômica , Humanos , Lúpus Eritematoso Sistêmico/terapia
4.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902333

RESUMO

The persistent impact of the COVID-19 pandemic and heterogeneity in disease manifestations point to a need for innovative approaches to identify drivers of immune pathology and predict whether infected patients will present with mild/moderate or severe disease. We have developed a novel iterative machine learning pipeline that utilizes gene enrichment profiles from blood transcriptome data to stratify COVID-19 patients based on disease severity and differentiate severe COVID cases from other patients with acute hypoxic respiratory failure. The pattern of gene module enrichment in COVID-19 patients overall reflected broad cellular expansion and metabolic dysfunction, whereas increased neutrophils, activated B cells, T-cell lymphopenia, and proinflammatory cytokine production were specific to severe COVID patients. Using this pipeline, we also identified small blood gene signatures indicative of COVID-19 diagnosis and severity that could be used as biomarker panels in the clinical setting.


Assuntos
COVID-19 , Humanos , Transcriptoma , SARS-CoV-2 , Pandemias , Teste para COVID-19 , Aprendizado de Máquina
5.
Curr Opin Rheumatol ; 33(6): 579-585, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34410228

RESUMO

PURPOSE OF REVIEW: To summarize recent studies stratifying SLE patients into subgroups based on gene expression profiling and suggest future improvements for employing transcriptomic data to foster precision medicine. RECENT FINDINGS: Bioinformatic & machine learning pipelines have been employed to dissect the transcriptomic heterogeneity of lupus patients and identify more homogenous subgroups. Some examples include the use of unsupervised random forest and k-means clustering to separate adult SLE patients into seven clusters and hierarchical clustering of single-cell RNA-sequencing (scRNA-seq) of immune cells yielding four clusters in a cohort of adult SLE and pediatric SLE participants. Random forest classification of bulk RNA-seq data from sorted blood cells enabled prediction of high or low disease activity in European and Asian SLE patients. Inferred transcription factor activity stratified adult and pediatric SLE into two subgroups. SUMMARY: Several different endotypes of SLE patients with differing molecular profiles have been reported but a global consensus of clinically actionable groups has not been reached. Moreover, heterogeneity between datasets, reproducibility of predictions as well as the most effective classification approach have not been resolved. Nevertheless, gene expression-based precision medicine remains an attractive option to subset lupus patients.


Assuntos
Lúpus Eritematoso Sistêmico , Medicina de Precisão , Perfilação da Expressão Gênica , Humanos , Lúpus Eritematoso Sistêmico/genética , Reprodutibilidade dos Testes , Transcriptoma
6.
J Immunol ; 202(11): 3309-3317, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31019061

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the presence of low-density granulocytes (LDGs) with a heightened capacity for spontaneous NETosis, but the contribution of LDGs to SLE pathogenesis remains unclear. To characterize LDGs in human SLE, gene expression profiles derived from isolated LDGs were characterized by weighted gene coexpression network analysis, and a 92-gene module was identified. The LDG gene signature was enriched in genes related to neutrophil degranulation and cell cycle regulation. This signature was assessed in gene expression datasets from two large-scale SLE clinical trials to study associations between LDG enrichment, SLE manifestations, and treatment regimens. LDG enrichment in the blood was associated with corticosteroid treatment as well as anti-dsDNA, low serum complement, renal manifestations, and vasculitis, but the latter two of these associations were dependent on concomitant corticosteroid treatment. In addition, LDG enrichment was associated with enrichment of gene signatures induced by type I IFN and TNF irrespective of corticosteroid treatment. Notably, LDG enrichment was not found in numerous tissues affected by SLE. Comparison with relevant reference datasets indicated that LDG enrichment is likely reflective of increased granulopoiesis in the bone marrow and not peripheral neutrophil activation. The results have uncovered important determinants of the appearance of LDGs in SLE and have emphasized the likely role of LDGs in specific aspects of lupus pathogenesis.


Assuntos
Armadilhas Extracelulares/imunologia , Granulócitos/fisiologia , Lúpus Eritematoso Sistêmico/genética , Corticosteroides/uso terapêutico , Anticorpos Antinucleares/sangue , Ciclo Celular/genética , Degranulação Celular/genética , Conjuntos de Dados como Assunto , Redes Reguladoras de Genes , Genômica , Hematopoese , Humanos , Interferon Tipo I/metabolismo , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Ativação de Neutrófilo , Transcriptoma
7.
J Autoimmun ; 110: 102359, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31806421

RESUMO

Systemic lupus erythematosus (SLE) is a chronic, systemic autoimmune disease that causes damage to multiple organ systems. Despite decades of research and available murine models that capture some aspects of the human disease, new treatments for SLE lag behind other autoimmune diseases such as Rheumatoid Arthritis and Crohn's disease. Big data genomic assays have transformed our understanding of SLE by providing important insights into the molecular heterogeneity of this multigenic disease. Gene wide association studies have demonstrated more than 100 risk loci, supporting a model of multiple genetic hits increasing SLE risk in a non-linear fashion, and providing evidence of ancestral diversity in susceptibility loci. Epigenetic studies to determine the role of methylation, acetylation and non-coding RNAs have provided new understanding of the modulation of gene expression in SLE patients and identified new drug targets and biomarkers for SLE. Gene expression profiling has led to a greater understanding of the role of myeloid cells in the pathogenesis of SLE, confirmed roles for T and B cells in SLE, promoted clinical trials based on the prominent interferon signature found in SLE patients, and identified candidate biomarkers and cellular signatures to further drug development and drug repurposing. Gene expression studies are advancing our understanding of the underlying molecular heterogeneity in SLE and providing hope that patient stratification will expedite new therapies based on personal molecular signatures. Although big data analyses present unique interpretation challenges, both computationally and biologically, advances in machine learning applications may facilitate the ability to predict changes in SLE disease activity and optimize therapeutic strategies.


Assuntos
Suscetibilidade a Doenças , Lúpus Eritematoso Sistêmico/etiologia , Lúpus Eritematoso Sistêmico/metabolismo , Alelos , Animais , Big Data , Biomarcadores , Mineração de Dados , Suscetibilidade a Doenças/imunologia , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/terapia , Aprendizado de Máquina , Medicina de Precisão/métodos
8.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545086

RESUMO

Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease in which the body's immune system mistakenly attacks healthy cells. Although the exact cause of SLE has not been identified, it is clear that both genetics and environmental factors trigger the disease. Identical twins have a 24% chance of getting lupus disease if the other one is affected. Internal factors such as female gender and sex hormones, the major histocompatibility complex (MHC) locus and other genetic polymorphisms have been shown to affect SLE, as well as external, environmental influences such as sunlight exposure, smoking, vitamin D deficiency, and certain infections. Several studies have reported and proposed multiple associations between the alteration of the epigenome and the pathogenesis of autoimmune disease. Epigenetic factors contributing to SLE include microRNAs, DNA methylation status, and the acetylation/deacetylation of histone proteins. Additionally, the acetylation of non-histone proteins can also influence cellular function. A better understanding of non-genomic factors that regulate SLE will provide insight into the mechanisms that initiate and facilitate disease and also contribute to the development of novel therapeutics that can specifically target pathogenic molecular pathways.


Assuntos
Lúpus Eritematoso Sistêmico/metabolismo , Proteínas/metabolismo , Acetilação , Animais , Metilação de DNA/genética , Epigênese Genética , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/patologia
9.
iScience ; 26(10): 108042, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37860757

RESUMO

Machine learning (ML) has the potential to identify subsets of patients with distinct phenotypes from gene expression data. However, phenotype prediction using ML has often relied on identifying important genes without a systems biology context. To address this, we created an interpretable ML approach based on blood transcriptomics to predict phenotype in systemic lupus erythematosus (SLE), a heterogeneous autoimmune disease. We employed a sequential grouped feature importance algorithm to assess the performance of gene sets, including immune and metabolic pathways and cell types, known to be abnormal in SLE in predicting disease activity and organ involvement. Gene sets related to interferon, tumor necrosis factor, the mitoribosome, and T cell activation were the best predictors of phenotype with excellent performance. These results suggest potential relationships between the molecular pathways identified in each model and manifestations of SLE. This ML approach to phenotype prediction can be applied to other diseases and tissues.

10.
Front Immunol ; 14: 1282770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155972

RESUMO

Introduction: B cells can have both pathogenic and protective roles in autoimmune diseases, including systemic lupus erythematosus (SLE). Deficiencies in the number or immunosuppressive function of IL-10 producing regulatory B cells (Bregs) can cause exacerbated autoimmune inflammation. However, the exact role of Bregs in lupus pathogenesis has not been elucidated. Methods: We carried out gene expression analysis by scRNA-seq to characterize differences in splenic Breg subsets and molecular profiles through stages of disease progression in lupus-prone mice. Transcriptome-based changes in Bregs from mice with active disease were confirmed by phenotypic analysis. Results: We found that a loss of marginal zone (MZ) lineage Bregs, an increase in plasmablast/plasma cell (PB-PC) lineage Bregs, and overall increases in inflammatory gene signatures were characteristic of active disease as compared to Bregs from the pre-disease stage. However, the frequencies of both MZ Bregs and PB-PCs expressing IL-10 were significantly decreased in active-disease mice. Conclusion: Overall, we have identified changes to the repertoire and transcriptional landscape of Breg subsets associated with active disease that provide insights into the role of Bregs in lupus pathogenesis. These results could inform the design of Breg-targeted therapies and interventions to restore Breg suppressive function in autoimmunity.


Assuntos
Doenças Autoimunes , Linfócitos B Reguladores , Lúpus Eritematoso Sistêmico , Animais , Camundongos , Interleucina-10/genética , Interleucina-10/metabolismo , Lúpus Eritematoso Sistêmico/genética , Análise de Sequência de RNA
11.
Front Immunol ; 14: 1147526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936908

RESUMO

Introduction: Pathologic inflammation is a major driver of kidney damage in lupus nephritis (LN), but the immune mechanisms of disease progression and risk factors for end organ damage are poorly understood. Methods: To characterize molecular profiles through the development of LN, we carried out gene expression analysis of microdissected kidneys from lupus-prone NZM2328 mice. We examined male mice and the congenic NZM2328.R27 strain as a means to define mechanisms associated with resistance to chronic nephritis. Gene expression profiles in lupus mice were compared with those in human LN. Results: NZM2328 mice exhibited progress from acute to transitional and then to chronic glomerulonephritis (GN). Each stage manifested a unique molecular profile. Neither male mice nor R27 mice progressed past the acute GN stage, with the former exhibiting minimal immune infiltration and the latter enrichment of immunoregulatory gene signatures in conjunction with robust kidney tubule cell profiles indicative of resistance to cellular damage. The gene expression profiles of human LN were similar to those noted in the NZM2328 mouse suggesting comparable stages of LN progression. Conclusions: Overall, this work provides a comprehensive examination of the immune processes involved in progression of murine LN and thus contributes to our understanding of the risk factors for end-stage renal disease. In addition, this work presents a foundation for improved classification of LN and illustrates the applicability of murine models to identify the stages of human disease.


Assuntos
Glomerulonefrite , Falência Renal Crônica , Nefrite Lúpica , Humanos , Camundongos , Masculino , Animais , Rim/patologia , Glomerulonefrite/patologia , Inflamação , Falência Renal Crônica/patologia , Doença Crônica
12.
RMD Open ; 9(3)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37709528

RESUMO

OBJECTIVES: Type I interferon (IFN) plays a role in the pathogenesis of systemic lupus erythematosus (SLE), but insufficient attention has been directed to the differences in IFN responses between ancestral populations. Here, we explored the expression of the interferon gene signatures (IGSs) in SLE patients of European ancestry (EA) and Asian ancestry (AsA). METHODS: We used gene set variation analysis with multiple IGS encompassing the response to both type 1 and type 2 IFN in isolated CD14+ monocytes, CD19+B cells, CD4+T cells and Natural Killer (NK) cells from patients with SLE stratified by self-identified ancestry. The expression of genes upstream of the IGS and influenced by lupus-associated risk alleles was also examined. Lastly, we employed machine learning (ML) models to assess the most important features classifying patients by disease activity. RESULTS: AsA patients with SLE exhibited greater enrichment in the IFN core and IFNA2 IGS compared with EA patients in all cell types examined and, in the presence and absence of autoantibodies. Overall, AsA patients with SLE demonstrated higher expression of genes upstream of the IGS than EA counterparts. ML with feature importance analysis indicated that IGS expression in NK cells, anti-dsDNA, complement levels and AsA status contributed to disease activity. CONCLUSIONS: AsA patients with SLE exhibited higher IGS than EA patients in all cell types regardless of autoantibody status, with enhanced expression of genetically associated genes upstream of the IGS potentially contributing. AsA, along with the IGS in NK cells, anti-dsDNA and complement, independently influenced SLE disease activity.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Humanos , Interferon Tipo I/genética , Alelos , Autoanticorpos , Células Matadoras Naturais , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética
13.
Genome Med ; 15(1): 84, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845772

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is known to be clinically heterogeneous. Previous efforts to characterize subsets of SLE patients based on gene expression analysis have not been reproduced because of small sample sizes or technical problems. The aim of this study was to develop a robust patient stratification system using gene expression profiling to characterize individual lupus patients. METHODS: We employed gene set variation analysis (GSVA) of informative gene modules to identify molecular endotypes of SLE patients, machine learning (ML) to classify individual patients into molecular subsets, and logistic regression to develop a composite metric estimating the scope of immunologic perturbations. SHapley Additive ExPlanations (SHAP) revealed the impact of specific features on patient sub-setting. RESULTS: Using five datasets comprising 2183 patients, eight SLE endotypes were identified. Expanded analysis of 3166 samples in 17 datasets revealed that each endotype had unique gene enrichment patterns, but not all endotypes were observed in all datasets. ML algorithms trained on 2183 patients and tested on 983 patients not used to develop the model demonstrated effective classification into one of eight endotypes. SHAP indicated a unique array of features influential in sorting individual samples into each of the endotypes. A composite molecular score was calculated for each patient and significantly correlated with standard laboratory measures. Significant differences in clinical characteristics were associated with different endotypes, with those with the least perturbed transcriptional profile manifesting lower disease severity. The more abnormal endotypes were significantly more likely to experience a severe flare over the subsequent 52 weeks while on standard-of-care medication and specific endotypes were more likely to be clinical responders to the investigational product tested in one clinical trial analyzed (tabalumab). CONCLUSIONS: Transcriptomic profiling and ML reproducibly separated lupus patients into molecular endotypes with significant differences in clinical features, outcomes, and responsiveness to therapy. Our classification approach using a composite scoring system based on underlying molecular abnormalities has both staging and prognostic relevance.


Assuntos
Lúpus Eritematoso Sistêmico , Transcriptoma , Humanos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Algoritmos
14.
Immunohorizons ; 7(1): 17-29, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637518

RESUMO

Vitamin A (VA) deficiency (VAD) is observed in both humans and mice with lupus nephritis. However, whether VAD is a driving factor for accelerated progression of lupus nephritis is unclear. In this study, we investigated the effect of VAD on the progression of lupus nephritis in a lupus-prone mouse model, MRL/lpr. We initiated VAD either during gestation or after weaning to reveal a potential time-dependent effect. We found exacerbated lupus nephritis at ∼15 wk of age with both types of VAD that provoked tubulointerstitial nephritis leading to renal failure. This was concomitant with significantly higher mortality in all VAD mice. Importantly, restoration of VA levels after weaning reversed VAD-induced mortality. These results suggest VAD-driven acceleration of tubulointerstitial lupus nephritis. Mechanistically, at the earlier time point of 7 wk of age and before the onset of clinical lupus nephritis, continued VAD (from gestation until postweaning) enhanced plasma cell activation and augmented their autoantibody production, while also increasing the expansion of T lymphocytes that could promote plasma cell autoreactivity. Moreover, continued VAD increased the renal infiltration of plasmacytoid dendritic cells. VAD initiated after weaning, in contrast, showed modest effects on autoantibodies and renal plasmacytoid dendritic cells that were not statistically significant. Remarkably, analysis of gene expression in human kidney revealed that the retinoic acid pathway was decreased in the tubulointerstitial region of lupus nephritis, supporting our findings in MRL/lpr mice. Future studies will elucidate the underlying mechanisms of how VAD modulates cellular functions to exacerbate tubulointerstitial lupus nephritis.


Assuntos
Nefrite Lúpica , Nefrite Intersticial , Camundongos , Humanos , Animais , Nefrite Lúpica/genética , Camundongos Endogâmicos MRL lpr , Rim , Autoanticorpos
15.
Sci Rep ; 13(1): 5141, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991079

RESUMO

Regulation of intron retention (IR), a form of alternative splicing, is a newly recognized checkpoint in gene expression. Since there are numerous abnormalities in gene expression in the prototypic autoimmune disease systemic lupus erythematosus (SLE), we sought to determine whether IR was intact in patients with this disease. We, therefore, studied global gene expression and IR patterns of lymphocytes in SLE patients. We analyzed RNA-seq data from peripheral blood T cell samples from 14 patients suffering from systemic lupus erythematosus (SLE) and 4 healthy controls and a second, independent data set of RNA-seq data from B cells from16 SLE patients and 4 healthy controls. We identified intron retention levels from 26,372 well annotated genes as well as differential gene expression and tested for differences between cases and controls using unbiased hierarchical clustering and principal component analysis. We followed with gene-disease enrichment analysis and gene-ontology enrichment analysis. Finally, we then tested for significant differences in intron retention between cases and controls both globally and with respect to specific genes. Overall decreased IR was found in T cells from one cohort and B cells from another cohort of patients with SLE and was associated with increased expression of numerous genes, including those encoding spliceosome components. Different introns within the same gene displayed both up- and down-regulated retention profiles indicating a complex regulatory mechanism. These results indicate that decreased IR in immune cells is characteristic of patients with active SLE and may contribute to the abnormal expression of specific genes in this autoimmune disease.


Assuntos
Lúpus Eritematoso Sistêmico , Linfócitos T , Humanos , Íntrons/genética , Linfócitos T/metabolismo , Linfócitos B
16.
iScience ; 26(9): 107487, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636066

RESUMO

Aberrant metabolic demand is observed in immune/inflammatory disorders, yet the role in pathogenesis remains unclear. Here, we discover that in lupus, activated B cells, including germinal center B (GCB) cells, have remarkably high glycolytic requirement for survival over T cell populations, as demonstrated by increased metabolic activity in lupus-activated B cells compared to immunization-induced cells. The augmented reliance on glucose oxidation makes GCB cells vulnerable to mitochondrial ROS-induced oxidative stress and apoptosis. Short-term glycolysis inhibition selectively reduces pathogenic activated B in lupus-prone mice, extending their lifespan, without affecting T follicular helper cells. Particularly, BCMA-expressing GCB cells rely heavily on glucose oxidation. Depleting BCMA-expressing activated B cells with APRIL-based CAR-T cells significantly prolongs the lifespan of mice with severe autoimmune disease. These results reveal that glycolysis-dependent activated B and GCB cells, especially those expressing BCMA, are potentially key lupus mediators, and could be targeted to improve disease outcomes.

17.
Sci Rep ; 13(1): 5339, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005464

RESUMO

Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disorder with a prominent genetic component. Individuals of Asian-Ancestry (AsA) disproportionately experience more severe SLE compared to individuals of European-Ancestry (EA), including increased renal involvement and tissue damage. However, the mechanisms underlying elevated severity in the AsA population remain unclear. Here, we utilized available gene expression data and genotype data based on all non-HLA SNP associations in EA and AsA SLE patients detected using the Immunochip genotyping array. We identified 2778 ancestry-specific and 327 trans-ancestry SLE-risk polymorphisms. Genetic associations were examined using connectivity mapping and gene signatures based on predicted biological pathways and were used to interrogate gene expression datasets. SLE-associated pathways in AsA patients included elevated oxidative stress, altered metabolism and mitochondrial dysfunction, whereas SLE-associated pathways in EA patients included a robust interferon response (type I and II) related to enhanced cytosolic nucleic acid sensing and signaling. An independent dataset derived from summary genome-wide association data in an AsA cohort was interrogated and identified similar molecular pathways. Finally, gene expression data from AsA SLE patients corroborated the molecular pathways predicted by SNP associations. Identifying ancestry-related molecular pathways predicted by genetic SLE risk may help to disentangle the population differences in clinical severity that impact AsA and EA individuals with SLE.


Assuntos
Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico , Humanos , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Lúpus Eritematoso Sistêmico/genética , Genótipo , Estudos de Casos e Controles
18.
J Exp Med ; 203(1): 63-72, 2006 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-16380510

RESUMO

Interferon (IFN) consensus sequence-binding protein/IFN regulatory factor 8 (IRF8) is a transcription factor that regulates the differentiation and function of macrophages, granulocytes, and dendritic cells through activation or repression of target genes. Although IRF8 is also expressed in lymphocytes, its roles in B cell and T cell maturation or function are ill defined, and few transcriptional targets are known. Gene expression profiling of human tonsillar B cells and mouse B cell lymphomas showed that IRF8 transcripts were expressed at highest levels in centroblasts, either from secondary lymphoid tissue or transformed cells. In addition, staining for IRF8 was most intense in tonsillar germinal center (GC) dark-zone centroblasts. To discover B cell genes regulated by IRF8, we transfected purified primary tonsillar B cells with enhanced green fluorescent protein-tagged IRF8, generated small interfering RNA knockdowns of IRF8 expression in a mouse B cell lymphoma cell line, and examined the effects of a null mutation of IRF8 on B cells. Each approach identified activation-induced cytidine deaminase (AICDA) and BCL6 as targets of transcriptional activation. Chromatin immunoprecipitation studies demonstrated in vivo occupancy of 5' sequences of both genes by IRF8 protein. These results suggest previously unappreciated roles for IRF8 in the transcriptional regulation of B cell GC reactions that include direct regulation of AICDA and BCL6.


Assuntos
Linfócitos B/metabolismo , Centro Germinativo/metabolismo , Fatores Reguladores de Interferon/metabolismo , Animais , Linfócitos B/imunologia , Linhagem Celular Tumoral , Células Cultivadas , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Centro Germinativo/imunologia , Humanos , Fatores Reguladores de Interferon/deficiência , Fatores Reguladores de Interferon/genética , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Tonsila Palatina/citologia , Tonsila Palatina/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6
19.
Sci Adv ; 8(17): eabn4776, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35486723

RESUMO

Analysis of gene expression from cutaneous lupus erythematosus, psoriasis, atopic dermatitis, and systemic sclerosis using gene set variation analysis (GSVA) revealed that lesional samples from each condition had unique features, but all four diseases displayed common enrichment in multiple inflammatory signatures. These findings were confirmed by both classification and regression tree analysis and machine learning (ML) models. Nonlesional samples from each disease also differed from normal samples and each other by ML. Notably, the features used in classification of nonlesional disease were more distinct than their lesional counterparts, and GSVA confirmed unique features of nonlesional disease. These data show that lesional and nonlesional skin samples from inflammatory skin diseases have unique profiles of gene expression abnormalities, especially in nonlesional skin, and suggest a model in which disease-specific abnormalities in "prelesional" skin may permit environmental stimuli to trigger inflammatory responses leading to both the unique and shared manifestations of each disease.


Assuntos
Dermatite Atópica , Psoríase , Dermatite Atópica/genética , Dermatite Atópica/metabolismo , Humanos , Aprendizado de Máquina , Psoríase/genética , Psoríase/metabolismo , Pele/metabolismo
20.
Front Immunol ; 13: 989556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189236

RESUMO

COVID-19 manifests a spectrum of respiratory symptoms, with the more severe often requiring hospitalization. To identify markers for disease progression, we analyzed longitudinal gene expression data from patients with confirmed SARS-CoV-2 infection admitted to the intensive care unit (ICU) for acute hypoxic respiratory failure (AHRF) as well as other ICU patients with or without AHRF and correlated results of gene set enrichment analysis with clinical features. The results were then compared with a second dataset of COVID-19 patients separated by disease stage and severity. Transcriptomic analysis revealed that enrichment of plasma cells (PCs) was characteristic of all COVID-19 patients whereas enrichment of interferon (IFN) and neutrophil gene signatures was specific to patients requiring hospitalization. Furthermore, gene expression results were used to divide AHRF COVID-19 patients into 2 groups with differences in immune profiles and clinical features indicative of severe disease. Thus, transcriptomic analysis reveals gene signatures unique to COVID-19 patients and provides opportunities for identification of the most at-risk individuals.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , COVID-19/genética , Humanos , Unidades de Terapia Intensiva , Interferons , SARS-CoV-2 , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA