Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Environ Manage ; 324: 116374, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36352726

RESUMO

A collective understanding of economic impacts and in particular of monetary costs of biological invasions is lacking for the Nordic region. This paper synthesizes findings from the literature on costs of invasions in the Nordic countries together with expert elicitation. The analysis of cost data has been made possible through the InvaCost database, a globally open repository of monetary costs that allows for the use of temporal, spatial, and taxonomic descriptors facilitating a better understanding of how costs are distributed. The total reported costs of invasive species across the Nordic countries were estimated at $8.35 billion (in 2017 US$ values) with damage costs significantly outweighing management costs. Norway incurred the highest costs ($3.23 billion), followed by Denmark ($2.20 billion), Sweden ($1.45 billion), Finland ($1.11 billion) and Iceland ($25.45 million). Costs from invasions in the Nordics appear to be largely underestimated. We conclude by highlighting such knowledge gaps, including gaps in policies and regulation stemming from expert judgment as well as avenues for an improved understanding of invasion costs and needs for future research.


Assuntos
Países Escandinavos e Nórdicos , Noruega , Islândia , Finlândia , Suécia
2.
Biofouling ; 36(3): 332-350, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32401553

RESUMO

Today, ship hull fouling is managed through fouling-control coatings, complemented with in-water cleaning. During cleaning, coating damage and wear must be avoided, for maximum coating lifetime and reduced antifoulant release. When possible, cleaning should target early stages of fouling, using minimal forces. However, such forces, and their effects on coatings, have not yet been fully quantified. In this one-year study, minimal cleaning forces were determined using a newly-designed immersed waterjet. The results show that bi-monthly/monthly cleaning, with maximum wall shear stress up to ∼1.3 kPa and jet stagnation pressure ∼0.17 MPa, did not appear to cause damage or wear on either the biocidal antifouling (AF) or the biocide-free foul-release (FR) coatings. The AF coating required bi-monthly cleanings to keep fouling to incipient slime (time-averaged results), while the FR coating had a similar fouling level even without cleaning. The reported forces may be used in matching cleaning parameters to the adhesion strength of the early stages of fouling.


Assuntos
Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Navios , Água/química , Desinfetantes , Hidrodinâmica , Pressão , Navios/normas , Propriedades de Superfície
3.
Biofouling ; 35(2): 244-258, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30966794

RESUMO

In-water ships' hull cleaning enables significant fuel savings through removal of marine fouling from surfaces. However, cleaning may also shorten the lifetime of hull coatings, with a subsequent increase in the colonization and growth rate of fouling organisms. Deleterious effects of cleaning would be minimized by matching cleaning forces to the adhesion strength of the early stages of fouling, or microfouling. Calibrated waterjets are routinely used to compare different coatings in terms of the adhesion strength of microfouling. However, an absolute scale is lacking for translating such results into cleaning forces, which are of interest for the design and operation of hull cleaning devices. This paper discusses how such forces can be determined using computational fluid dynamics. Semi-empirical formulae are derived for forces under immersed waterjets, where the normal and tangential components of wall forces are given as functions of different flow parameters. Nozzle translation speed is identified as a parameter for future research, as this may affect cleaning efficacy.


Assuntos
Aderência Bacteriana , Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Hidrodinâmica , Modelos Teóricos , Navios , Propriedades de Superfície
4.
Biofouling ; 34(3): 262-272, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29457754

RESUMO

Hull biofouling is a well-known problem for the shipping industry, leading to increased resistance and fuel consumption. Considering that the effects of hull form on resistance are known to be higher for a less slender hull, it is hypothesised in this paper that the effect of biofouling roughness on resistance is also dependent on the hull form. To test this hypothesis, previously reported full-scale numerical results on a containership are re-analysed. Form effects on roughness penalties, corresponding to KΔCT = 0.058 ± 0.025, are observed at a low speed (19 knots, Res = 2.29 × 109), which are however cancelled out by traditionally neglected roughness effects on wave-making resistance at a higher speed (24 knots, Res = 2.89 × 109). It is concluded that hull form effects on biofouling penalties can be significant at low speeds, though not generalisable for higher speeds, namely when wave-making resistance corresponds to ≥ 29% of total resistance.


Assuntos
Incrustação Biológica , Fricção , Modelos Teóricos , Navios
5.
Mar Pollut Bull ; 184: 114102, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36113175

RESUMO

To combat unwanted fouling on immersed hulls, biocidal antifouling coatings are commonly applied to vessels trafficking the Baltic Sea. Here, the efficacy, environmental sustainability and market barriers of silicone foul-release coatings (FRCs) was assessed for this region to evaluate their viability as replacements for biocidal coatings. Coated panels were exposed statically over a 1 year period at three locations in the Baltic Sea region to assess the long-term performance of a biocide-free FRC and two copper coatings. The FRC was found to perform equally well or significantly better than the copper coatings. Even though most silicone FRCs on the market are biocide-free, a review of the literature regarding toxic effects and the identity and environmental fate of leachables shows that they may not be completely environmentally benign, simply for the lack of biocides. Nonetheless, FRCs are substantially less toxic compared to biocidal antifouling coatings and their use should be promoted.


Assuntos
Incrustação Biológica , Desinfetantes , Incrustação Biológica/prevenção & controle , Silicones , Cobre , Navios , Desinfetantes/toxicidade
6.
Sci Total Environ ; 852: 158316, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36037884

RESUMO

Biofouling of ship hulls form a vector for the introduction of non-indigenous organisms worldwide. Through increasing friction, the organisms attached to ships' hulls increase the fuel consumption, leading to both higher fuel costs and air emissions. At the same time, ship biofouling management causes both ecological risks and monetary costs. All these aspects should be considered case-specifically in the search of sustainable management strategies. Applying Bayesian networks, we developed a multi-criteria decision analysis model to compare biofouling management strategies in the Baltic Sea, given the characteristics of a ship, its operating profile and operational environment, considering the comprehensive environmental impact and the monetary costs. The model is demonstrated for three scenarios (SC1-3) and sub-scenarios (A-C), comparing the alternative biofouling management strategies in relation to NIS (non-indigenous species) introduction risk, eco-toxicological risk due to biocidal coating, carbon dioxide emissions and costs related to fuel consumption, in-water cleaning and hull coating. The scenarios demonstrate that by the careful consideration of the hull fouling management strategy, both money and environment can be saved. We suggest biocidal-free coating with a regular in-water cleaning using a capture system is generally the lowest-risk option. The best biocidal-free coating type and the optimal in-water cleaning interval should be evaluated case-specifically, though. In some cases, however, biocidal coating remains a justifiable option.


Assuntos
Incrustação Biológica , Incrustação Biológica/prevenção & controle , Navios , Dióxido de Carbono , Teorema de Bayes , Água , Técnicas de Apoio para a Decisão
7.
Water Res ; 186: 116383, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32916622

RESUMO

Antifouling paints are biocidal products applied to ship and boat hulls in order to prevent the growth and settlement of marine organisms, i.e. fouling. The release of biocides from the surface of the paint film act to repel or poison potential settling organisms. Currently, the most commonly used biocide in antifouling paints is cuprous oxide. In the EU, antifouling products are regulated under the Biocidal Products Regulation (BPR), which states that the recommended dose should be the minimum necessary to achieve the desired effect. For antifouling products, the dose is measured as the release rate of biocide(s) from coating. In this study, the release rates of copper and zinc from eight different coatings for leisure boats were determined through static exposure of coated panels in four different harbors located in Swedish waters along a salinity gradient ranging from 0 to 27 PSU. The results showed the release rate of copper to increase with increasing salinity. Paints with a higher content of cuprous oxide were also found to release larger amounts of copper. The coatings' ability to prevent biofouling was also evaluated and no significant difference in efficacy between the eight tested products was observed at the brackish and marine sites. Hence, the products with high release rates of copper were equally efficient as those with 4 - 6 times lower releases. These findings suggest that current antifouling paints on the market are leaching copper in excess of the effective dose in brackish and marine waters. Additionally, the results from the freshwater site showed no benefit in applying a copper-containing paint for the purpose of fouling prevention. This indicates that the use of biocidal paints in freshwater bodies potentially results in an unnecessary release of copper. By reducing the release rates of copper from antifouling paints in marine waters and restricting the use of biocidal paints in freshwater, the load of copper to the environment could be substantially reduced.


Assuntos
Incrustação Biológica , Cobre , Incrustação Biológica/prevenção & controle , Cobre/análise , Metais , Pintura , Salinidade , Navios , Suécia
8.
Mar Pollut Bull ; 152: 110891, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32479276

RESUMO

Discharge of grey water from ships is today unregulated in most sea areas, including the Baltic Sea. Annually, an estimated 5.5 million m3 grey water is emitted to the Baltic Sea with largest contribution from RoPax (4.25 million m3) and cruise ships (0.65 million m3). In total 44 different contaminants in grey water was identified and sorted into the sub categories organic compounds (28) and metals (16). Zinc and copper had the highest average concentrations with yearly inputs of 2.8 tons (zinc) and 1.5 tons (copper). 159 tons of nitrogen and 26.4 tons of phosphorus were estimated to be discharged to the Baltic Sea annually. An environmental risk assessment of contaminants, performed at a shipping lane in the Baltic Sea, showed the risk for adverse effects from grey water to be low. Nitrogen and phosphorus input from grey water contributes to 0.25% of the exceedance of, for the Baltic Sea set, eutrophication target.


Assuntos
Navios , Água , Países Bálticos , Meio Ambiente , Monitoramento Ambiental , Eutrofização , Oceanos e Mares
9.
Sci Total Environ ; 671: 189-207, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30928749

RESUMO

The Baltic Sea is a severely eutrophicated sea-area where intense shipping as an additional nutrient source is a potential contributor to changes in the ecosystem. The impact of the two most important shipborne nutrients, nitrogen and phosphorus, on the overall nutrient-phytoplankton-oxygen dynamics in the Baltic Sea was determined by using the coupled physical and biogeochemical model system General Estuarine Transport Model-Ecological Regional Ocean Model (GETM-ERGOM) in a cascade with the Ship Traffic Emission Assessment Model (STEAM) and the Community Multiscale Air Quality (CMAQ) model. We compared two nutrient scenarios in the Baltic Sea: with (SHIP) and without nutrient input from ships (NOSHIP). The model uses the combined nutrient input from shipping-related waste streams and atmospheric depositions originating from the ship emission and calculates the effect of excess nutrients on the overall biogeochemical cycle, primary production, detritus formation and nutrient flows. The shipping contribution is about 0.3% of the total phosphorus and 1.25-3.3% of the total nitrogen input to the Baltic Sea, but their impact to the different biogeochemical variables is up to 10%. Excess nitrogen entering the N-limited system of the Baltic Sea slightly alters certain pathways: cyanobacteria growth is compromised due to extra nitrogen available for other functional groups while the biomass of diatoms and especially flagellates increases due to the excess of the limiting nutrient. In terms of the Baltic Sea ecosystem functioning, continuous input of ship-borne nitrogen is compensated by steady decrease of nitrogen fixation and increase of denitrification, which results in stationary level of total nitrogen content in the water. Ship-borne phosphorus input results in a decrease of phosphate content in the water and increase of phosphorus binding to sediments. Oxygen content in the water decreases, but reaches stationary state eventually.


Assuntos
Monitoramento Ambiental , Eutrofização , Água do Mar/química , Navios , Poluentes Químicos da Água/análise , Nitrogênio/análise , Fósforo/análise
10.
Ecology ; 87(5): 1169-78, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16761596

RESUMO

Canopy-forming macroalgae are key species on temperate rocky shores. However, there is a lack of understanding of how the relative balance of physical and biological factors controls the establishment and persistence of intertidal macroalgae. Here we present an integrated study of the relative importance of wave-induced forces and grazing for the recruitment and survival of the canopy-forming intertidal macroalgae Fucus vesiculosus and F. spiralis. A set of overtopped breakwaters provided a nearly unconfounded gradient in wave exposure between seaward and landward sides. A biomechanical analysis was performed based on empirical measurements of maximum drag forces in breaking waves, a model of long-term maximum wave height, and the breaking stress of Fucus spp. The estimated maximum flow speed (7-8 m/s) on the seaward side of the breakwaters was predicted to completely dislodge or prune Fucus spp. larger than approximately 10 cm, while dislodgment was highly unlikely on the landward side for all sizes. Experimental transplantation of Fucus spp. supported the biomechanical analysis but also suggested that mechanical abrasion may further limit survival in wave-exposed locations. Experimental removal of the limpet Patella vulgata, which was the principal grazer at this site, resulted in recruitment of Fucus spp. on the seaward side. We present a model of limpet grazing that indicates that limpet densities >5-20 individuals/m2 provide a proximate mechanism preventing establishment of Fucus spp., whereas wave action >2 m/s reduces persistence through dislodgment and battering. In a conceptual model we further propose that recruitment and survival of juvenile Fucus spp. are controlled indirectly by wave exposure through higher limpet densities at exposed locations. This model predicts that climate change, and in particular an increased frequency of storm events in the northeast Atlantic, will restrict fucoids to more sheltered locations.


Assuntos
Clima , Fucus/crescimento & desenvolvimento , Fucus/fisiologia , Moluscos/fisiologia , Movimentos da Água , Animais , Comportamento Alimentar/fisiologia , Oceanos e Mares , Dinâmica Populacional , Crescimento Demográfico , Estresse Mecânico
11.
PLoS One ; 11(7): e0158957, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27463968

RESUMO

Water flow affects settlement of marine larvae on several scales. At the smallest scale local flow regime may control the probability of adhesion to the substrate. Our aim was to mechanistically understand the transition from suspended to attached larvae in turbulent flow. Recently it was proposed that opportunities for larval settlement in turbulent boundary layers depend on time windows with suitable instantaneous flow properties. In flume flow we characterized the proportion of suitable time windows in a series of flow velocities with focus on the near-bed flow. The change in the proportion of potential settling windows with increasing free-stream velocities was compared to the proportion of temporary attachment of barnacle cypris larvae at different flow velocities. We found large instantaneous flow variations in the near-bed flow where cyprid attachment took place. The probability of temporary attachment in cyprids declined with local flow speed and this response was compatible with a settling window lasting at least 0.1 s with a maximum local flow speed of 1.9-2.4 cm s-1. Cyprids swam against the near-bed flow (negative rheotaxis) and the swimming speed (1.8 cm s-1) was close to the critical speed that permitted temporary attachment. We conclude that temporary attachment in barnacle cyprids requires upstream swimming to maintain a fixed position relative to the substrate for at least 0.1 s. This behaviour may explain the ability of barnacles to recruit to high-flow environments and give cyprids flexibility in the pre-settlement choice of substrates based on flow regime.


Assuntos
Larva/fisiologia , Natação/fisiologia , Thoracica/fisiologia , Animais , Comportamento Animal/fisiologia , Biologia Marinha , Thoracica/crescimento & desenvolvimento
12.
Mar Pollut Bull ; 105(1): 359-66, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26992746

RESUMO

The combination of the sensitive characteristics of the Baltic Sea and the intense maritime traffic makes the marine environment vulnerable to anthropogenic influences. The theoretical scenario calculated in this study shows that the annually generated food waste onboard ships in traffic in the Baltic Sea contains about 182tonnes of nitrogen and 34tonnes of phosphorus. Today, all food waste generated onboard can be legally discharged into the marine environment at a distance of 12NM from the nearest land. The annual load of nitrogen contained in the food waste corresponds to 52% of load of nitrogen from the ship-generated sewage. Future regulations for sewage discharge in the Baltic Sea will require significant reduction of total nitrogen and phosphorus released. The contribution of nutrients from food waste compared to sewage will therefore be relatively larger in the future, if food waste still can be legally discharged.


Assuntos
Monitoramento Ambiental , Alimentos , Nitrogênio/análise , Fósforo/análise , Resíduos/análise , Poluentes da Água/análise , Países Bálticos , Meio Ambiente , Eutrofização , Água do Mar/química , Esgotos , Navios
13.
Front Microbiol ; 3: 302, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912629

RESUMO

Episodic blooms of voracious gelatinous zooplankton, such as the ctenophore Mnemiopsis leidyi, affect pools of inorganic nutrients and dissolved organic carbon by intensive grazing activities and mucus release. This will potentially influence bacterioplankton activity and community composition, at least at local scales; however, available studies on this are scarce. In the present study we examined effects of M. leidyi on bacterioplankton growth and composition in incubation experiments. Moreover, we examined community composition of bacteria associated with the surface and gut of M. leidyi. High release of ammonium and high bacterial growth was observed in the treatments with M. leidyi relative to controls. Deep 454 pyrosequencing of 16 S rRNA genes showed specific bacterial communities in treatments with M. leidyi as well as specific communities associated with M. leidyi tissue and gut. In particular, members of Flavobacteriaceae were associated with M. leidyi. Our study shows that M. leidyi influences bacterioplankton activity and community composition in the vicinity of the jellyfish. In particular during temporary aggregations of jellyfish, these local zones of high bacterial growth may contribute significantly to the spatial heterogeneity of bacterioplankton activity and community composition in the sea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA