Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(4): 587-600, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35196516

RESUMO

Covalent tRNA modifications play multi-faceted roles in tRNA stability, folding, and recognition, as well as the rate and fidelity of translation, and other cellular processes such as growth, development, and stress responses. Mutations in genes that are known to regulate tRNA modifications lead to a wide array of phenotypes and diseases including numerous cognitive and neurodevelopmental disorders, highlighting the critical role of tRNA modification in human disease. One such gene, THUMPD1, is involved in regulating tRNA N4-acetylcytidine modification (ac4C), and recently was proposed as a candidate gene for autosomal-recessive intellectual disability. Here, we present 13 individuals from 8 families who harbor rare loss-of-function variants in THUMPD1. Common phenotypic findings included global developmental delay, speech delay, moderate to severe intellectual deficiency, behavioral abnormalities such as angry outbursts, facial dysmorphism, and ophthalmological abnormalities. We demonstrate that the bi-allelic variants identified cause loss of function of THUMPD1 and that this defect results in a loss of ac4C modification in small RNAs, and of individually purified tRNA-Ser-CGA. We further corroborate this effect by showing a loss of tRNA acetylation in two CRISPR-Cas9-generated THUMPD1 KO cell lines. In addition, we also show the resultant amino acid substitution that occurs in a missense THUMPD1 allele identified in an individual with compound heterozygous variants results in a marked decrease in THUMPD1 stability and RNA-binding capacity. Taken together, these results suggest that the lack of tRNA acetylation due to THUMPD1 loss of function results in a syndromic form of intellectual disability associated with developmental delay, behavioral abnormalities, hearing loss, and facial dysmorphism.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteínas de Ligação a RNA , Acetilação , Alelos , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/metabolismo , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , RNA/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Am J Hum Genet ; 109(8): 1421-1435, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35830857

RESUMO

PPFIBP1 encodes for the liprin-ß1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications.


Assuntos
Epilepsia , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Acetilcolinesterase/genética , Animais , Drosophila melanogaster/genética , Epilepsia/genética , Perda de Heterozigosidade , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem
3.
Brain ; 147(1): 311-324, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-37713627

RESUMO

Highly conserved transport protein particle (TRAPP) complexes regulate subcellular trafficking pathways. Accurate protein trafficking has been increasingly recognized to be critically important for normal development, particularly in the nervous system. Variants in most TRAPP complex subunits have been found to lead to neurodevelopmental disorders with diverse but overlapping phenotypes. We expand on limited prior reports on TRAPPC6B with detailed clinical and neuroradiologic assessments, and studies on mechanisms of disease, and new types of variants. We describe 29 additional patients from 18 independent families with biallelic variants in TRAPPC6B. We identified seven homozygous nonsense (n = 12 patients) and eight canonical splice-site variants (n = 17 patients). In addition, we identified one patient with compound heterozygous splice-site/missense variants with a milder phenotype and one patient with homozygous missense variants. Patients displayed non-progressive microcephaly, global developmental delay/intellectual disability, epilepsy and absent expressive language. Movement disorders including stereotypies, spasticity and dystonia were also observed. Brain imaging revealed reductions in cortex, cerebellum and corpus callosum size with frequent white matter hyperintensity. Volumetric measurements indicated globally diminished volume rather than specific regional losses. We identified a reduced rate of trafficking into the Golgi apparatus and Golgi fragmentation in patient-derived fibroblasts that was rescued by wild-type TRAPPC6B. Molecular studies revealed a weakened interaction between mutant TRAPPC6B (c.454C>T, p.Q152*) and its TRAPP binding partner TRAPPC3. Patient-derived fibroblasts from the TRAPPC6B (c.454C>T, p.Q152*) variant displayed reduced levels of TRAPPC6B as well as other TRAPP II complex-specific members (TRAPPC9 and TRAPPC10). Interestingly, the levels of the TRAPPC6B homologue TRAPPC6A were found to be elevated. Moreover, co-immunoprecipitation experiments showed that TRAPPC6A co-precipitates equally with TRAPP II and TRAPP III, while TRAPPC6B co-precipitates significantly more with TRAPP II, suggesting enrichment of the protein in the TRAPP II complex. This implies that variants in TRAPPC6B may preferentially affect TRAPP II functions compared to TRAPP III functions. Finally, we assessed phenotypes in a Drosophila TRAPPC6B-deficiency model. Neuronal TRAPPC6B knockdown impaired locomotion and led to wing posture defects, supporting a role for TRAPPC6B in neuromotor function. Our findings confirm the association of damaging biallelic TRAPPC6B variants with microcephaly, intellectual disability, language impairments, and epilepsy. A subset of patients also exhibited dystonia and/or spasticity with impaired ambulation. These features overlap with disorders arising from pathogenic variants in other TRAPP subunits, particularly components of the TRAPP II complex. These findings suggest that TRAPPC6B is essential for brain development and function, and TRAPP II complex activity may be particularly relevant for mediating this function.


Assuntos
Distonia , Epilepsia , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Animais , Humanos , Microcefalia/genética , Deficiência Intelectual/genética , Proteínas de Transporte Vesicular/genética , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genética
4.
Am J Hum Genet ; 108(6): 1095-1114, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33991472

RESUMO

Latent transforming growth factor ß (TGFß)-binding proteins (LTBPs) are microfibril-associated proteins essential for anchoring TGFß in the extracellular matrix (ECM) as well as for correct assembly of ECM components. Variants in LTBP2, LTBP3, and LTBP4 have been identified in several autosomal recessive Mendelian disorders with skeletal abnormalities with or without impaired development of elastin-rich tissues. Thus far, the human phenotype associated with LTBP1 deficiency has remained enigmatic. In this study, we report homozygous premature truncating LTBP1 variants in eight affected individuals from four unrelated consanguineous families. Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly). In vitro studies on proband-derived dermal fibroblasts indicate distinct molecular mechanisms depending on the position of the variant in LTBP1. C-terminal variants lead to an altered LTBP1 loosely anchored in the microfibrillar network and cause increased ECM deposition in cultured fibroblasts associated with excessive TGFß growth factor activation and signaling. In contrast, N-terminal truncation results in a loss of LTBP1 that does not alter TGFß levels or ECM assembly. In vivo validation with two independent zebrafish lines carrying mutations in ltbp1 induce abnormal collagen fibrillogenesis in skin and intervertebral ligaments and ectopic bone formation on the vertebrae. In addition, one of the mutant zebrafish lines shows voluminous and hypo-mineralized vertebrae. Overall, our findings in humans and zebrafish show that LTBP1 function is crucial for skin and bone ECM assembly and homeostasis.


Assuntos
Colágeno/metabolismo , Cútis Laxa/etiologia , Variação Genética , Proteínas de Ligação a TGF-beta Latente/genética , Adolescente , Alelos , Animais , Células Cultivadas , Criança , Pré-Escolar , Cútis Laxa/patologia , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Masculino , Linhagem , Pele/metabolismo , Pele/patologia , Peixe-Zebra
5.
Clin Genet ; 105(5): 488-498, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38193334

RESUMO

ALDH1L2, a mitochondrial enzyme in folate metabolism, converts 10-formyl-THF (10-formyltetrahydrofolate) to THF (tetrahydrofolate) and CO2. At the cellular level, deficiency of this NADP+-dependent reaction results in marked reduction in NADPH/NADP+ ratio and reduced mitochondrial ATP. Thus far, a single patient with biallelic ALDH1L2 variants and the phenotype of a neurodevelopmental disorder has been reported. Here, we describe another patient with a neurodevelopmental disorder associated with a novel homozygous missense variant in ALDH1L2, Pro133His. The variant caused marked reduction in the ALDH1L2 enzyme activity in skin fibroblasts derived from the patient as probed by 10-FDDF, a stable synthetic analog of 10-formyl-THF. Additional associated abnormalities in these fibroblasts include reduced NADPH/NADP+ ratio and pool of mitochondrial ATP, upregulated autophagy and dramatically altered metabolomic profile. Overall, our study further supports a link between ALDH1L2 deficiency and abnormal neurodevelopment in humans.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Humanos , Trifosfato de Adenosina , NADP/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Fenótipo
6.
Mov Disord ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899514

RESUMO

BACKGROUND: Biallelic ZBTB11 variants have previously been associated with an ultrarare subtype of autosomal recessive intellectual developmental disorder (MRT69). OBJECTIVE: The aim was to provide insights into the clinical and genetic characteristics of ZBTB11-related disorders (ZBTB11-RD), with a particular emphasis on progressive complex movement abnormalities. METHODS: Thirteen new and 16 previously reported affected individuals, ranging in age from 2 to 50 years, with biallelic ZBTB11 variants underwent clinical and genetic characterization. RESULTS: All patients exhibited a range of neurodevelopmental phenotypes with varying severity, encompassing ocular and neurological features. Eleven new patients presented with complex abnormal movements, including ataxia, dystonia, myoclonus, stereotypies, and tremor, and 7 new patients exhibited cataracts. Deep brain stimulation was successful in treating 1 patient with generalized progressive dystonia. Our analysis revealed 13 novel variants. CONCLUSIONS: This study provides additional insights into the clinical features and spectrum of ZBTB11-RD, highlighting the progressive nature of movement abnormalities in the background of neurodevelopmental phenotype. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

7.
Mol Psychiatry ; 28(2): 668-697, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385166

RESUMO

Missense and truncating variants in the X-chromosome-linked CLCN4 gene, resulting in reduced or complete loss-of-function (LOF) of the encoded chloride/proton exchanger ClC-4, were recently demonstrated to cause a neurocognitive phenotype in both males and females. Through international clinical matchmaking and interrogation of public variant databases we assembled a database of 90 rare CLCN4 missense variants in 90 families: 41 unique and 18 recurrent variants in 49 families. For 43 families, including 22 males and 33 females, we collated detailed clinical and segregation data. To confirm causality of variants and to obtain insight into disease mechanisms, we investigated the effect on electrophysiological properties of 59 of the variants in Xenopus oocytes using extended voltage and pH ranges. Detailed analyses revealed new pathophysiological mechanisms: 25% (15/59) of variants demonstrated LOF, characterized by a "shift" of the voltage-dependent activation to more positive voltages, and nine variants resulted in a toxic gain-of-function, associated with a disrupted gate allowing inward transport at negative voltages. Functional results were not always in line with in silico pathogenicity scores, highlighting the complexity of pathogenicity assessment for accurate genetic counselling. The complex neurocognitive and psychiatric manifestations of this condition, and hitherto under-recognized impacts on growth, gastrointestinal function, and motor control are discussed. Including published cases, we summarize features in 122 individuals from 67 families with CLCN4-related neurodevelopmental condition and suggest future research directions with the aim of improving the integrated care for individuals with this diagnosis.


Assuntos
Transtornos do Neurodesenvolvimento , Masculino , Feminino , Humanos , Transtornos do Neurodesenvolvimento/genética , Mutação de Sentido Incorreto , Genes Ligados ao Cromossomo X , Fenótipo , Canais de Cloreto/genética
8.
Am J Hum Genet ; 107(6): 1178-1185, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33242396

RESUMO

We have previously described a heart-, eye-, and brain-malformation syndrome caused by homozygous loss-of-function variants in SMG9, which encodes a critical component of the nonsense-mediated decay (NMD) machinery. Here, we describe four consanguineous families with four different likely deleterious homozygous variants in SMG8, encoding a binding partner of SMG9. The observed phenotype greatly resembles that linked to SMG9 and comprises severe global developmental delay, microcephaly, facial dysmorphism, and variable congenital heart and eye malformations. RNA-seq analysis revealed a general increase in mRNA expression levels with significant overrepresentation of core NMD substrates. We also identified increased phosphorylation of UPF1, a key SMG1-dependent step in NMD, which most likely represents the loss of SMG8--mediated inhibition of SMG1 kinase activity. Our data show that SMG8 and SMG9 deficiency results in overlapping developmental disorders that most likely converge mechanistically on impaired NMD.


Assuntos
Deficiências do Desenvolvimento/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Degradação do RNAm Mediada por Códon sem Sentido , Adolescente , Encéfalo/anormalidades , Criança , Pré-Escolar , Consanguinidade , Deficiências do Desenvolvimento/metabolismo , Saúde da Família , Feminino , Deleção de Genes , Ligação Genética , Cardiopatias Congênitas/genética , Homozigoto , Humanos , Lactente , Masculino , Linhagem , Fenótipo , Fosforilação , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , RNA-Seq , Transativadores/metabolismo , Adulto Jovem
9.
Br J Haematol ; 203(3): 477-480, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37612131

RESUMO

Colony-stimulating factor 3 (CSF3) is a key factor in neutrophil production and function, and recombinant forms have been used clinically for decades to treat congenital and acquired neutropenia. Although biallelic inactivation of its receptor CSF3R is a well-established cause of severe congenital neutropenia (SCN), no corresponding Mendelian disease has been ascribed to date to CSF3. Here, we describe three patients from two families each segregating a different biallelic inactivating variant in CSF3 with SCN. Complete deficiency of CSF3 as a result of nonsense-mediated decay (NMD) could be demonstrated on RT-PCR using skin fibroblasts-derived RNA. The phenotype observed in this cohort mirrors that documented in mouse and zebrafish models of CSF3 deficiency. Our results suggest that CSF3 deficiency in humans causes a novel autosomal recessive form of SCN.

10.
Genet Med ; 25(1): 135-142, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36399134

RESUMO

PURPOSE: Protein arginine methyltransferase 7 (PRMT7) is a member of a family of enzymes that catalyzes the methylation of arginine residues on several protein substrates. Biallelic pathogenic PRMT7 variants have previously been associated with a syndromic neurodevelopmental disorder characterized by short stature, brachydactyly, intellectual developmental disability, and seizures. To our knowledge, no comprehensive study describes the detailed clinical characteristics of this syndrome. Thus, we aim to delineate the phenotypic spectrum of PRMT7-related disorder. METHODS: We assembled a cohort of 51 affected individuals from 39 different families, gathering clinical information from 36 newly described affected individuals and reviewing data of 15 individuals from the literature. RESULTS: The main clinical characteristics of the PRMT7-related syndrome are short stature, mild to severe developmental delay/intellectual disability, hypotonia, brachydactyly, and distinct facial morphology, including bifrontal narrowing, prominent supraorbital ridges, sparse eyebrows, short nose with full/broad nasal tip, thin upper lip, full and everted lower lip, and a prominent or squared-off jaw. Additional variable findings include seizures, obesity, nonspecific magnetic resonance imaging abnormalities, eye abnormalities (i.e., strabismus or nystagmus), and hearing loss. CONCLUSION: This study further delineates and expands the molecular, phenotypic spectrum and natural history of PRMT7-related syndrome characterized by a neurodevelopmental disorder with skeletal, growth, and endocrine abnormalities.


Assuntos
Braquidactilia , Nanismo , Deficiência Intelectual , Anormalidades Musculoesqueléticas , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/genética , Nanismo/genética , Obesidade/genética , Fenótipo , Proteína-Arginina N-Metiltransferases/genética
11.
Hum Genet ; 141(1): 55-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34750646

RESUMO

Mitochondrial disorders are challenging to diagnose. Exome sequencing has greatly enhanced the diagnostic precision of these disorders although interpreting variants of uncertain significance (VUS) remains a formidable obstacle. Whether specific mitochondrial morphological changes can aid in the classification of these variants is unknown. Here, we describe two families (four patients), each with a VUS in a gene known to affect the morphology of mitochondria through a specific role in the fission-fusion balance. In the first, the missense variant in MFF, encoding a fission factor, was associated with impaired fission giving rise to a characteristically over-tubular appearance of mitochondria. In the second, the missense variant in DNAJA3, which has no listed OMIM phenotype, was associated with fragmented appearance of mitochondria consistent with its published deficiency states. In both instances, the highly specific phenotypes allowed us to upgrade the classification of the variants. Our results suggest that, in select cases, mitochondrial "dysmorphology" can be helpful in interpreting variants to reach a molecular diagnosis.


Assuntos
Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Mitocôndrias/fisiologia , Doenças Mitocondriais/genética , Dinâmica Mitocondrial , Proteínas Mitocondriais/genética , Linhagem Celular , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Doenças Mitocondriais/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Mutação de Sentido Incorreto , Sequenciamento do Exoma
12.
Am J Hum Genet ; 104(4): 731-737, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905400

RESUMO

Ciliopathies are clinical disorders of the primary cilium with widely recognized phenotypic and genetic heterogeneity. In two Arab consanguineous families, we mapped a ciliopathy phenotype that most closely matches Joubert syndrome (hypotonia, developmental delay, typical facies, oculomotor apraxia, polydactyly, and subtle posterior fossa abnormalities) to a single locus in which a founder homozygous truncating variant in FAM149B1 was identified by exome sequencing. We subsequently identified a third Arab consanguineous multiplex family in which the phenotype of Joubert syndrome/oral-facial-digital syndrome (OFD VI) was found to co-segregate with the same founder variant in FAM149B1. Independently, autozygosity mapping and exome sequencing in a consanguineous Turkish family with Joubert syndrome highlighted a different homozygous truncating variant in the same gene. FAM149B1 encodes a protein of unknown function. Mutant fibroblasts were found to have normal ciliogenesis potential. However, distinct cilia-related abnormalities were observed in these cells: abnormal accumulation IFT complex at the distal tips of the cilia, which assumed bulbous appearance, increased length of the primary cilium, and dysregulated SHH signaling. We conclude that FAM149B1 is required for normal ciliary biology and that its deficiency results in a range of ciliopathy phenotypes in humans along the spectrum of Joubert syndrome.


Assuntos
Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Cílios/patologia , Ciliopatias/diagnóstico , Ciliopatias/genética , Proteínas do Citoesqueleto/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Mutação , Retina/anormalidades , Adolescente , Alelos , Pré-Escolar , Cílios/genética , Consanguinidade , Exoma , Genes Recessivos , Homozigoto , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Síndromes Orofaciodigitais/genética , Fenótipo , Análise de Sequência de DNA , Transdução de Sinais , Turquia
13.
Am J Hum Genet ; 104(3): 542-552, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827498

RESUMO

Polyglutamine expansions in the transcriptional co-repressor Atrophin-1, encoded by ATN1, cause the neurodegenerative condition dentatorubral-pallidoluysian atrophy (DRPLA) via a proposed novel toxic gain of function. We present detailed phenotypic information on eight unrelated individuals who have de novo missense and insertion variants within a conserved 16-amino-acid "HX repeat" motif of ATN1. Each of the affected individuals has severe cognitive impairment and hypotonia, a recognizable facial gestalt, and variable congenital anomalies. However, they lack the progressive symptoms typical of DRPLA neurodegeneration. To distinguish this subset of affected individuals from the DRPLA diagnosis, we suggest using the term CHEDDA (congenital hypotonia, epilepsy, developmental delay, digit abnormalities) to classify the condition. CHEDDA-related variants alter the particular structural features of the HX repeat motif, suggesting that CHEDDA results from perturbation of the structural and functional integrity of the HX repeat. We found several non-homologous human genes containing similar motifs of eight to 10 HX repeat sequences, including RERE, where disruptive variants in this motif have also been linked to a separate condition that causes neurocognitive and congenital anomalies. These findings suggest that perturbation of the HX motif might explain other Mendelian human conditions.


Assuntos
Motivos de Aminoácidos/genética , Variação Genética , Proteínas do Tecido Nervoso/genética , Transtornos Neurocognitivos/etiologia , Sequências Repetitivas de Ácido Nucleico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Transtornos Neurocognitivos/classificação , Transtornos Neurocognitivos/patologia , Fenótipo , Prognóstico , Síndrome
14.
Am J Hum Genet ; 105(2): 384-394, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31256876

RESUMO

Proteins anchored to the cell surface via glycosylphosphatidylinositol (GPI) play various key roles in the human body, particularly in development and neurogenesis. As such, many developmental disorders are caused by mutations in genes involved in the GPI biosynthesis and remodeling pathway. We describe ten unrelated families with bi-allelic mutations in PIGB, a gene that encodes phosphatidylinositol glycan class B, which transfers the third mannose to the GPI. Ten different PIGB variants were found in these individuals. Flow cytometric analysis of blood cells and fibroblasts from the affected individuals showed decreased cell surface presence of GPI-anchored proteins. Most of the affected individuals have global developmental and/or intellectual delay, all had seizures, two had polymicrogyria, and four had a peripheral neuropathy. Eight children passed away before four years old. Two of them had a clinical diagnosis of DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures), a condition that includes sensorineural deafness, shortened terminal phalanges with small finger and toenails, intellectual disability, and seizures; this condition overlaps with the severe phenotypes associated with inherited GPI deficiency. Most individuals tested showed elevated alkaline phosphatase, which is a characteristic of the inherited GPI deficiency but not DOORS syndrome. It is notable that two severely affected individuals showed 2-oxoglutaric aciduria, which can be seen in DOORS syndrome, suggesting that severe cases of inherited GPI deficiency and DOORS syndrome might share some molecular pathway disruptions.


Assuntos
Anormalidades Craniofaciais/etiologia , Glicosilfosfatidilinositóis/biossíntese , Glicosilfosfatidilinositóis/deficiência , Deformidades Congênitas da Mão/etiologia , Perda Auditiva Neurossensorial/etiologia , Deficiência Intelectual/etiologia , Manosiltransferases/genética , Doenças Metabólicas/etiologia , Mutação , Unhas Malformadas/etiologia , Doenças do Sistema Nervoso Periférico/etiologia , Convulsões/patologia , Adulto , Criança , Pré-Escolar , Anormalidades Craniofaciais/patologia , Feminino , Glicosilfosfatidilinositóis/genética , Deformidades Congênitas da Mão/patologia , Perda Auditiva Neurossensorial/patologia , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/patologia , Masculino , Doenças Metabólicas/patologia , Unhas Malformadas/patologia , Linhagem , Doenças do Sistema Nervoso Periférico/patologia , Convulsões/genética , Índice de Gravidade de Doença , Adulto Jovem
15.
Hum Mutat ; 42(6): 762-776, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33847017

RESUMO

Bi-allelic TECPR2 variants have been associated with a complex syndrome with features of both a neurodevelopmental and neurodegenerative disorder. Here, we provide a comprehensive clinical description and variant interpretation framework for this genetic locus. Through international collaboration, we identified 17 individuals from 15 families with bi-allelic TECPR2-variants. We systemically reviewed clinical and molecular data from this cohort and 11 cases previously reported. Phenotypes were standardized using Human Phenotype Ontology terms. A cross-sectional analysis revealed global developmental delay/intellectual disability, muscular hypotonia, ataxia, hyporeflexia, respiratory infections, and central/nocturnal hypopnea as core manifestations. A review of brain magnetic resonance imaging scans demonstrated a thin corpus callosum in 52%. We evaluated 17 distinct variants. Missense variants in TECPR2 are predominantly located in the N- and C-terminal regions containing ß-propeller repeats. Despite constituting nearly half of disease-associated TECPR2 variants, classifying missense variants as (likely) pathogenic according to ACMG criteria remains challenging. We estimate a pathogenic variant carrier frequency of 1/1221 in the general and 1/155 in the Jewish Ashkenazi populations. Based on clinical, neuroimaging, and genetic data, we provide recommendations for variant reporting, clinical assessment, and surveillance/treatment of individuals with TECPR2-associated disorder. This sets the stage for future prospective natural history studies.


Assuntos
Proteínas de Transporte/genética , Neuropatias Hereditárias Sensoriais e Autônomas , Deficiência Intelectual , Proteínas do Tecido Nervoso/genética , Adolescente , Proteínas de Transporte/química , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Família , Feminino , Neuropatias Hereditárias Sensoriais e Autônomas/complicações , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Imageamento por Ressonância Magnética , Masculino , Modelos Moleculares , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/química , Neuroimagem/métodos , Linhagem , Fenótipo , Conformação Proteica
16.
Am J Hum Genet ; 102(1): 116-132, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29290337

RESUMO

Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kucinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features.


Assuntos
Artrogripose/genética , Encéfalo/embriologia , Mutação/genética , Proteínas/genética , Adolescente , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Feminino , Técnicas de Silenciamento de Genes , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Linhagem , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
17.
Genet Med ; 23(11): 2213-2218, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34230638

RESUMO

PURPOSE: N-terminal acetyltransferases modify proteins by adding an acetyl moiety to the first amino acid and are vital for protein and cell function. The NatB complex acetylates 20% of the human proteome and is composed of the catalytic subunit NAA20 and the auxiliary subunit NAA25. In five individuals with overlapping phenotypes, we identified recessive homozygous missense variants in NAA20. METHODS: Two different NAA20 variants were identified in affected individuals in two consanguineous families by exome and genome sequencing. Biochemical studies were employed to assess the impact of the NAA20 variants on NatB complex formation and catalytic activity. RESULTS: Two homozygous variants, NAA20 p.Met54Val and p.Ala80Val (GenBank: NM_016100.4, c.160A>G and c.239C>T), segregated with affected individuals in two unrelated families presenting with developmental delay, intellectual disability, and microcephaly. Both NAA20-M54V and NAA20-A80V were impaired in their capacity to form a NatB complex with NAA25, and in vitro acetylation assays revealed reduced catalytic activities toward different NatB substrates. Thus, both NAA20 variants are impaired in their ability to perform cellular NatB-mediated N-terminal acetylation. CONCLUSION: We present here a report of pathogenic NAA20 variants causing human disease and data supporting an essential role for NatB-mediated N-terminal acetylation in human development and physiology.


Assuntos
Deficiência Intelectual , Microcefalia , Acetiltransferases , Humanos , Deficiência Intelectual/genética , Microcefalia/genética , Acetiltransferase N-Terminal B
18.
Genet Med ; 23(4): 661-668, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33420346

RESUMO

PURPOSE: To identify novel genes associated with intellectual disability (ID) in four unrelated families. METHODS: Here, through exome sequencing and international collaboration, we report eight individuals from four unrelated families of diverse geographic origin with biallelic loss-of-function variants in UBE4A. RESULTS: Eight evaluated individuals presented with syndromic intellectual disability and global developmental delay. Other clinical features included hypotonia, short stature, seizures, and behavior disorder. Characteristic features were appreciated in some individuals but not all; in some cases, features became more apparent with age. We demonstrated that UBE4A loss-of-function variants reduced RNA expression and protein levels in clinical samples. Mice generated to mimic patient-specific Ube4a loss-of-function variant exhibited muscular and neurological/behavioral abnormalities, some of which are suggestive of the clinical abnormalities seen in the affected individuals. CONCLUSION: These data indicate that biallelic loss-of-function variants in UBE4A cause a novel intellectual disability syndrome, suggesting that UBE4A enzyme activity is required for normal development and neurological function.


Assuntos
Nanismo , Deficiência Intelectual , Ubiquitina-Proteína Ligases/genética , Animais , Criança , Deficiências do Desenvolvimento/genética , Humanos , Deficiência Intelectual/genética , Camundongos , Hipotonia Muscular , Fenótipo , Síndrome , Sequenciamento do Exoma
19.
Clin Genet ; 100(4): 468-477, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34212383

RESUMO

We describe the clinical features of nine unrelated individuals with rare de novo missense or in-frame deletions/duplications within the "HX motif" of exon 7 of ATN1. We previously proposed that individuals with such variants should be considered as being affected by the syndromic condition of congenital hypotonia, epilepsy, developmental delay, and digital anomalies (CHEDDA), distinct from dentatorubral-pallidoluysian atrophy (DRPLA) secondary to expansion variants in exon 5 of ATN1. We confirm that the universal phenotypic features of CHEDDA are distinctive facial features and global developmental delay. Infantile hypotonia and minor hand and feet differences are common and can present as arthrogryposis. Common comorbidities include severe feeding difficulties, often requiring gastrostomy support, as well as visual and hearing impairments. Epilepsy and congenital malformations of the brain, heart, and genitourinary systems are frequent but not universal. Our study confirms the clinical entity of CHEDDA secondary to a mutational signature restricted to exon 7 of ATN1. We propose a clinical schedule for assessment upon diagnosis, surveillance, and early intervention including the potential of neuroimaging for prognostication.


Assuntos
Predisposição Genética para Doença , Mutação , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Pré-Escolar , Fácies , Feminino , Estudos de Associação Genética , Humanos , Masculino , Síndrome
20.
Am J Med Genet A ; 185(9): 2789-2800, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32949114

RESUMO

Disorders of sex development (DSD) are congenital conditions with atypical development of chromosomal, gonadal, or anatomical sex. The estimated incidence ranges from 1 in 4,500-5,500 for strictly defined "ambiguous genitalia" to 1 in 300 or higher when a broader definition is implemented. In this study, we aim to define DSD phenotypes encountered in a large heterogeneous cohort of molecularly characterized Mendelian disorders in a single center. Data were retrieved for patients with documented abnormal genitalia based on the 2006 consensus criteria. Out of 149 patients (129 families) with compatible human phenotype ontology, 76 patients (68 families) had an identified genetic cause and were included in our analysis. Potentially causal variants were identified in 42 genes, and two patients had a dual molecular diagnosis. Six genes have no associated phenotype in OMIM (PIANP, CELSR2, USP2, FAM179B, TXNDC15, and CCDC96). Thirteen genes have non-DSD OMIM phenotypes, thus we are expanding their phenotype to include DSD. We also highlight how certain disorders are under-recognized despite their established DSD phenotype in OMIM, especially CTU2-related DREAM-PL syndrome and TSPYL1-related sudden infant death with dysgenesis of the testes syndrome. In conclusion, this study of a large heterogeneous Mendelian cohort expands the list of genes and disorders beyond those classically DSD-linked.


Assuntos
Anormalidades Múltiplas/patologia , Bases de Dados Genéticas/estatística & dados numéricos , Transtornos do Desenvolvimento Sexual/patologia , Fenótipo , Anormalidades Múltiplas/genética , Criança , Estudos de Coortes , Transtornos do Desenvolvimento Sexual/genética , Feminino , Humanos , Masculino , Análise da Randomização Mendeliana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA