Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 149(4): 847-59, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22541070

RESUMO

Alu RNA accumulation due to DICER1 deficiency in the retinal pigmented epithelium (RPE) is implicated in geographic atrophy (GA), an advanced form of age-related macular degeneration that causes blindness in millions of individuals. The mechanism of Alu RNA-induced cytotoxicity is unknown. Here we show that DICER1 deficit or Alu RNA exposure activates the NLRP3 inflammasome and triggers TLR-independent MyD88 signaling via IL18 in the RPE. Genetic or pharmacological inhibition of inflammasome components (NLRP3, Pycard, Caspase-1), MyD88, or IL18 prevents RPE degeneration induced by DICER1 loss or Alu RNA exposure. These findings, coupled with our observation that human GA RPE contains elevated amounts of NLRP3, PYCARD, and IL18 and evidence of increased Caspase-1 and MyD88 activation, provide a rationale for targeting this pathway in GA. Our findings also reveal a function of the inflammasome outside the immune system and an immunomodulatory action of mobile elements.


Assuntos
Elementos Alu , RNA Helicases DEAD-box/metabolismo , Atrofia Geográfica/imunologia , Atrofia Geográfica/patologia , Inflamassomos/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Ribonuclease III/metabolismo , Animais , Proteínas de Transporte/metabolismo , Atrofia Geográfica/metabolismo , Humanos , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Epitélio Pigmentado da Retina/patologia , Receptores Toll-Like/metabolismo
2.
Exp Eye Res ; 239: 109758, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123011

RESUMO

Recombinant adeno-associated viral vectors (rAAV) are the safest and most effective gene delivery platform to drive the treatment of many inherited eye disorders in well-characterized animal models. The use in rAAV of ubiquitous promoters derived from viral sequences such as CMV/CBA (chicken ß-actin promoter with cytomegalovirus enhancer) can lead to unwanted side effects such as pro-inflammatory immune responses and retinal cytotoxicity, thus reducing therapy efficacy. Thus, an advance in gene therapy is the availability of small promoters, that potentiate and direct gene expression to the cell type of interest, with higher safety and efficacy. In this study, we used six human mini-promoters packaged in rAAV2 quadruple mutant (Y-F) to test for transduction of the rat retina after intravitreal injection. After four weeks, immunohistochemical analysis detected GFP-labeled cells in the ganglion cell layer (GCL) for all constructs tested. Among them, Ple25sh1, Ple25sh2 and Ple53 promoted a widespread reporter-transgene expression in the GCL, with an increased number of GFP-expressing retinal ganglion cells when compared with the CMV/CBA vector. Moreover, Ple53 provided the strongest levels of GFP fluorescence in both cell soma and axons of retinal ganglion cells (RGCs) without any detectable adverse effects in retina function. Remarkably, a nearly 50-fold reduction in the number of intravitreally injected vector particles containing Ple53 promoter, still attained levels of transgene expression similar to CMV/CBA. Thus, the tested MiniPs show great potential for protocols of retinal gene therapy in therapeutic applications for retinal degenerations, especially those involving RGC-related disorders such as glaucoma.


Assuntos
Infecções por Citomegalovirus , Células Ganglionares da Retina , Ratos , Humanos , Animais , Células Ganglionares da Retina/metabolismo , Vetores Genéticos , Retina/metabolismo , Transgenes , Injeções Intravítreas , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Dependovirus/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Transdução Genética
3.
Mol Ther ; 31(7): 2028-2041, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37056049

RESUMO

In this study, we investigate a gene augmentation therapy candidate for the treatment of retinitis pigmentosa (RP) due to cyclic nucleotide-gated channel beta 1 (CNGB1) mutations. We use an adeno-associated virus serotype 5 with transgene under control of a novel short human rhodopsin promoter. The promoter/capsid combination drives efficient expression of a reporter gene (AAV5-RHO-eGFP) exclusively in rod photoreceptors in primate, dog, and mouse following subretinal delivery. The therapeutic vector (AAV5-RHO-CNGB1) delivered to the subretinal space of CNGB1 mutant dogs restores rod-mediated retinal function (electroretinographic responses and vision) for at least 12 months post treatment. Immunohistochemistry shows human CNGB1 is expressed in rod photoreceptors in the treated regions as well as restoration of expression and trafficking of the endogenous alpha subunit of the rod CNG channel required for normal channel formation. The treatment reverses abnormal accumulation of the second messenger, cyclic guanosine monophosphate, which occurs in rod photoreceptors of CNGB1 mutant dogs, confirming formation of a functional CNG channel. In vivo imaging shows long-term preservation of retinal structure. In conclusion, this study establishes the long-term efficacy of subretinal delivery of AAV5-RHO-CNGB1 to rescue the disease phenotype in a canine model of CNGB1-RP, confirming its suitability for future clinical development.


Assuntos
Parvovirinae , Retinose Pigmentar , Humanos , Animais , Cães , Camundongos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Retina/metabolismo , Eletrorretinografia , Rodopsina/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(38): 23914-23924, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32879010

RESUMO

Establishment of functional synaptic connections in a selective manner is essential for nervous system operation. In mammalian retinas, rod and cone photoreceptors form selective synaptic connections with different classes of bipolar cells (BCs) to propagate light signals. While there has been progress in elucidating rod wiring, molecular mechanisms used by cones to establish functional synapses with BCs have remained unknown. Using an unbiased proteomic strategy in cone-dominant species, we identified the cell-adhesion molecule ELFN2 to be pivotal for the functional wiring of cones with the ON type of BC. It is selectively expressed in cones and transsynaptically recruits the key neurotransmitter receptor mGluR6 in ON-BCs to enable synaptic transmission. Remarkably, ELFN2 in cone terminals functions in synergy with a related adhesion molecule, ELFN1, and their concerted interplay during development specifies selective wiring and transmission of cone signals. These findings identify a synaptic connectivity mechanism of cones and illustrate how interplay between adhesion molecules and postsynaptic transmitter receptors orchestrates functional synaptic specification in a neural circuit.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Sinapses/metabolismo , Animais , Moléculas de Adesão Celular/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteoma/análise , Proteoma/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Células Bipolares da Retina/metabolismo
5.
Gene Ther ; 29(3-4): 147-156, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34363035

RESUMO

Glaucoma is a prevalent neurodegenerative disease that is characterized by progressive visual field loss. It is the leading cause of irreversible blindness in the world. The main risk factor for glaucoma is elevated intraocular pressure that results in the damage and death of retinal ganglion cells (RGCs) and their axons. The death of RGCs has been shown to be apoptotic. We tested the hypothesis that blocking the activation of apoptosis may be an effective strategy to prevent RGC death and preserve functional vision in glaucoma. In the magnetic microbead mouse model of induced ocular hypertension, inhibition of RGC apoptosis was targeted through viral-mediated ocular delivery of the X-linked inhibitor of apoptosis (XIAP) gene, a potent caspase inhibitor. Pattern electroretinograms revealed that XIAP therapy resulted in significant protection of both somal and axonal RGC function in glaucomatous eyes. Histology confirmed that the treated optic nerves showed preservation of axon counts and reduced glial cell infiltration. These results show that XIAP is able to provide both functional and structural protection of RGCs in the microbead model of glaucoma and provide important proof-of-principle for XIAP's efficacy as a neuroprotective treatment for glaucoma.


Assuntos
Glaucoma , Doenças Neurodegenerativas , Animais , Axônios , Modelos Animais de Doenças , Terapia Genética , Glaucoma/genética , Glaucoma/terapia , Pressão Intraocular , Camundongos , Células Ganglionares da Retina/metabolismo
6.
Gene Ther ; 29(6): 368-378, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35383288

RESUMO

Therapies for genetic disorders caused by mutated mitochondrial DNA are an unmet need, in large part due barriers in delivering DNA to the organelle and the absence of relevant animal models. We injected into mouse eyes a mitochondrially targeted Adeno-Associated-Virus (MTS-AAV) to deliver the mutant human NADH ubiquinone oxidoreductase subunit I (hND1/m.3460 G > A) responsible for Leber's hereditary optic neuropathy, the most common primary mitochondrial genetic disease. We show that the expression of the mutant hND1 delivered to retinal ganglion cells (RGC) layer colocalizes with the mitochondrial marker PORIN and the assembly of the expressed hND1 protein into host respiration complex I. The hND1-injected eyes exhibit hallmarks of the human disease with progressive loss of RGC function and number, as well as optic nerve degeneration. We also show that gene therapy in the hND1 eyes by means of an injection of a second MTS-AAV vector carrying wild-type human ND1 restores mitochondrial respiratory complex I activity, the rate of ATP synthesis and protects RGCs and their axons from dysfunction and degeneration. These results prove that MTS-AAV is a highly efficient gene delivery approach with the ability to create mito-animal models and has the therapeutic potential to treat mitochondrial genetic diseases.


Assuntos
Atrofia Óptica Hereditária de Leber , Células Ganglionares da Retina , Animais , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Terapia Genética/métodos , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , Células Ganglionares da Retina/metabolismo
7.
FASEB J ; 35(10): e21927, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547123

RESUMO

Cone photoreceptors are responsible for the visual acuity and color vision of the human eye. Red/green cone opsin missense mutations N94K, W177R, P307L, R330Q, and G338E have been identified in subjects with congenital blue cone monochromacy or color-vision deficiency. Studies on disease mechanisms due to these cone opsin mutations have been previously carried out exclusively in vitro, and the reported impairments were not always consistent. Here we expressed these mutants via AAV specifically in vivo in M-opsin knockout mouse cones to investigate their subcellular localization, the pathogenic effects on cone structure, function, and cone viability. We show that these mutations alter the M-opsin structure, function, and localization. N94K and W177R mutants appeared to be misfolded since they localized exclusively in cone inner segments and endoplasmic reticulum. In contrast, P307L, R330Q, and G338E mutants were detected predominately in cone outer segments. Expression of R330Q and G338E, but not P307L opsins, also partially restored expression and correct localization of cone PDE6α' and cone transducin γ and resulted in partial rescue of M-cone-mediated light responses. Expression of W177R and P307L mutants significantly reduced cone viability, whereas N94K, R330Q, and G338E were only modestly toxic. We propose that although the underlying biochemical and cellular defects caused by these mutants are distinct, they all seem to exhibit a dominant phenotype, resembling autosomal dominant retinitis pigmentosa associated with the majority of rhodopsin missense mutations. The understanding of the molecular mechanisms associated with these cone opsin mutants is fundamental to developing targeted therapies for cone dystrophy/dysfunction.


Assuntos
Distrofia de Cones/genética , Opsinas dos Cones/genética , Genes Ligados ao Cromossomo X , Mutação de Sentido Incorreto/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Retinose Pigmentar/genética , Rodopsina/genética , Opsinas de Bastonetes/genética
8.
Mol Ther ; 29(8): 2456-2468, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33781914

RESUMO

The inherited childhood blindness caused by mutations in NPHP5, a form of Leber congenital amaurosis, results in abnormal development, dysfunction, and degeneration of photoreceptors. A naturally occurring NPHP5 mutation in dogs leads to a phenotype that very nearly duplicates the human retinopathy in terms of the photoreceptors involved, spatial distribution of degeneration, and the natural history of vision loss. We show that adeno-associated virus (AAV)-mediated NPHP5 gene augmentation of mutant canine retinas at the time of active degeneration and peak cell death stably restores photoreceptor structure, function, and vision with either the canine or human NPHP5 transgenes. Mutant cone photoreceptors, which failed to form outer segments during development, reform this structure after treatment. Degenerating rod photoreceptor outer segments are stabilized and develop normal structure. This process begins within 8 weeks after treatment and remains stable throughout the 6-month posttreatment period. In both photoreceptor cell classes mislocalization of rod and cone opsins is minimized or reversed. Retinal function and functional vision are restored. Efficacy of gene therapy in this large animal ciliopathy model of Leber congenital amaurosis provides a path for translation to human treatment.


Assuntos
Proteínas de Ligação a Calmodulina/administração & dosagem , Dependovirus/genética , Amaurose Congênita de Leber/terapia , Células Fotorreceptoras Retinianas Cones/patologia , Animais , Proteínas de Ligação a Calmodulina/farmacologia , Modelos Animais de Doenças , Cães , Eletrorretinografia , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Amaurose Congênita de Leber/genética , Resultado do Tratamento
9.
Proc Natl Acad Sci U S A ; 116(10): 4496-4501, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782832

RESUMO

Autosomal recessive genetic forms (DFNB) account for most cases of profound congenital deafness. Adeno-associated virus (AAV)-based gene therapy is a promising therapeutic option, but is limited by a potentially short therapeutic window and the constrained packaging capacity of the vector. We focus here on the otoferlin gene underlying DFNB9, one of the most frequent genetic forms of congenital deafness. We adopted a dual AAV approach using two different recombinant vectors, one containing the 5' and the other the 3' portions of otoferlin cDNA, which exceed the packaging capacity of the AAV when combined. A single delivery of the vector pair into the mature cochlea of Otof-/- mutant mice reconstituted the otoferlin cDNA coding sequence through recombination of the 5' and 3' cDNAs, leading to the durable restoration of otoferlin expression in transduced cells and a reversal of the deafness phenotype, raising hopes for future gene therapy trials in DFNB9 patients.


Assuntos
Surdez/terapia , Dependovirus/genética , Terapia Genética , Proteínas de Membrana/genética , Animais , Surdez/genética , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
Hum Mutat ; 42(6): 641-666, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33847019

RESUMO

Cyclic nucleotide-gated channel ß1 (CNGB1) encodes the 240-kDa ß subunit of the rod photoreceptor cyclic nucleotide-gated ion channel. Disease-causing sequence variants in CNGB1 lead to autosomal recessive rod-cone dystrophy/retinitis pigmentosa (RP). We herein present a comprehensive review and analysis of all previously reported CNGB1 sequence variants, and add 22 novel variants, thereby enlarging the spectrum to 84 variants in total, including 24 missense variants (two of which may also affect splicing), 21 nonsense, 19 splicing defects (7 at noncanonical positions), 10 small deletions, 1 small insertion, 1 small insertion-deletion, 7 small duplications, and 1 gross deletion. According to the American College of Medical Genetics and Genomics classification criteria, 59 variants were considered pathogenic or likely pathogenic and 25 were variants of uncertain significance. In addition, we provide further phenotypic data from 34 CNGB1-related RP cases, which, overall, are in line with previous findings suggesting that this form of RP has long-term retention of useful central vision despite the early onset of night blindness, which is valuable for patient counseling, but also has implications for it being considered a priority target for gene therapy trials.


Assuntos
Distrofias de Cones e Bastonetes/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Estudos de Coortes , Distrofias de Cones e Bastonetes/classificação , Distrofias de Cones e Bastonetes/epidemiologia , Distrofias de Cones e Bastonetes/patologia , Análise Mutacional de DNA , Estudos de Associação Genética , Humanos , Mutação
11.
Dev Biol ; 464(2): 111-123, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32562755

RESUMO

The transcription factors Prdm1 (Blimp1) and Vsx2 (Chx10) work downstream of Otx2 to regulate photoreceptor and bipolar cell fates in the developing retina. Mice that lack Vsx2 fail to form bipolar cells while Prdm1 mutants form excess bipolars at the direct expense of photoreceptors. Excess bipolars in Prdm1 mutants appear to derive from rods, suggesting that photoreceptor fate remains mutable for some time after cells become specified. Here we tested whether bipolar cell fate is also plastic during development. To do this, we created a system to conditionally misexpress Prdm1 at different stages of bipolar cell development. We found that Prdm1 blocks bipolar cell formation if expressed before the fate choice decision occurred. When we misexpressed Prdm1 just after the decision to become a bipolar cell was made, some cells were reprogrammed into photoreceptors. In contrast, Prdm1 misexpression in mature bipolar cells did not affect cell fate. We also provide evidence that sustained misexpression of Prdm1 was selectively toxic to photoreceptors. Our data show that bipolar fate is malleable, but only for a short temporal window following fate specification. Prdm1 and Vsx2 act by stabilizing photoreceptor and bipolar fates in developing OTX2+ cells of the retina.


Assuntos
Reprogramação Celular , Regulação da Expressão Gênica no Desenvolvimento , Células Fotorreceptoras de Vertebrados/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo/biossíntese , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
J Pathol ; 250(2): 195-204, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31625146

RESUMO

Usher syndrome type 3 (USH3) is an autosomal recessively inherited disorder caused by mutations in the gene clarin-1 (CLRN1), leading to combined progressive hearing loss and retinal degeneration. The cellular distribution of CLRN1 in the retina remains uncertain, either because its expression levels are low or because its epitopes are masked. Indeed, in the adult mouse retina, Clrn1 mRNA is developmentally downregulated, detectable only by RT-PCR. In this study we used the highly sensitive RNAscope in situ hybridization assay and single-cell RNA-sequencing techniques to investigate the distribution of Clrn1 and CLRN1 in mouse and human retina, respectively. We found that Clrn1 transcripts in mouse tissue are localized to the inner retina during postnatal development and in adult stages. The pattern of Clrn1 mRNA cellular expression is similar in both mouse and human adult retina, with CLRN1 transcripts being localized in Müller glia, and not photoreceptors. We generated a novel knock-in mouse with a hemagglutinin (HA) epitope-tagged CLRN1 and showed that CLRN1 is expressed continuously at the protein level in the retina. Following enzymatic deglycosylation and immunoblotting analysis, we detected a single CLRN1-specific protein band in homogenates of mouse and human retina, consistent in size with the main CLRN1 isoform. Taken together, our results implicate Müller glia in USH3 pathology, placing this cell type to the center of future mechanistic and therapeutic studies to prevent vision loss in this disease. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Células Ependimogliais/metabolismo , Proteínas de Membrana/biossíntese , Retina/metabolismo , Síndromes de Usher/metabolismo , Animais , Glicosilação , Humanos , Hibridização In Situ , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , RNA Mensageiro/genética , Síndromes de Usher/patologia
13.
Mol Ther ; 28(1): 266-278, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31604676

RESUMO

The form of hereditary childhood blindness Leber congenital amaurosis (LCA) caused by biallelic RPE65 mutations is considered treatable with a gene therapy product approved in the US and Europe. The resulting vision improvement is well accepted, but long-term outcomes on the natural history of retinal degeneration are controversial. We treated four RPE65-mutant dogs in mid-life (age = 5-6 years) and followed them long-term (4-5 years). At the time of the intervention at mid-life, there were intra-ocular and inter-animal differences in local photoreceptor layer health ranging from near normal to complete degeneration. Treated locations having more than 63% of normal photoreceptors showed robust treatment-related retention of photoreceptors in the long term. Treated regions with less retained photoreceptors at the time of the intervention showed progressive degeneration similar to untreated regions with matched initial stage of disease. Unexpectedly, both treated and untreated regions in study eyes tended to show less degeneration compared to matched locations in untreated control eyes. These results support the hypothesis that successful long-term arrest of progression with RPE65 gene therapy may only occur in retinal regions with relatively retained photoreceptors at the time of the intervention, and there may be heretofore unknown mechanisms causing long-distance partial treatment effects beyond the region of subretinal injection.


Assuntos
Terapia Genética/métodos , Amaurose Congênita de Leber/terapia , Mutação , Degeneração Retiniana/genética , cis-trans-Isomerases/genética , Animais , Modelos Animais de Doenças , Cães , Eletrorretinografia , Feminino , Seguimentos , Amaurose Congênita de Leber/diagnóstico por imagem , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/diagnóstico por imagem , Retina/metabolismo , Degeneração Retiniana/diagnóstico por imagem , Resultado do Tratamento , Visão Ocular
14.
Proc Natl Acad Sci U S A ; 115(12): E2839-E2848, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507198

RESUMO

Mutations in the BEST1 gene cause detachment of the retina and degeneration of photoreceptor (PR) cells due to a primary channelopathy in the neighboring retinal pigment epithelium (RPE) cells. The pathophysiology of the interaction between RPE and PR cells preceding the formation of retinal detachment remains not well-understood. Our studies of molecular pathology in the canine BEST1 disease model revealed retina-wide abnormalities at the RPE-PR interface associated with defects in the RPE microvillar ensheathment and a cone PR-associated insoluble interphotoreceptor matrix. In vivo imaging demonstrated a retina-wide RPE-PR microdetachment, which contracted with dark adaptation and expanded upon exposure to a moderate intensity of light. Subretinal BEST1 gene augmentation therapy using adeno-associated virus 2 reversed not only clinically detectable subretinal lesions but also the diffuse microdetachments. Immunohistochemical analyses showed correction of the structural alterations at the RPE-PR interface in areas with BEST1 transgene expression. Successful treatment effects were demonstrated in three different canine BEST1 genotypes with vector titers in the 0.1-to-5E11 vector genomes per mL range. Patients with biallelic BEST1 mutations exhibited large regions of retinal lamination defects, severe PR sensitivity loss, and slowing of the retinoid cycle. Human translation of canine BEST1 gene therapy success in reversal of macro- and microdetachments through restoration of cytoarchitecture at the RPE-PR interface has promise to result in improved visual function and prevent disease progression in patients affected with bestrophinopathies.


Assuntos
Bestrofinas/genética , Oftalmopatias Hereditárias/terapia , Terapia Genética/métodos , Doenças Retinianas/terapia , Animais , Doenças do Cão/terapia , Cães , Oftalmopatias Hereditárias/diagnóstico por imagem , Oftalmopatias Hereditárias/patologia , Oftalmopatias Hereditárias/veterinária , Feminino , Vetores Genéticos/farmacologia , Humanos , Luz , Masculino , Mutação , Descolamento Retiniano/diagnóstico por imagem , Descolamento Retiniano/patologia , Descolamento Retiniano/terapia , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/patologia , Doenças Retinianas/veterinária , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica
15.
Proc Natl Acad Sci U S A ; 115(36): E8547-E8556, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127005

RESUMO

Inherited retinal degenerations are caused by mutations in >250 genes that affect photoreceptor cells or the retinal pigment epithelium and result in vision loss. For autosomal recessive and X-linked retinal degenerations, significant progress has been achieved in the field of gene therapy as evidenced by the growing number of clinical trials and the recent commercialization of the first gene therapy for a form of congenital blindness. However, despite significant efforts to develop a treatment for the most common form of autosomal dominant retinitis pigmentosa (adRP) caused by >150 mutations in the rhodopsin (RHO) gene, translation to the clinic has stalled. Here, we identified a highly efficient shRNA that targets human (and canine) RHO in a mutation-independent manner. In a single adeno-associated viral (AAV) vector we combined this shRNA with a human RHO replacement cDNA made resistant to RNA interference and tested this construct in a naturally occurring canine model of RHO-adRP. Subretinal vector injections led to nearly complete suppression of endogenous canine RHO RNA, while the human RHO replacement cDNA resulted in up to 30% of normal RHO protein levels. Noninvasive retinal imaging showed photoreceptors in treated areas were completely protected from retinal degeneration. Histopathology confirmed retention of normal photoreceptor structure and RHO expression in rod outer segments. Long-term (>8 mo) follow-up by retinal imaging and electroretinography indicated stable structural and functional preservation. The efficacy of this gene therapy in a clinically relevant large-animal model paves the way for treating patients with RHO-adRP.


Assuntos
Dependovirus , Técnicas de Introdução de Genes/métodos , Técnicas de Silenciamento de Genes/métodos , Terapia Genética/métodos , Vetores Genéticos , RNA Catalítico , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Retinose Pigmentar , Rodopsina , Animais , Cães , Células HEK293 , Humanos , RNA Catalítico/biossíntese , RNA Catalítico/genética , Células Fotorreceptoras Retinianas Bastonetes/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo , Retinose Pigmentar/patologia , Rodopsina/biossíntese , Rodopsina/genética
16.
Gene Ther ; 27(1-2): 27-39, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31243393

RESUMO

After an injury, axons in the central nervous system do not regenerate over large distances and permanently lose their connections to the brain. Two promising approaches to correct this condition are cell and gene therapies. In the present work, we evaluated the neuroprotective and neuroregenerative potential of pigment epithelium-derived factor (PEDF) gene therapy alone and combined with human mesenchymal stem cell (hMSC) therapy after optic nerve injury by analysis of retinal ganglion cell survival and axonal outgrowth. Overexpression of PEDF by intravitreal delivery of AAV2 vector significantly increased Tuj1-positive cells survival and modulated FGF-2, IL-1ß, Iba-1, and GFAP immunostaining in the ganglion cell layer (GCL) at 4 weeks after optic nerve crush, although it could not promote axonal outgrowth. The combination of AAV2.PEDF and hMSC therapy showed a higher number of Tuj1-positive cells and a pronounced axonal outgrowth than unimodal therapy after optic nerve crush. In summary, our results highlight a synergistic effect of combined gene and cell therapy relevant for future therapeutic interventions regarding optic nerve injury.


Assuntos
Proteínas do Olho/farmacologia , Fatores de Crescimento Neural/farmacologia , Traumatismos do Nervo Óptico/terapia , Células Ganglionares da Retina/efeitos dos fármacos , Serpinas/farmacologia , Animais , Axônios/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Terapia Baseada em Transplante de Células e Tecidos/métodos , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Compressão Nervosa , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa , Neuroproteção , Nervo Óptico , Ratos Wistar , Retina , Células Ganglionares da Retina/metabolismo , Serpinas/metabolismo
17.
Gene Ther ; 26(12): 479-490, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31562387

RESUMO

Adeno-associated virus vectors (rAAV) are currently the most common vehicle used in clinical trials of retinal gene therapy, usually delivered through subretinal injections to target cells of the outer retina. However, targeting the inner retina requires intravitreal injections, a simple and safe procedure, which is effective for transducing the rodent retina, but still of low efficiency in the eyes of primates. We investigated whether adjuvant pharmacological agents may enhance rAAV transduction of the retinas of mouse and rat after intravitreal delivery. Tyrosine kinase inhibitors were highly efficient in mice, especially imatinib and genistein, and promoted transduction even of the outer retina. In rats, however, we report that they were not effective. Even with direct proteasomal inhibition in rats, the effects upon transduction were only minimal and restricted to the inner retina. Even tyrosine capsid mutant rAAVs in rats had a transduction profile similar to wtAAV. Thus, the differences between mouse and rat, in both eye size and the inner limiting membrane, compromise the efficiency of AAV vectors penetration from the vitreous into the retina, and impact the efficacy of strategies developed to enhance intravitreal retinal rAAV transduction. Further improvement of strategies, then are required.


Assuntos
Adjuvantes Farmacêuticos/administração & dosagem , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Retina/virologia , Animais , Eletrorretinografia , Terapia Genética , Genisteína/administração & dosagem , Mesilato de Imatinib/administração & dosagem , Injeções Intravítreas , Camundongos , Mutação , Ratos , Transdução Genética
18.
Mol Ther ; 26(10): 2379-2396, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30217731

RESUMO

Dysregulation of the complement system is implicated in neurodegeneration, including human and animal glaucoma. Optic nerve and retinal damage in glaucoma is preceded by local complement upregulation and activation, but whether targeting this early innate immune response could have therapeutic benefit remains undefined. Because complement signals through three pathways that intersect at complement C3 activation, here we targeted this step to restore complement balance in the glaucomatous retina and to determine its contribution to degeneration onset and/or progression. To achieve this, we combined adeno-associated virus retinal gene therapy with the targeted C3 inhibitor CR2-Crry. We show that intravitreal injection of AAV2.CR2-Crry produced sustained Crry overexpression in the retina and reduced deposition of the activation product complement C3d on retinal ganglion cells and the inner retina of DBA/2J mice. This resulted in neuroprotection of retinal ganglion cell axons and somata despite continued intraocular pressure elevation, suggesting a direct restriction of neurodegeneration onset and progression and significant delay to terminal disease stages. Our study uncovers a damaging effect of complement C3 or downstream complement activation in glaucoma, and it establishes AAV2.CR2-Crry as a viable therapeutic strategy to target pathogenic C3-mediated complement activation in the glaucomatous retina.


Assuntos
Complemento C3/genética , Glaucoma/terapia , Degeneração Neural/terapia , Proteínas Recombinantes de Fusão/genética , Animais , Complemento C3/antagonistas & inibidores , Dependovirus/genética , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica/efeitos dos fármacos , Terapia Genética , Glaucoma/genética , Glaucoma/patologia , Humanos , Pressão Intraocular/efeitos dos fármacos , Injeções Intravítreas , Camundongos , Degeneração Neural/genética , Degeneração Neural/patologia , Proteínas Recombinantes de Fusão/administração & dosagem , Retina/efeitos dos fármacos , Retina/patologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia
19.
N Engl J Med ; 372(20): 1920-6, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25936984

RESUMO

Retinal gene therapy for Leber's congenital amaurosis, an autosomal recessive childhood blindness, has been widely considered to be safe and efficacious. Three years after therapy, improvement in vision was maintained, but the rate of loss of photoreceptors in the treated retina was the same as that in the untreated retina. Here we describe long-term follow-up data from three treated patients. Topographic maps of visual sensitivity in treated regions, nearly 6 years after therapy for two of the patients and 4.5 years after therapy for the third patient, indicate progressive diminution of the areas of improved vision. (Funded by the National Eye Institute; ClinicalTrials.gov number, NCT00481546.).


Assuntos
Terapia Genética , Amaurose Congênita de Leber/terapia , Células Fotorreceptoras de Vertebrados/patologia , Retina/fisiologia , Adolescente , Progressão da Doença , Seguimentos , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/patologia , Mutação , Visão Ocular , Adulto Jovem
20.
Mol Vis ; 24: 834-846, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713422

RESUMO

Purpose: Recessive mutations in the human IQCB1/NPHP5 gene are associated with Senior-Løken syndrome (SLS), a ciliopathy presenting with nephronophthisis and Leber congenital amaurosis (LCA). Nphp5-knockout mice develop LCA without nephronophthisis. Mutant rods rapidly degenerate while mutant cones survive for months. The purpose of this study was to reinitiate cone ciliogenesis in a Nphp5 -/-; Nrl -/- mouse with viral expression of full-length NPHP5 and rescue function. Methods: Nphp5 -/- mice were mated with Nrl -/- mice to generate Nphp5-/-; Nrl-/- double-knockouts. Nphp5-/-; Nrl-/- mice and Nphp5+/-; Nrl-/- controls were phenotyped with confocal microscopy from postnatal day 10 (P10) until 6 months of age. Nphp5-/-; Nrl-/- mice and Nphp5+/-; Nrl-/- controls were injected at P15 with self-complementary adenoassociated virus 8 (Y733F) (AAV8(Y733F)) expressing GRK1-FL-cNPHP5. Expression of mutant NPHP5 was verified with confocal microscopy and electroretinography (ERG). Results: In the Nphp5 -/- and cone-only Nphp5 -/-; Nrl -/- mice, cone outer segments did not form, but mutant cones continued to express cone pigments in the inner segments without obvious signs of cone cell death. The mutant cone outer nuclear layer (ONL) and the inner segments were stable for more than 6 months in the cone-only Nphp5 -/-; Nrl -/- retinas. Viral expression of NPHP5 initiated after eye opening showed that connecting cilia and RP1-positive axonemes were formed. Furthermore, cone pigments and other cone outer segment proteins (cone transducin and cone PDE6) were present in the nascent mutant cone outer segments, and rescued mutant cones exhibited a significant photopic b-wave (30% of Nphp5 +/-; Nrl -/- controls). Conclusions: Nphp5-/-; Nrl-/- cones persistently express cone pigments in the inner segments without obvious degeneration, providing an extended duration interval for viral gene expression. Viral expression of full-length NPHP5 initiates ciliogenesis between P15 and P60, and mutant cones are, in part, functional, encouraging future retina gene replacement therapy.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Ligação a Calmodulina/genética , Proteínas do Olho/genética , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Células Fotorreceptoras Retinianas Cones/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Sequência de Aminoácidos , Animais , Axonema/metabolismo , Axonema/ultraestrutura , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Proteínas de Ligação a Calmodulina/deficiência , Cílios/metabolismo , Cílios/ultraestrutura , Cruzamentos Genéticos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo , Modelos Animais de Doenças , Proteínas do Olho/metabolismo , Feminino , Receptor Quinase 1 Acoplada a Proteína G/genética , Receptor Quinase 1 Acoplada a Proteína G/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Amaurose Congênita de Leber/metabolismo , Amaurose Congênita de Leber/patologia , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fenótipo , Células Fotorreceptoras Retinianas Cones/patologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transducina/genética , Transducina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA