Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Med Imaging ; 23(1): 91, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422639

RESUMO

PURPOSE: Segmentation of liver vessels from CT images is indispensable prior to surgical planning and aroused a broad range of interest in the medical image analysis community. Due to the complex structure and low-contrast background, automatic liver vessel segmentation remains particularly challenging. Most of the related researches adopt FCN, U-net, and V-net variants as a backbone. However, these methods mainly focus on capturing multi-scale local features which may produce misclassified voxels due to the convolutional operator's limited locality reception field. METHODS: We propose a robust end-to-end vessel segmentation network called Inductive BIased Multi-Head Attention Vessel Net(IBIMHAV-Net) by expanding swin transformer to 3D and employing an effective combination of convolution and self-attention. In practice, we introduce voxel-wise embedding rather than patch-wise embedding to locate precise liver vessel voxels and adopt multi-scale convolutional operators to gain local spatial information. On the other hand, we propose the inductive biased multi-head self-attention which learns inductively biased relative positional embedding from initialized absolute position embedding. Based on this, we can gain more reliable queries and key matrices. RESULTS: We conducted experiments on the 3DIRCADb dataset. The average dice and sensitivity of the four tested cases were 74.8[Formula: see text] and 77.5[Formula: see text], which exceed the results of existing deep learning methods and improved graph cuts method. The Branches Detected(BD)/Tree-length Detected(TD) indexes also proved the global/local feature capture ability better than other methods. CONCLUSION: The proposed model IBIMHAV-Net provides an automatic, accurate 3D liver vessel segmentation with an interleaved architecture that better utilizes both global and local spatial features in CT volumes. It can be further extended for other clinical data.


Assuntos
Cabeça , Fígado , Humanos , Fígado/diagnóstico por imagem , Atenção , Processamento de Imagem Assistida por Computador/métodos
2.
Eur Radiol ; 32(8): 5633-5641, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35182202

RESUMO

OBJECTIVES: We proposed a new approach to train deep learning model for aneurysm rupture prediction which only uses a limited amount of labeled data. METHOD: Using segmented aneurysm mask as input, a backbone model was pretrained using a self-supervised method to learn deep embeddings of aneurysm morphology from 947 unlabeled cases of angiographic images. Subsequently, the backbone model was finetuned using 120 labeled cases with known rupture status. Clinical information was integrated with deep embeddings to further improve prediction performance. The proposed model was compared with radiomics and conventional morphology models in prediction performance. An assistive diagnosis system was also developed based on the model and was tested with five neurosurgeons. RESULT: Our method achieved an area under the receiver operating characteristic curve (AUC) of 0.823, outperforming deep learning model trained from scratch (0.787). By integrating with clinical information, the proposed model's performance was further improved to AUC = 0.853, making the results significantly better than model based on radiomics (AUC = 0.805, p = 0.007) or model based on conventional morphology parameters (AUC = 0.766, p = 0.001). Our model also achieved the highest sensitivity, PPV, NPV, and accuracy among the others. Neurosurgeons' prediction performance was improved from AUC=0.877 to 0.945 (p = 0.037) with the assistive diagnosis system. CONCLUSION: Our proposed method could develop competitive deep learning model for rupture prediction using only a limited amount of data. The assistive diagnosis system could be useful for neurosurgeons to predict rupture. KEY POINTS: • A self-supervised learning method was proposed to mitigate the data-hungry issue of deep learning, enabling training deep neural network with a limited amount of data. • Using the proposed method, deep embeddings were extracted to represent intracranial aneurysm morphology. Prediction model based on deep embeddings was significantly better than conventional morphology model and radiomics model. • An assistive diagnosis system was developed using deep embeddings for case-based reasoning, which was shown to significantly improve neurosurgeons' performance to predict rupture.


Assuntos
Aneurisma Roto , Aneurisma Intracraniano , Aneurisma Roto/diagnóstico por imagem , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Redes Neurais de Computação , Curva ROC
3.
Radiology ; 291(3): 677-686, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30912722

RESUMO

Background Nasopharyngeal carcinoma (NPC) may be cured with radiation therapy. Tumor proximity to critical structures demands accuracy in tumor delineation to avoid toxicities from radiation therapy; however, tumor target contouring for head and neck radiation therapy is labor intensive and highly variable among radiation oncologists. Purpose To construct and validate an artificial intelligence (AI) contouring tool to automate primary gross tumor volume (GTV) contouring in patients with NPC. Materials and Methods In this retrospective study, MRI data sets covering the nasopharynx from 1021 patients (median age, 47 years; 751 male, 270 female) with NPC between September 2016 and September 2017 were collected and divided into training, validation, and testing cohorts of 715, 103, and 203 patients, respectively. GTV contours were delineated for 1021 patients and were defined by consensus of two experts. A three-dimensional convolutional neural network was applied to 818 training and validation MRI data sets to construct the AI tool, which was tested in 203 independent MRI data sets. Next, the AI tool was compared against eight qualified radiation oncologists in a multicenter evaluation by using a random sample of 20 test MRI examinations. The Wilcoxon matched-pairs signed rank test was used to compare the difference of Dice similarity coefficient (DSC) of pre- versus post-AI assistance. Results The AI-generated contours demonstrated a high level of accuracy when compared with ground truth contours at testing in 203 patients (DSC, 0.79; 2.0-mm difference in average surface distance). In multicenter evaluation, AI assistance improved contouring accuracy (five of eight oncologists had a higher median DSC after AI assistance; average median DSC, 0.74 vs 0.78; P < .001), reduced intra- and interobserver variation (by 36.4% and 54.5%, respectively), and reduced contouring time (by 39.4%). Conclusion The AI contouring tool improved primary gross tumor contouring accuracy of nasopharyngeal carcinoma, which could have a positive impact on tumor control and patient survival. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Chang in this issue.


Assuntos
Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Carcinoma Nasofaríngeo/diagnóstico por imagem , Neoplasias Nasofaríngeas/diagnóstico por imagem , Adolescente , Adulto , Algoritmos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nasofaringe/diagnóstico por imagem , Estudos Retrospectivos , Adulto Jovem
4.
J Magn Reson Imaging ; 50(4): 1144-1151, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30924997

RESUMO

BACKGROUND: The usefulness of 3D deep learning-based classification of breast cancer and malignancy localization from MRI has been reported. This work can potentially be very useful in the clinical domain and aid radiologists in breast cancer diagnosis. PURPOSE: To evaluate the efficacy of 3D deep convolutional neural network (CNN) for diagnosing breast cancer and localizing the lesions at dynamic contrast enhanced (DCE) MRI data in a weakly supervised manner. STUDY TYPE: Retrospective study. SUBJECTS: A total of 1537 female study cases (mean age 47.5 years ±11.8) were collected from March 2013 to December 2016. All the cases had labels of the pathology results as well as BI-RADS categories assessed by radiologists. FIELD STRENGTH/SEQUENCE: 1.5 T dynamic contrast-enhanced MRI. ASSESSMENT: Deep 3D densely connected networks were trained under image-level supervision to automatically classify the images and localize the lesions. The dataset was randomly divided into training (1073), validation (157), and testing (307) subsets. STATISTICAL TESTS: Accuracy, sensitivity, specificity, area under receiver operating characteristic curve (ROC), and the McNemar test for breast cancer classification. Dice similarity for breast cancer localization. RESULTS: The final algorithm performance for breast cancer diagnosis showed 83.7% (257 out of 307) accuracy (95% confidence interval [CI]: 79.1%, 87.4%), 90.8% (187 out of 206) sensitivity (95% CI: 80.6%, 94.1%), 69.3% (70 out of 101) specificity (95% CI: 59.7%, 77.5%), with the area under the curve ROC of 0.859. The weakly supervised cancer detection showed an overall Dice distance of 0.501 ± 0.274. DATA CONCLUSION: 3D CNNs demonstrated high accuracy for diagnosing breast cancer. The weakly supervised learning method showed promise for localizing lesions in volumetric radiology images with only image-level labels. LEVEL OF EVIDENCE: 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;50:1144-1151.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Meios de Contraste , Aprendizado Profundo , Feminino , Humanos , Aumento da Imagem/métodos , Pessoa de Meia-Idade , Redes Neurais de Computação , Estudos Retrospectivos , Sensibilidade e Especificidade
5.
Neuroimage ; 170: 446-455, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28445774

RESUMO

Segmentation of key brain tissues from 3D medical images is of great significance for brain disease diagnosis, progression assessment and monitoring of neurologic conditions. While manual segmentation is time-consuming, laborious, and subjective, automated segmentation is quite challenging due to the complicated anatomical environment of brain and the large variations of brain tissues. We propose a novel voxelwise residual network (VoxResNet) with a set of effective training schemes to cope with this challenging problem. The main merit of residual learning is that it can alleviate the degradation problem when training a deep network so that the performance gains achieved by increasing the network depth can be fully leveraged. With this technique, our VoxResNet is built with 25 layers, and hence can generate more representative features to deal with the large variations of brain tissues than its rivals using hand-crafted features or shallower networks. In order to effectively train such a deep network with limited training data for brain segmentation, we seamlessly integrate multi-modality and multi-level contextual information into our network, so that the complementary information of different modalities can be harnessed and features of different scales can be exploited. Furthermore, an auto-context version of the VoxResNet is proposed by combining the low-level image appearance features, implicit shape information, and high-level context together for further improving the segmentation performance. Extensive experiments on the well-known benchmark (i.e., MRBrainS) of brain segmentation from 3D magnetic resonance (MR) images corroborated the efficacy of the proposed VoxResNet. Our method achieved the first place in the challenge out of 37 competitors including several state-of-the-art brain segmentation methods. Our method is inherently general and can be readily applied as a powerful tool to many brain-related studies, where accurate segmentation of brain structures is critical.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Encéfalo/patologia , Humanos
6.
Biomed Eng Online ; 16(1): 30, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28219432

RESUMO

BACKGROUND: Biomechanical deformable volumetric registration can help improve safety of surgical interventions by ensuring the operations are extremely precise. However, this technique has been limited by the accuracy and the computational efficiency of patient-specific modeling. METHODS: This study presents a tissue-tissue coupling strategy based on penalty method to model the heterogeneous behavior of deformable body, and estimate the personalized tissue-tissue coupling parameters in a data-driven way. Moreover, considering that the computational efficiency of biomechanical model is highly dependent on the mechanical resolution, a practical coarse-to-fine scheme is proposed to increase runtime efficiency. Particularly, a detail enrichment database is established in an offline fashion to represent the mapping relationship between the deformation results of high-resolution hexahedral mesh extracted from the raw medical data and a newly constructed low-resolution hexahedral mesh. At runtime, the mechanical behavior of human organ under interactions is simulated with this low-resolution hexahedral mesh, then the microstructures are synthesized in virtue of the detail enrichment database. RESULTS: The proposed method is validated by volumetric registration in an abdominal phantom compression experiments. Our personalized heterogeneous deformable model can well describe the coupling effects between different tissues of the phantom. Compared with high-resolution heterogeneous deformable model, the low-resolution deformable model with our detail enrichment database can achieve 9.4× faster, and the average target registration error is 3.42 mm, which demonstrates that the proposed method shows better volumetric registration performance than state-of-the-art. CONCLUSIONS: Our framework can well balance the precision and efficiency, and has great potential to be adopted in the practical augmented reality image-guided robotic systems.


Assuntos
Fenômenos Mecânicos , Modelos Biológicos , Modelagem Computacional Específica para o Paciente , Abdome/cirurgia , Fenômenos Biomecânicos , Força Compressiva , Bases de Dados Factuais , Humanos , Imagens de Fantasmas , Cirurgia Assistida por Computador
7.
JAMA ; 318(22): 2199-2210, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29234806

RESUMO

Importance: Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency. Objective: Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin-stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting. Design, Setting, and Participants: Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC). Exposures: Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation. Main Outcomes and Measures: The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor. Results: The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884]; P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC). Conclusions and Relevance: In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.


Assuntos
Neoplasias da Mama/patologia , Metástase Linfática/diagnóstico , Aprendizado de Máquina , Patologistas , Algoritmos , Feminino , Humanos , Metástase Linfática/patologia , Patologia Clínica , Curva ROC
8.
J Magn Reson Imaging ; 39(5): 1327-37, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24123542

RESUMO

PURPOSE: To automatically and robustly detect the arterial input function (AIF) with high detection accuracy and low computational cost in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). MATERIALS AND METHODS: In this study, we developed an automatic AIF detection method using an accelerated version (Fast-AP) of affinity propagation (AP) clustering. The validity of this Fast-AP-based method was proved on two DCE-MRI datasets, i.e., rat kidney and human head and neck. The detailed AIF detection performance of this proposed method was assessed in comparison with other clustering-based methods, namely original AP and K-means, as well as the manual AIF detection method. RESULTS: Both the automatic AP- and Fast-AP-based methods achieved satisfactory AIF detection accuracy, but the computational cost of Fast-AP could be reduced by 64.37-92.10% on rat dataset and 73.18-90.18% on human dataset compared with the cost of AP. The K-means yielded the lowest computational cost, but resulted in the lowest AIF detection accuracy. The experimental results demonstrated that both the AP- and Fast-AP-based methods were insensitive to the initialization of cluster centers, and had superior robustness compared with K-means method. CONCLUSION: The Fast-AP-based method enables automatic AIF detection with high accuracy and efficiency.


Assuntos
Algoritmos , Artérias/fisiologia , Compostos Heterocíclicos/farmacocinética , Angiografia por Ressonância Magnética/métodos , Modelos Biológicos , Compostos Organometálicos/farmacocinética , Reconhecimento Automatizado de Padrão/métodos , Animais , Artérias/anatomia & histologia , Velocidade do Fluxo Sanguíneo/fisiologia , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Rim/irrigação sanguínea , Ratos , Circulação Renal/fisiologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
IEEE Trans Med Imaging ; 43(6): 2279-2290, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38345948

RESUMO

Upon remarkable progress in cardiac image segmentation, contemporary studies dedicate to further upgrading model functionality toward perfection, through progressively exploring the sequentially delivered datasets over time by domain incremental learning. Existing works mainly concentrated on addressing the heterogeneous style variations, but overlooked the critical shape variations across domains hidden behind the sub-disease composition discrepancy. In case the updated model catastrophically forgets the sub-diseases that were learned in past domains but are no longer present in the subsequent domains, we proposed a dual enrichment synergistic strategy to incrementally broaden model competence for a growing number of sub-diseases. The data-enriched scheme aims to diversify the shape composition of current training data via displacement-aware shape encoding and decoding, to gradually build up the robustness against cross-domain shape variations. Meanwhile, the model-enriched scheme intends to strengthen model capabilities by progressively appending and consolidating the latest expertise into a dynamically-expanded multi-expert network, to gradually cultivate the generalization ability over style-variated domains. The above two schemes work in synergy to collaboratively upgrade model capabilities in two-pronged manners. We have extensively evaluated our network with the ACDC and M&Ms datasets in single-domain and compound-domain incremental learning settings. Our approach outperformed other competing methods and achieved comparable results to the upper bound.


Assuntos
Algoritmos , Coração , Humanos , Coração/diagnóstico por imagem , Bases de Dados Factuais , Processamento de Imagem Assistida por Computador/métodos , Interpretação de Imagem Assistida por Computador/métodos
10.
IEEE Trans Med Imaging ; 43(5): 1972-1982, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38215335

RESUMO

Deep learning (DL)-based rib fracture detection has shown promise of playing an important role in preventing mortality and improving patient outcome. Normally, developing DL-based object detection models requires a huge amount of bounding box annotation. However, annotating medical data is time-consuming and expertise-demanding, making obtaining a large amount of fine-grained annotations extremely infeasible. This poses a pressing need for developing label-efficient detection models to alleviate radiologists' labeling burden. To tackle this challenge, the literature on object detection has witnessed an increase of weakly-supervised and semi-supervised approaches, yet still lacks a unified framework that leverages various forms of fully-labeled, weakly-labeled, and unlabeled data. In this paper, we present a novel omni-supervised object detection network, ORF-Netv2, to leverage as much available supervision as possible. Specifically, a multi-branch omni-supervised detection head is introduced with each branch trained with a specific type of supervision. A co-training-based dynamic label assignment strategy is then proposed to enable flexible and robust learning from the weakly-labeled and unlabeled data. Extensive evaluation was conducted for the proposed framework with three rib fracture datasets on both chest CT and X-ray. By leveraging all forms of supervision, ORF-Netv2 achieves mAPs of 34.7, 44.7, and 19.4 on the three datasets, respectively, surpassing the baseline detector which uses only box annotations by mAP gains of 3.8, 4.8, and 5.0, respectively. Furthermore, ORF-Netv2 consistently outperforms other competitive label-efficient methods over various scenarios, showing a promising framework for label-efficient fracture detection. The code is available at: https://github.com/zhizhongchai/ORF-Net.


Assuntos
Aprendizado Profundo , Radiografia Torácica , Fraturas das Costelas , Aprendizado de Máquina Supervisionado , Humanos , Fraturas das Costelas/diagnóstico por imagem , Radiografia Torácica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos
11.
IEEE Trans Med Imaging ; PP2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564346

RESUMO

Diabetic retinopathy (DR) is a serious ocular condition that requires effective monitoring and treatment by ophthalmologists. However, constructing a reliable DR grading model remains a challenging and costly task, heavily reliant on high-quality training sets and adequate hardware resources. In this paper, we investigate the knowledge transferability of large-scale pre-trained models (LPMs) to fundus images based on prompt learning to construct a DR grading model efficiently. Unlike full-tuning which fine-tunes all parameters of LPMs, prompt learning only involves a minimal number of additional learnable parameters while achieving a competitive effect as full-tuning. Inspired by visual prompt tuning, we propose Semantic-oriented Visual Prompt Learning (SVPL) to enhance the semantic perception ability for better extracting task-specific knowledge from LPMs, without any additional annotations. Specifically, SVPL assigns a group of learnable prompts for each DR level to fit the complex pathological manifestations and then aligns each prompt group to task-specific semantic space via a contrastive group alignment (CGA) module. We also propose a plug-and-play adapter module, Hierarchical Semantic Delivery (HSD), which allows the semantic transition of prompt groups from shallow to deep layers to facilitate efficient knowledge mining and model convergence. Our extensive experiments on three public DR grading datasets demonstrate that SVPL achieves superior results compared to other transfer tuning and DR grading methods. Further analysis suggests that the generalized knowledge from LPMs is advantageous for constructing the DR grading model on fundus images.

12.
Transl Psychiatry ; 14(1): 150, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499546

RESUMO

There is an emerging potential for digital assessment of depression. In this study, Chinese patients with major depressive disorder (MDD) and controls underwent a week of multimodal measurement including actigraphy and app-based measures (D-MOMO) to record rest-activity, facial expression, voice, and mood states. Seven machine-learning models (Random Forest [RF], Logistic regression [LR], Support vector machine [SVM], K-Nearest Neighbors [KNN], Decision tree [DT], Naive Bayes [NB], and Artificial Neural Networks [ANN]) with leave-one-out cross-validation were applied to detect lifetime diagnosis of MDD and non-remission status. Eighty MDD subjects and 76 age- and sex-matched controls completed the actigraphy, while 61 MDD subjects and 47 controls completed the app-based assessment. MDD subjects had lower mobile time (P = 0.006), later sleep midpoint (P = 0.047) and Acrophase (P = 0.024) than controls. For app measurement, MDD subjects had more frequent brow lowering (P = 0.023), less lip corner pulling (P = 0.007), higher pause variability (P = 0.046), more frequent self-reference (P = 0.024) and negative emotion words (P = 0.002), lower articulation rate (P < 0.001) and happiness level (P < 0.001) than controls. With the fusion of all digital modalities, the predictive performance (F1-score) of ANN for a lifetime diagnosis of MDD was 0.81 and 0.70 for non-remission status when combined with the HADS-D item score, respectively. Multimodal digital measurement is a feasible diagnostic tool for depression in Chinese. A combination of multimodal measurement and machine-learning approach has enhanced the performance of digital markers in phenotyping and diagnosis of MDD.


Assuntos
Transtorno Depressivo Maior , Aplicativos Móveis , Humanos , Transtorno Depressivo Maior/diagnóstico , Teorema de Bayes , Actigrafia , Depressão/diagnóstico , Hong Kong
13.
IEEE Trans Med Imaging ; 42(3): 570-581, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36191115

RESUMO

Contemporary methods have shown promising results on cardiac image segmentation, but merely in static learning, i.e., optimizing the network once for all, ignoring potential needs for model updating. In real-world scenarios, new data continues to be gathered from multiple institutions over time and new demands keep growing to pursue more satisfying performance. The desired model should incrementally learn from each incoming dataset and progressively update with improved functionality as time goes by. As the datasets sequentially delivered from multiple sites are normally heterogenous with domain discrepancy, each updated model should not catastrophically forget previously learned domains while well generalizing to currently arrived domains or even unseen domains. In medical scenarios, this is particularly challenging as accessing or storing past data is commonly not allowed due to data privacy. To this end, we propose a novel domain-incremental learning framework to recover past domain inputs first and then regularly replay them during model optimization. Particularly, we first present a style-oriented replay module to enable structure-realistic and memory-efficient reproduction of past data, and then incorporate the replayed past data to jointly optimize the model with current data to alleviate catastrophic forgetting. During optimization, we additionally perform domain-sensitive feature whitening to suppress model's dependency on features that are sensitive to domain changes (e.g., domain-distinctive style features) to assist domain-invariant feature exploration and gradually improve the generalization performance of the network. We have extensively evaluated our approach with the M&Ms Dataset in single-domain and compound-domain incremental learning settings. Our approach outperforms other comparison methods with less forgetting on past domains and better generalization on current domains and unseen domains.


Assuntos
Coração , Processamento de Imagem Assistida por Computador , Coração/diagnóstico por imagem
14.
Med Image Anal ; 86: 102772, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822050

RESUMO

Multi-label classification (MLC) can attach multiple labels on single image, and has achieved promising results on medical images. But existing MLC methods still face challenging clinical realities in practical use, such as: (1) medical risks arising from misclassification, (2) sample imbalance problem among different diseases, (3) inability to classify the diseases that are not pre-defined (unseen diseases). Here, we design a hybrid label to improve the flexibility of MLC methods and alleviate the sample imbalance problem. Specifically, in the labeled training set, we remain independent labels for high-frequency diseases with enough samples and use a hybrid label to merge low-frequency diseases with fewer samples. The hybrid label can also be used to put unseen diseases in practical use. In this paper, we propose Triplet Attention and Dual-pool Contrastive Learning (TA-DCL) for multi-label medical image classification based on the aforementioned label representation. TA-DCL architecture is a triplet attention network (TAN), which combines category-attention, self-attention and cross-attention together to learn high-quality label embeddings for all disease labels by mining effective information from medical images. DCL includes dual-pool contrastive training (DCT) and dual-pool contrastive inference (DCI). DCT optimizes the clustering centers of label embeddings belonging to different disease labels to improve the discrimination of label embeddings. DCI relieves the error classification of sick cases for reducing the clinical risk and improving the ability to detect unseen diseases by contrast of differences. TA-DCL is validated on two public medical image datasets, ODIR and NIH-ChestXray14, showing superior performance than other state-of-the-art MLC methods. Code is available at https://github.com/ZhangYH0502/TA-DCL.


Assuntos
Processamento de Imagem Assistida por Computador , Aprendizagem , Humanos
15.
IEEE Trans Pattern Anal Mach Intell ; 45(3): 3259-3273, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35737621

RESUMO

This article formulates a new problem, instance shadow detection, which aims to detect shadow instance and the associated object instance that cast each shadow in the input image. To approach this task, we first compile a new dataset with the masks for shadow instances, object instances, and shadow-object associations. We then design an evaluation metric for quantitative evaluation of the performance of instance shadow detection. Further, we design a single-stage detector to perform instance shadow detection in an end-to-end manner, where the bidirectional relation learning module and the deformable maskIoU head are proposed in the detector to directly learn the relation between shadow instances and object instances and to improve the accuracy of the predicted masks. Finally, we quantitatively and qualitatively evaluate our method on the benchmark dataset of instance shadow detection and show the applicability of our method on light direction estimation and photo editing.

16.
Med Image Anal ; 83: 102673, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403310

RESUMO

Supervised deep learning has achieved prominent success in various diabetic macular edema (DME) recognition tasks from optical coherence tomography (OCT) volumetric images. A common problematic issue that frequently occurs in this field is the shortage of labeled data due to the expensive fine-grained annotations, which increases substantial difficulty in accurate analysis by supervised learning. The morphological changes in the retina caused by DME might be distributed sparsely in B-scan images of the OCT volume, and OCT data is often coarsely labeled at the volume level. Hence, the DME identification task can be formulated as a multiple instance classification problem that could be addressed by multiple instance learning (MIL) techniques. Nevertheless, none of previous studies utilize unlabeled data simultaneously to promote the classification accuracy, which is particularly significant for a high quality of analysis at the minimum annotation cost. To this end, we present a novel deep semi-supervised multiple instance learning framework to explore the feasibility of leveraging a small amount of coarsely labeled data and a large amount of unlabeled data to tackle this problem. Specifically, we come up with several modules to further improve the performance according to the availability and granularity of their labels. To warm up the training, we propagate the bag labels to the corresponding instances as the supervision of training, and propose a self-correction strategy to handle the label noise in the positive bags. This strategy is based on confidence-based pseudo-labeling with consistency regularization. The model uses its prediction to generate the pseudo-label for each weakly augmented input only if it is highly confident about the prediction, which is subsequently used to supervise the same input in a strongly augmented version. This learning scheme is also applicable to unlabeled data. To enhance the discrimination capability of the model, we introduce the Student-Teacher architecture and impose consistency constraints between two models. For demonstration, the proposed approach was evaluated on two large-scale DME OCT image datasets. Extensive results indicate that the proposed method improves DME classification with the incorporation of unlabeled data and outperforms competing MIL methods significantly, which confirm the feasibility of deep semi-supervised multiple instance learning at a low annotation cost.


Assuntos
Retinopatia Diabética , Edema Macular , Humanos , Edema Macular/diagnóstico por imagem , Retinopatia Diabética/diagnóstico por imagem , Tomografia de Coerência Óptica , Aprendizado de Máquina Supervisionado , Retina/diagnóstico por imagem
17.
Artigo em Inglês | MEDLINE | ID: mdl-37307178

RESUMO

Due to the individual difference, EEG signals from other subjects (source) can hardly be used to decode the mental intentions of the target subject. Although transfer learning methods have shown promising results, they still suffer from poor feature representation or neglect long-range dependencies. In light of these limitations, we propose Global Adaptive Transformer (GAT), an domain adaptation method to utilize source data for cross-subject enhancement. Our method uses parallel convolution to capture temporal and spatial features first. Then, we employ a novel attention-based adaptor that implicitly transfers source features to the target domain, emphasizing the global correlation of EEG features. We also use a discriminator to explicitly drive the reduction of marginal distribution discrepancy by learning against the feature extractor and the adaptor. Besides, an adaptive center loss is designed to align the conditional distribution. With the aligned source and target features, a classifier can be optimized to decode EEG signals. Experiments on two widely used EEG datasets demonstrate that our method outperforms state-of-the-art methods, primarily due to the effectiveness of the adaptor. These results indicate that GAT has good potential to enhance the practicality of BCI.


Assuntos
Eletroencefalografia , Aprendizagem , Humanos , Eletroencefalografia/métodos , Aprendizado de Máquina , Software , Fontes de Energia Elétrica
18.
J Cheminform ; 15(1): 43, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038222

RESUMO

Artificial intelligence has deeply revolutionized the field of medicinal chemistry with many impressive applications, but the success of these applications requires a massive amount of training samples with high-quality annotations, which seriously limits the wide usage of data-driven methods. In this paper, we focus on the reaction yield prediction problem, which assists chemists in selecting high-yield reactions in a new chemical space only with a few experimental trials. To attack this challenge, we first put forth MetaRF, an attention-based random forest model specially designed for the few-shot yield prediction, where the attention weight of a random forest is automatically optimized by the meta-learning framework and can be quickly adapted to predict the performance of new reagents while given a few additional samples. To improve the few-shot learning performance, we further introduce a dimension-reduction based sampling method to determine valuable samples to be experimentally tested and then learned. Our methodology is evaluated on three different datasets and acquires satisfactory performance on few-shot prediction. In high-throughput experimentation (HTE) datasets, the average yield of our methodology's top 10 high-yield reactions is relatively close to the results of ideal yield selection.

19.
IEEE Trans Cybern ; 53(10): 6363-6375, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37015538

RESUMO

Automated detecting lung infections from computed tomography (CT) data plays an important role for combating coronavirus 2019 (COVID-19). However, there are still some challenges for developing AI system: 1) most current COVID-19 infection segmentation methods mainly relied on 2-D CT images, which lack 3-D sequential constraint; 2) existing 3-D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3-D volume; and 3) the emergent breaking out of COVID-19 makes it hard to annotate sufficient CT volumes for training deep model. To address these issues, we first build a multiple dimensional-attention convolutional neural network (MDA-CNN) to aggregate multiscale information along different dimension of input feature maps and impose supervision on multiple predictions from different convolutional neural networks (CNNs) layers. Second, we assign this MDA-CNN as a basic network into a novel dual multiscale mean teacher network (DM [Formula: see text]-Net) for semi-supervised COVID-19 lung infection segmentation on CT volumes by leveraging unlabeled data and exploring the multiscale information. Our DM [Formula: see text]-Net encourages multiple predictions at different CNN layers from the student and teacher networks to be consistent for computing a multiscale consistency loss on unlabeled data, which is then added to the supervised loss on the labeled data from multiple predictions of MDA-CNN. Third, we collect two COVID-19 segmentation datasets to evaluate our method. The experimental results show that our network consistently outperforms the compared state-of-the-art methods.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
20.
Nat Commun ; 14(1): 7434, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973874

RESUMO

Inverse Protein Folding (IPF) is an important task of protein design, which aims to design sequences compatible with a given backbone structure. Despite the prosperous development of algorithms for this task, existing methods tend to rely on noisy predicted residues located in the local neighborhood when generating sequences. To address this limitation, we propose an entropy-based residue selection method to remove noise in the input residue context. Additionally, we introduce ProRefiner, a memory-efficient global graph attention model to fully utilize the denoised context. Our proposed method achieves state-of-the-art performance on multiple sequence design benchmarks in different design settings. Furthermore, we demonstrate the applicability of ProRefiner in redesigning Transposon-associated transposase B, where six out of the 20 variants we propose exhibit improved gene editing activity.


Assuntos
Algoritmos , Proteínas , Entropia , Proteínas/genética , Proteínas/química , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA